
FreeFEM3D Documentation.

Stéphane DEL PINO, Olivier PIRONNEAU
http://www.freefem.org

Version 1.0pre5 (July 18, 2004)

ii

Contents

Contents iii

1 Generalities 3
1.1 Configurations . 3
1.2 Contacts . 4

1.2.1 FreeFEM3D’s team . 4
1.2.2 Project pages . 4

1.3 Requirements and Installation . 5
1.3.1 Requirements . 5
1.3.2 Getting the sources . 5
1.3.3 Building the code . 6
1.3.4 Getting pre-complied binaries . 8

1.4 Legal conditions . 8
1.4.1 Warning . 8
1.4.2 GNU Genaral Public Licence . 9

2 An overview of FreeFEM3D. 11
2.1 The Problem . 11
2.2 The Program using PDEs . 11
2.3 Describing the program step by step. 12
2.4 Running the Program . 15

3 FEM and EFDM 17
3.1 Finite Element Method. 17
3.2 Embedding of a Fictitious Domain Method. 18

3.2.1 A first approach . 18
3.2.2 A second approach . 18
3.2.3 Generalities . 19

4 Solving problems with FreeFEM3D. 21
4.1 Geometry definition. 21

4.1.1 POV-Ray Language Conventions for FreeFEM3D 22
4.1.2 POV-Ray language basics. 22

4.2 Boolean operations. 23
4.3 Language Basics . 24

4.3.1 Simple types. 25
4.3.2 Complex types. 26

4.4 Instructions for the Geometry . 28

iii

iv CONTENTS

4.5 Problem definition. 29
4.5.1 The solver bloc. 29
4.5.2 PDE system syntax. 37
4.5.3 Boundary Conditions . 38
4.5.4 Bilinear forms. 39
4.5.5 Linear forms. 39
4.5.6 convection operator. 40

4.6 Other Instructions. 40
4.6.1 Input and output. 40
4.6.2 Statements. 41

5 Examples 43
5.1 A Simple Example: the Poisson Problem in a Cube. 43

Index 45

Acknowledgements

We want here to address special thanks to Robert LI and Alban PAGES for there
interest, remarks and encouragements.

1

2 CONTENTS

Chapter 1

Generalities

FreeFEM3D (aka ff3d) stands for “FREE Finite Element Method in 3 Dimensions”.
This software will assist you in solving problems which are modeled by partial differential

equations. As the name indicates it is free, (subject to the GPL guidelines), it uses FEM (the
finite element method) and it is for three dimensional problems.

Some mathematical knowledge is needed to use FreeFEM3D, since you are required to input
the partial differential equations which describe your problem.

Based on our experience with FreeFEM 3.4, FreeFEM+, FreeFEM++ we believe that the
best way to describe a problem is through a language adapted to partial differential equations
(PDE). Thus for each problem one needs to write a program and submit it to FreeFEM3D which
will compile it and run it, and/or report bugs. Therefore it is impossible to use FreeFEM3D
without reading some part of this manual or going through some of the examples.

There are 3 steps to solve a PDE

1. Input the geometry and the coefficients

2. build and solve the linear or non-linear discrete systems

3. display graphically the output.

The input of the geometry for a tri-dimensional problem is a formidable task; the entire CAD
industry is busy with it. Realizing this, FreeFEM3D relies on another program to define the
geometry: POV-Ray.POV-Ray is an image synthesis software which is also free and also runs on a number of
operating systems. You will need to learn to use POV-Ray to use FreeFEM3D.

Finally 3D graphics to display the solution of PDEs is also a formidable problem and soFreeFEM3D produces output files which can be visualized with Medit (a simple package written
by Pascal FREY) and OpenDx (data explorer), IBM’s display software. While Medit runs in MS-
Windows, MacOS and Unix (so long as OpenGL is installed), OpenDx is really a unix package
and so to run it in windows one needs to install an X11 package (such as Xfree86) and cygwin.

1.1 Configurations

This software requires at least 64 Megabytes of RAM and runs on the following machines:� Macintosh with MacOS X 10.1 or later;� PC compatible with MS-Windows (any version using cygwin);

3

4 CHAPTER 1. GENERALITIES

� and GNU/Linux (and others Unix systems)

Note that compilation of FreeFEM3D may require nearly 500 Megabytes of memory when
using the full optimization mode (see below). The standard optimized mode (-O2) needs nearly
150 Mb.

1.2 Contacts

Their are several ways for contacting FreeFEM3D’s team. The first is to join directly one of its
member, but it should be preferred to use the appropriated mailing lists and report bugs using
the BTS — all of those features being hosted by the Savannah project.

1.2.1 FreeFEM3D’s teamFreeFEM3D’s team is composed of the following members:

� Project Director:
Olivier Pironneau mailto:Olivier.Pironneau@math.jussieu.fr,� Main author:
Stéphane Del Pino mailto:Stephane.DelPino@math.jussieu.fr,� Mesh improvements:
Cécile Dobrzynski mailto:dobrzynski@ann.jussieu.fr,� Contributor:
Pascal Havé mailto:Pascal.Have@math.jussieu.fr,� Contributor and Debian Packager:
Christophe Prud’homme mailto:prudhomm@debian.org.

1.2.2 Project pages

Being a member of the FreeFEM softwares family, FreeFEM3D was developed at the Laboratoire
Jacques-Louis Lions of the University of Paris VI. FreeFEM3D is hosted at the FreeFEM head quar-
ter: http://www.freefem.org. The link that can be used to access directly to the project page
is http://www.freefem.org/ff3d.

Since FreeFEM3D is a free software, it is developed transparently: every one can access its
source code using cvs. We have chosen to use Savannah as a project development tool. Savan-
nah provides to hosted free softwares:� code source archiving using cvs,� mailing lists management,� Bug Tracking System (BTS),� and a lot more. . .FreeFEM3D’s Savannah page is http://savannah.nongnu.org/projects/ff3d, any relevant
information to use Savannah and FreeFEM3D conjointly will be found there.

1.3. REQUIREMENTS AND INSTALLATION 5

Mailing-lists

Four mailing-lists are hosted by Savannah:

� ff3d-users: for FreeFEM3D’s usage related questions or suggestions;

� ff3d-dev: for developers discussions. BTS messages are copied there;

� ff3d-cvs: a read-only list that logs cvs messages to inform developers of what changes
in the sources, and

� ff3d-announce: a read-only low traffic list, used to announce FreeFEM3D’s related ev-
ents...

It is recommended to subscribe at least to ff3d-users and ff3d-announce.

The Bug Tracking System

The BTS is the best place to report bugs or wishes. Using it, developers will keep a trace and
poster will be automatically informed of any change related to his request, or see what priority
has been assigned to it. . .

1.3 Requirements and Installation

1.3.1 Requirements

If you only want to use a pre-compiled version of FreeFEM3D, you will only have to install the
pre-processing and post-processing tools, which are optionally:

� the POV-Ray package (http://www.povray.org) which will help you in preparing your
geometry,

� OpenDx that is a very powerful and opensource visualization package. Its main drawback
may be its complexity — to fix ideas, it uses the same pipeline approach as AVS (check
full information at http://www.opendx.org).

� An alternative visualization software is medit. It is free to download and to use. It was
written by P. FREY and can be got at:

http://www-rocq1.inria.fr/gamma/medit/medit.html.

1.3.2 Getting the sources

Since FreeFEM3D is developed under the terms of the General Public Licence, it is possible to
download, modify and even redistribute its sources1.

There are two ways of downloading the sources.

1Note that binary-only distributions are forbidden!

6 CHAPTER 1. GENERALITIES

Archive files

The first way consists in getting an archive file from the web site athttp://www.freefem.org/ff3d/sources.html.

Both zip-like and tar.gz-like archives are provided. Their contents are strictly the same!
After you unpacked the downloaded archive, a new directory called FreeFEM3D, containing

the sources will be created.

Using the cvs repository

This second way is probably the best if you want to recompile your own version. Cvs allows
you to keep your source code version up to date, it means that after any bug-fix version you
man just download automatically the modifications. It also provides the possibility to retrieve
old versions of the code just specifying a date. Moreover it is possible to download the devel-
opment version of the code.

In what follows, we will only describe the Unix-like procedure, users of WinCVS should
adapt easily it.

Before giving minimalist hints that will help you to download the cvs source tree, we have
to point out on some special Savannah’s configuration. To improve security, Savannah’s hack-
ers have chosen to allow only SSHv2 access to their servers. You have to ensure that yourCVS RSH variable is set to ssh. With a Bourn-like shell (sh, ksh, bash, zsh. . .) use the instruc-
tion:export CVS_RSH=ssh
If you run a C-like shell:setenv CVS_RSH ssh
Since you will need this to be set before executing each cvs command, it is recommended that
you set it once for all in the appropriate shell start-up file. Reading cvs documentation may be
a useful help: check its web site at http://www.cvshome.org to get more information.

Let us now recall the basic cvs commands that will allow you to maintain your own cvs-tree
synchronized.

Checking-out the code is required only once. You will have to do it to get your first copy of
the sources. Executing the instruction line:cvs -d :ext:anoncvs@savannah.gnu.org:/cvsroot/ff3d co ff3d
will create a ff3d directory containing the current development version of the package.

Keeping FreeFEM3D up to date will only require the command:cvs -z3 update
See http://savannah.nongnu.org/cvs/?group=ff3d for more details.

1.3.3 Building the codeFreeFEM3D needs several tools to be built. Some of them are optional, others are just essential.
Note that the code compilation requires lots of memory when building an optimized version.

All of the following softwares are common Unix packages. They should also be found on
MacOS X and are provided by cygwin when building for MS-Windows.

1.3. REQUIREMENTS AND INSTALLATION 7

Optional packages

Up to now, only two packages are optional: Autogen and VTK.

Autogen is a tool designed for generating programs. It is used in FreeFEM3D to generate a
fancy line parser as well as Unix man and info pages. If you do not use it for compilation,FreeFEM3D will not accept any options, the only argument will be the FreeFEM3D command file.Autogen is part of the GNU project and can be downloaded from its web site.

VTK stands for “the Visualization Toolkit”, it is an opensource C++ library developed byKitWare that provides high level facilities to perform scientific graphics in 2D or 3D. Its pres-
ence in FreeFEM3D is still experimental and undocumented. To get this library, connect tohttp://www.vtk.org.

Required packages

Only few packages are required to compile FreeFEM3D. They are essentially compilers or build-
ing tools.

Bison is the GNU implementation of yacc which stands for yet another compiler compiler. This
software is dedicated to the construction of languages parsers. Since FreeFEM3D uses two lan-
guages (one for the problem description, the other for the geometry) it uses such a tool to
generate their compilers. Being a part of the GNU project, bison can be downloaded fromhttp://www.gnu.org.

Automake/Autoconf are used to generate the Makefiles. They are in charge of the package
configuration and build dependencies. Each of the packages of this family have to be installed
and particularly libtool.

An ANSI C++ compiler is also required. FreeFEM3D use some bleeding edge C++ construc-
tions that need good compiler. Recent GNU GCC compilers offer very good ANSI C++ imple-
mentation. FreeFEM3D has been developed using those tools. We recommend the use of g++
version 3.2 to build the sources.

make is obviously needed to build FreeFEM3D. The GNU version, sometimes called gmake is
recommended as well.

Building instructionsFreeFEM3D uses a configure script to detect your configuration and generate Makefiles. If you
downloaded an archive, this script should be found in the ff3d directory. If it misses or if you
used cvs to get the code, you have to generate it. This is very simple. Enter the ff3d directory
— all the following commands will be performed from this particular place. Now, type the
commandautoreconf -i
This can produce warnings saying that some files are replaced, this is not an error. You can
now call the configure script.

8 CHAPTER 1. GENERALITIES

The configure script uses the standard configure options. To get the complete list of them,
type./configure --help
at the shell prompt. We will now discuss the FreeFEM3D special options. Note that most of
“--enable-” option have an opposite “--disable-” option.--enable-debug is used to build a debugging version. An optimized (-O2) version is gener-

ated if this option is omitted.--enable-optimize generates an even more optimized version (using none standard g++ op-
tions). This option conflicts with the --enable-debug option.--enable-vtk allows the generation of the code with VTK support. This option is automatically
enabled if VTK is detected — but can still be deactivated using the --disable-vtk option--enable-exec permits the use of the exec instruction in FreeFEM3D files. It is enabled by de-
fault. Since it allows execution of external programs within FreeFEM3D, it is a potentially
dangerous for security. This is why it can be deactivated.--enable-real t is used to change the type of variable to store reals. Default value is double,
this can be changed to float using --enable-real t=float. Others types should be
added in the future.

The execution of the configure script, creates the Makefiles. Typingmake
will generate the executable called ff3d or ff3d.exe, for the MS-Windows version, after a few2

compilation time.

1.3.4 Getting pre-complied binaries

Binary files for common architectures and systems can be downloaded athttp://www.freefem.org/ff3d/binaries.html.

If you are the happy owner of a Debian GNU/Linux3 system, you can install it by the simple
command:apt-get install freefem3d
1.4 Legal conditions

1.4.1 WarningFreeFEM3D is a scientific product to help you solve Partial Differential Equations in 3 dimen-
sions; it assumes a basic knowledge and understanding of the Finite Element Method and of
the Operating System used. It is also necessary to read carefully this documentation to under-
stand the possibilities and limitations of this product. The authors are not responsible for any
errors or damages due to wrong results.

2or a bit more ;-)
3At the time of writing these lines the freefem3d package is only available in the Sarge release.

1.4. LEGAL CONDITIONS 9

1.4.2 GNU Genaral Public Licence

It is in its name: FreeFEM3D is a free software. It is distributed under the GNU GPL guidelines as
said here:

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

See the COPYING file in ff3d’s root directory, the exact terms of this licence can also be consult
online at GNU project official web site: http://www.gnu.org/copyleft/gpl.html.

10 CHAPTER 1. GENERALITIES

Chapter 2

An overview of FreeFEM3D.

In this chapter we will focus on a fairly complex example so that the user will learn the exis-
tence of the main possibilities of FreeFEM3D. In the next chapters we will use simpler examples
while focusing on different features. Finally in the last chapter more complex examples will be
proposed.

2.1 The Problem

Consider the following coupled problem: find (u, v) such that8>>>>>><>>>>>>:

-�u+ v = f in O,u = x(x- 1) + y(y- 1) + z(z- 1) on @O,

v-�v+ u = g in O,v = sin(�x) sin(�y) sin(�z) on @O.

(2.1)

where f = -6+ sin(�x) sin(�y) sin(�z),
and g = (3�2 + 1)(sin(�x) sin(�y) sin(�z)) + x(x- 1) + y(y- 1) + z(z- 1).

which has an analytical solution:

(u, v) = (x(x- 1) + y(y- 1) + z(z- 1), sin(�x) sin(�y) sin(�z))
whatever the domain O and its boundary @O are.

2.2 The Program using PDEs

To solve (2.1) in the domain O that is the sphere centered in 0 and whose radius is 0.8 we can
write the following program (example1.txt).example1.txt

1 vector n = (20, 20, 20);
2 vertex a = (-1,-1,-1);
3 vertex b = (1, 1, 1);
4 double pi = 4*atan(1);
5

11

12 CHAPTER 2. AN OVERVIEW OF FREEFEM3D.

6 scene Sc = pov("example1.pov"); // POV-Ray geometry file
7

8 mesh M = structured(n,a,b);
9

10 domain O = domain(Sc,inside(<1,0,0>));
11

12 function KiO = one(<1,0,0>);
13

14 function uexact = (x*(x-1) + y*(y-1) + z*(z-1));
15 function vexact = sin(pi*x)*sin(pi*y)*sin(pi*z);
16

17 solve(u,v) in O by M method(type=penalty)
18 {
19 pde(u)
20 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
21 = -6 + vexact;
22 u = uexact on <1,0,0>;
23

24 pde(v)
25 v - div(grad(v)) + u
26 = (3*pi^2 + 1)*vexact + uexact;
27 v = vexact on <1,0,0>;
28 }
29

30 double I=int(M)(KiO*(uexact-u)^2);
31 double J=int(M)(KiO*uexact^2);
32 cout << sqrt(I/J) << "\n";
33 I = int(M)(KiO*(vexact-v)^2);
34 J = int(M)(KiO*vexact^2);
35 cout << sqrt(I/J) << "\n";
36

37 save(opendx,"v.dat",KiO*v,M);
38 save(opendx,"u.dat",KiO*u,M);

The geometry is given in a POV-Ray file (example1.pov)example1.pov
1 sphere {
2 <0,0,0>, 0.8
3 pigment { color rgb <1,0,0> }
4 }

2.3 Describing the program step by step.

From this example we see that there are different types such asvector, vertex, scene, mesh, domain, double, function
and that each instruction is ended using a semicolon. The syntax is borrowed from the C/C++
language, whenever possible.

2.3. DESCRIBING THE PROGRAM STEP BY STEP. 13

Lets go through the example: example1.txt
1 vector n = (20, 20, 20);
2 vertex a = (-1,-1,-1);
3 vertex b = (1, 1, 1);
4 double pi = 4*atan(1);

Those four lines define n, a and b as R3 elements and the double precision number pi as �. These
will be used later to define a box from the two points a and b meshed by an (nx,ny,nz) uniform
Cartesian grid. example1.txt

5

6 scene Sc = pov("example1.pov"); // POV-Ray geometry file
The scene Sc is defined using the POV-Ray description contained in the file example1.pov.
Since no path was given here, the file must be in the current directory, the same that containsexample1.txt. Note also that C++-like commentaries can be used.example1.txt

7

8 mesh M = structured(n,a,b);
Here we construct the structured mesh M using 20� 20� 20 vertices in each direction (this

is given by the value of n). Vectors a and b are to be two vertices of the same diagonal defining
a box. The frame (x,y, z) is direct so if (Ox) is horizontal from left to right and (Oy) is vertical
bottom to top on the screen then (Oz) points towards you. This is the right hand rule.example1.txt

9

10 domain O = domain(Sc,inside(<1,0,0>));
The computational domain O is declared for future use. Its definition uses the objects of the

scene Sc (Domain declaration can take more arguments; see below). When the only argument
is a scene, it means that the computation domain can be� the entire box defined by the structured mesh M (it is then a standard finite element approx-

imation), or� a more complex domain O � M, then the fictitious domain method has to be implemented
by the user and FreeFEM3D provides tools for this (see 3.2).

This is the second case here. For more details about the method see the section 3.example1.txt
11

12 function KiO = one(<1,0,0>);
Here we define the function KiO which is defined as the indicator function of objects whose

color is <1,0,0> in the POV-Ray file: that:

KiO(x,y, z) = � 1 if (x,y, z) is inside at least one object of color <1,0,0>.0 else.

Remark that function allows the declaration of analytical functions. There is no approximation
at this point! KiO is the exact function.

14 CHAPTER 2. AN OVERVIEW OF FREEFEM3D.

example1.txt
14 function uexact = (x*(x-1) + y*(y-1) + z*(z-1));
15 function vexact = sin(pi*x)*sin(pi*y)*sin(pi*z);

Here we define two more functions: uexact and vexact:� uexact = x(x- 1) + y(y- 1) + z(z- 1)vexact = sin(�x) sin(�y) sin(�z)
One can see that FreeFEM3D supports the algebra of functions. x, y and z have to be seen as

functions by abuse of notation. example1.txt
17 solve(u,v) in O by M method(type=penalty)
18 {
19 pde(u)
20 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
21 = -6 + vexact;
22 u = uexact on <1,0,0>;
23

24 pde(v)
25 v - div(grad(v)) + u
26 = (3*pi^2 + 1)*vexact + uexact;
27 v = vexact on <1,0,0>;

This instruction bloc defines both the PDE problem and how to solve it! Lets now focus to
the details. example1.txt

16

17 solve(u,v) in O by M method(type=penalty)
means that we are going to solve a coupled PDE problem whose unknowns are the functions u

and v, defined on the set O, and that to solve the problem we will use the mesh M.method(type=penlaty) is optional, it is here to say to the solver to use penalty method for
boundary conditions. Many options can be passed to the solver.

The next block defines the two coupled PDEs. The firstexample1.txt
19 pde(u)
20 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
21 = -6 + vexact;

defines the PDE on u:

-@x@xu- @y@yu- @z@zu+ v = -6+ vexact in O.

Using this formulation we illustrate the fact that general second order operator can be approx-
imated. Will see that non constant coefficient can be used. The computational domain is pro-
vided on line 17.

Then,

2.4. RUNNING THE PROGRAM 15

example1.txt
22 u = uexact on <1,0,0>;
23

defines the Dirichlet boundary conditions associated to the unknown u : u = uexact on @O,
where @O is the boundary of objects which rgb color is <1,0,0> (red).

Now, the second equation is given, using a more compact formexample1.txt
24 pde(v)
25 v - div(grad(v)) + u
26 = (3*pi^2 + 1)*vexact + uexact;
27 v = vexact on <1,0,0>;

Which is � v-r � rv+ u = (3�2 + 1)vexact + uexact in O.
with v = vexact on @O.

Remark 1 One should note that boundary condition on each variable are given while describing the as-
sociated PDE. The boundary condition process has to be understood precisely (see section 4.5.3). More-
over, in the case of PDE systems users may find variational formulae better suited and less prone to
errors.

Finally to check the results against the analytical solution we print the relative L2 errors����� (RM 1O(u- uexact)2/
RM 1Ov2exact)12 and,(RM 1O(v- vexact)2/
RM 1Ov2exact)12

computed the following way: example1.txt
30 double I=int(M)(KiO*(uexact-u)^2);
31 double J=int(M)(KiO*uexact^2);
32 cout << sqrt(I/J) << "\n";
33 I = int(M)(KiO*(vexact-v)^2);
34 J = int(M)(KiO*vexact^2);
35 cout << sqrt(I/J) << "\n";

and then save the solution in the files v.dat and u.dat.example1.txt
37 save(opendx,"v.dat",KiO*v,M);
38 save(opendx,"u.dat",KiO*u,M);

2.4 Running the Program

There is no graphic interface in FreeFEM3D; only text output. As linear systems are solved iter-
atively, for each iteration we display the residual error. Running the above program produces
the following output:TO FILL
Results are shown on figure 2.1.

16 CHAPTER 2. AN OVERVIEW OF FREEFEM3D.

Figure 2.1: u and v iso-values on the cutting plane passing by
� 12 , 12 , 12� parallel to (Ox,Oy).

Chapter 3

FEM and EFDM

3.1 Finite Element Method.

The Finite Element Method (FEM) is a Galerkin method applied to the variational formulation
of the problem. In the case of (2.1) for instance, the variational formulation consists in findingu, v 2 H1(
) satisfying the boundary conditions (uj� = u� , vj� = v�) and

Z

 (ru � rû+ vû+ (v+ u)v̂+rv � rv̂) - Z
 (fû+ gv̂) = 0 8û, v̂ 2 H10(
), (3.1)

where H10 is the subspace of H1 of functions which vanishes on the boundaries and H1 is the
space of square integrable functions with square integrable derivatives.

The Galerkin method consists in approximating the problem by replacing H1(
) by a finite
subspace, a special case is the FEM of order 1 on a tetraedra grid:

Hh = fwh continuous, piecewise linear on the tetraedrisation of
g. (3.2)

Then, the discretized problem can be: find uh, vh 2 Hh such that uh = u� and vh = v� on �
and such that:Z

 (ruh � rûh + vhûh + (vh + uh)v̂h +rvh � rv̂h)
- Z
 (fûh + gv̂h) = 0 8ûh, v̂h 2 Hh \H10(
). (3.3)

Dirichlet boundary conditions can be implemented by elimination or by penalty; in this later
case, the discrete problem is: find uh, vh 2 Hh such thatZ

 (ruh � rûh + vhûh + (vh + uh)v̂h +rvh � rv̂h) - Z
 (fûh + gv̂h)
+1�
Z
� (uh - u�h)ûh + (vh - v�h)v̂h = 0 8ûh, v̂h 2 Hh, (3.4)

where � is a small parameter and � denotes the boundary of
.

17

18 CHAPTER 3. FEM AND EFDM

3.2 Embedding of a Fictitious Domain Method.

3.2.1 A first approach

The Embedding of a Fictitious Domain Method (EFDM) tries to avoid the difficulty of dividing
 into non-overlapping tetraedra and so extends all functions in a simpler domain C contain-
ing
.

So we denote by

Vh = fwh continuous, piecewise linear on the tetraedrisation of Cg (3.5)

and solve for uh, vh 2 Vh:Z
C 1
 (ruh � rûh + vhûh + (vh + uh)v̂h +rvh � rv̂h) - ZC 1
 (fûh + gv̂h)

+1�
Z
� (uh - u�h)ûh + (vh - v�h)v̂h = 0 8ûh, v̂h 2 Vh. (3.6)

Remark 2 One should note that (3.6) does not have a unique solution in Vh. This comes from the fact
that the operator contained in (3.6) coincides with the 0 operator in C n
. In other words, (3.6) could be
written as 0

�uv� = 0 in C n
 and (3.4). One cannot use direct method to solve the associated linear
system but since we use a Conjugate Gradient-like method the solution of the discrete problem will
converge to the solution of the continuous problem in
.

The program given in 2.2 uses this approach.

3.2.2 A second approach

Let us look to the simpler problem: � r � �ru = f in
uj� = u� ,
(3.7)

where � = @
.
Now, we define C such that
 � C and @
 \ @C = ∅. Let ũ 2 H10(C) such that ũ = u inH1(
), and let �̃ 2 L1(C) such that �̃ = � in L1(
), and �̃ is strictly positive in C n
.
To simplify notations lets now call ũ: u and �̃: �.
One can note that penalty amounts to trade the Dirichlet boundary condition for the Four-

rier condition: u- u�� + ��@u@n
� = 0 (3.8)

where [�] stands for the jump across � .
Neumann and Robin jump conditions such as in the problem8<:

r � (�ru) = f in C n �
�u+ �@u@n

� = g on � ,
(3.9)

3.2. EMBEDDING OF A FICTITIOUS DOMAIN METHOD. 19

has the variational formulation: find u 2 H10(C)Z
C(�ru � rû- fû) + Z� (�u- g)û = 0 8û 2 H10(C). (3.10)

Therefore Neumann and Robin conditions require an extension of the operator so that �@nu =0 on �+ (n+ being the outer normal). One way is to take � << 1 outside
.

3.2.3 Generalities

In FreeFEM3D you may either do the EFDM by yourself or let it be done automatically by spec-
ifying the domain (see section ??). There are others approaches to EFDM [?][?][?].

Add others remarks and Robin/Neumann boundary conditions description?

20 CHAPTER 3. FEM AND EFDM

Chapter 4

Solving problems with FreeFEM3D.

4.1 Geometry definition.

A PDE problem is defined by a set of PDEs and a computation domain. As it is described in
section 3, FEM uses a tetraedrisation of the domain. To build the tetraedrization of the domain
is a complex task that we avoid here by using EFDM.

EFDM will require to define functions which take different values inside and outside objects
and also to compute boundary integrals on the objects.

In FreeFEM3D, the geometry of the domain is given using Virtual Reality (VR) data. It means
that the domain is defined as set operations1 on simple primitive shapes2. For various technical
reasons, the language chosen to describe VR is POV-Ray’s.

Image synthesis softwares such as POV-Ray define scenes as a collection of simple objects
with set operations on them. But they also worry about realistic rendering and so a number
of features are irrelevant for us, such as the camera, the type of light, the textures3. What we
need is simply to define a scene as a collection of objects, know what are the set operations that
have been applied to them and name each object. Therefore, for a scene made of a sphere and
a brick, the following is sufficient:sphere {<0,0,0>, 1.5pigment { color rgb <0,1,0> }}box {<0,0,0>,<2,2,2>pigment { color rgb <0,0,1> }}

In addition it may be helpful to visualize the fictitious computational domain. So the scene
may also contain (but only for the visualization) the computational box, for examplebox {<-2,-2,-2>,

1set operations are union, extrusion and intersection.
2box, sphere, cylinder, cone,. . .
3One should note that those keywords are just ignored by FreeFEM3D compiler, so you don’t have to modify the

scene you rendered with POV-Ray.

21

22 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

< 3, 3, 3>pigment { color rgbf <1,1,1,0.5> }}
The color which is assigned to each object will be used by FreeFEM3D to identify the object and its
boundary condition, so it is important to distinguish colors if boundary conditions are different.

Colors like rgbf <a,b,c,d> define objects which will not be identified by FreeFEM3D, and
so are used only for graphics.

Figure 4.1: A green sphere and a blue cube. The transparent box is for graphic use only (to see
the computational domain used) but FreeFEM3D will check that all objects are contained in it.

The user is sent to the POV-Ray language manual for a complete reference, but here are some
conventions used in FreeFEM3D and some basis to the POV-Ray language.

4.1.1 POV-Ray Language Conventions for FreeFEM3D
References: In Scientific Computing it is common practice to define physical parameters and
boundary conditions using reference (indices that will characterize degrees of freedom).

Since the geometry description is not contained in the mesh, but comes from a POV-Ray file,FreeFEM3D uses objects colors as references. So the reference is not given by an integer but by an
R3 vector such as:<a,b,c>
where a, b and c are three double. The colors in POV-Ray being given by values of red, green
and blue. So, if one wishes to visualize the scene before computation he must choose a, b andc in [0, 1]; if not, values are not bounded. . .

4.1.2 POV-Ray language basics.

sphere:sphere {<0,0,0>, 1pigment { color rgb <1,0,0> }}

4.2. BOOLEAN OPERATIONS. 23

defines a unit sphere centered at (0, 0, 0). The pigment is defined so that the sphere will be
referenced as <1,0,0>.

box:box {<0,0,0>, <1,1,1>translate <1,-1,1>pigment { color rgb <1,0,1> }}
describes a box built on vertices (0, 0, 0) and (1, 1, 1) and then translate by a vector (1,-1, 1). It
is referenced has <1,0,1>.

cylinder:

cylinder {<0,0,0>, <1,1,1>, 0.2pigment { color rgb <1,0,1> }}
is a cylinder built on the axis defined by (0, 0, 0) and (1, 1, 1) whose radius is 0.2. Its reference
is <1,0,1>.

4.2 Boolean operations.

The main interest of CSG is the ability of combining all primitives and built objects. POV-Ray’s
way of doing it is given bellow.

object:

object {box {<0,0,0>, <1,1,1>}pigment { color rgb <0,0,1> }}
Defines a box and then using the object statement the reference (0, 0, 1) is assigned to it.

union:union {box {<0,0,0>, <1,1,1>}box {

24 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

<0,0,0>, <1,1,1>translate <1,-1,1>}pigment { color rgb <1,0,1> }}
defines the union of two boxes. The second is translated by a vector (1,-1, 1). The obtained
object has the reference (1, 0, 1). The union can be operated on n objects.

Remark 3 One can substitute the keyword merge to union. There is strictly no difference in Free-

FEM3D as opposed to POV-Ray.

intersection:

intersection {cylinder {<0,0,0>, <1,1,1>, 1}box {<0,0,0>, <1,1,1>}pigment { color rgb <1,0,1> }}
builds the intersection of a cylinder and a box. The obtain object has the reference (1, 0, 1). The
intersection can be operated on n objects.

difference:

difference {sphere {<0,0,0>, 1}box {<0,0,0>, <1,1,1>}pigment { color rgb <1,0,1> }}
extrudes a box from a sphere. The obtain object has the reference (1, 0, 1). The difference can
be operated on n objects, then, the n- 1 objects are extruded from the first one.

4.3 Language Basics

FreeFEM3D tries to look like C++ in a reasonable way! So, people familiar to C or C++ should
learn the language easily (the biggest difficulty being that one does not know which subset of

4.3. LANGUAGE BASICS 25

C++is implemented). At the same time, someone unfamiliar with those languages should not
be afraid since it is a hi-level4 language.

Knowing that we will explain step-by-step this language, let us first recall important rules:

� Every variable must be declared before being used.

� One cannot declare a variable twice.

� Each variable is global, so when declared, it lives until the end of the program execution,
even if declared in a block. This behaviour should change in the future.

4.3.1 Simple types.

In the following we describe the two basis types of variables that can be declared in FreeFEM3D:double and vector/vertex(2 R3). The language supports other types such as boolean or string
but they are only used internally (up to now).

Variable declaration follows the general syntaxe

<typeid> <variableid>;
which declares a non initialized variable, or

<typeid> <variableid> = <typevalue>;
which constructs a variable initialized to the given value.

double: doubles are used to represent R elements. To declare a double, use the following
syntax:

double a = 3.14159;
The algebra on R has been implemented, and classical function are built in the language, so one
can write

1 double pi = 4*atan(1);
2 double b;
3 b = sqrt(1+pi^2*(2+sqrt(2)));

In this case, b will contain, as expected, the value 1+ �2(2+p2) at line 3, before (line 2) its
content is not determined.

The table 4.1 shows FreeFEM3D functions that can be used on double.

4hi-level in the sense that it manipulates “real-life” objects.

26 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

FreeFEM3D syntax mathematical meaningabs(a) jajexp(a) ealog(a) log(a)sin(a) sin(a)cos(a) cos(a)tan(a) tan(a)asin(a) arcsin(a)acos(a) arccos(a)atan(a) arctan(a)a^b ab
Table 4.1: Built-in functions on doubles. a and b are double.

vector/vertex: To declare a vector one can use one of the two following syntax:

vector v1 = (1,0,0);vertex a = (0,1,0);
By now, there is no difference between vertex and vector but the vertex object could be
enriched for future use.

Also, in a sense of POV-Ray compatibility, one can use indifferently the notations (a,b,c) or<a,b,c>. We suggest the use of <a,b,c> only when the vector refers to the color of a POV-Ray
object.

Since R3 algebra is implemented, one can write the following expression:

vector w = 2*(1,1,1)+(-2*2.5,1,2);
then w will contain (-3, 3, 4).
4.3.2 Complex types.

By complex types we do not mean “composed” types such as structures or classes but types
whose behavior needs some enlightenment.

function: Scalar functions algebra is implemented in FreeFEM3D. It means that the user can
manipulate scalar functions in an analytic way, i.e. manipulating the functions and not their
approximations.

There are 3 special functions/keywords: x, y, z which are R3 ! R functions which refer to
the coordinate system:

(x,y, z) 7�! x, (x,y, z) 7�! y, (x,y, z) 7�! z. (4.1)

One can now easily define polynomial functions:

function p = 2*x + y + x*z + z^3;

4.3. LANGUAGE BASICS 27

with the obvious meaning p(x,y, z) = 2x+ y+ xy+ z3.
The built-in functions in FreeFEM3D are listed in table 4.2. For example, one could redefine

the (x,y, z) 7�! tan(x) function using the name tag tan x by:function tan_x = sin(x)/cos(x);
It is possible define functions with constant values by assigning a double to the function,

such as infunction cos1 = cos(1);
FreeFEM3D syntax mathematical meaningabs(f) jfjexp(f) eflog(f) log(f)sin(f) sin(f)cos(f) cos(f)tan(f) tan(f)asin(f) arcsin(f)acos(f) arccos(f)atan(f) arctan(f)f^g fg

Table 4.2: Built-in functions on functions. f and g are functions.

femfunction: This is a special type related to finite element functions (see appendix ?? for
more details). Up to now, only Q1 functions are allowed: piece-wise tri-linear5 and continuous
functions defined on an hexahedral mesh. Since finite element functions spaces needs a mesh
to be defined, one has to writefemfunction f(M) = sin(x);
where M is a previously defined mesh (see 4.3). After the instruction, f contains a finite element
approximation of (x1, x2, x3) 7�! sin(x1). f is in fact defined by the interpolation at mesh
vertices: f(X) = sin(X1) if X is a vertex of M.

Even though a femfunction is a special kind of function, it can be used in the function
algebra:femfunction f(M) = exp(x+y*z);function g = x - f;
Again, this is a definition; g is not evaluated a this point. The evaluation will be performed
when needed as indouble t = g(1,1,1);
which not only defines t but also triggers an evaluation of g at (1,1,1), and therefore the com-
putation of the linear interpolation to calculate f(1, 1, 1).

5tri-affine for purists!

28 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

4.4 Instructions for the Geometry

scene: VR data comes from a POV-Ray file. The geometry informations contained in this file
are stored in a scene variable.

The syntax is very simple:

scene S = pov("scene.pov");
Then S contains the POV-Ray scene described in the file scene.pov.

One can define many scenes in one FreeFEM3D file. In that latter case, to avoid ambiguities,
the last used scene is the current one. Lets look at the following example:

1 scene S1 = pov("scene1.pov");
2 scene S2 = pov("scene2.pov");
3 function f = one(<1,0,0>);
4 using S1;
5 f = one(<1,0,0>);

After line 2, two scenes S1 and S2 are defined and current scene is S2. So at line 3, the functionf, is the indicator function of the object <1,0,0> of scene S2.
Line 4, the current scene is set to S1! Line 5 makes the function f be the indicator function of

the object <1,0,0> of scene S1.

domain: The computational domain is defined using a scene,

domain <domain> [= domain(<scene> , <booleanexp>)];
where the booleanexp is defined by the following:

<booleanexp>: {not <inoutexp> | <inoutexp>}
and finally

<inoutexp>: { (<inoutexp>)| <inoutexp> and <inoutexp>| <inoutexp> or <inoutexp>| outside(<ref>)| inside(<ref>)}
Remark 4 The keywords not, and and or can respectively be replaced by !, && and ||, as it is the case
for every boolean operation.

mesh: There are two kinds of meshes in FreeFEM3D: volume and surface. The volume meshes
are only cartesian structured meshes, i.e. a squared box regularly meshed by squared hexahedra.
Surface meshes are composed of triangles or quadrangles living in R3, they are only used to
compute integrals in the fictitious domain method. Here is how to deal with them.

4.5. PROBLEM DEFINITION. 29

vector n = (10,10,10);vector a = (0,0,0);vector b = (1,1,1);mesh M = structured(n,a,b);
With this code, M will be a uniform grid of the box]0, 1[3 using 10 vertices in each direction.

To construct a surface mesh, one needs a structured mesh and can write

mesh m = surface(<1,0,0>, S, M);
where <1,0,0> is the reference of a POV-Ray object, given by the scene S and M a structured mesh;
all of them having previously been declared.

Remark 5 The surface mesh is built using a marching cubes-like method, this is why a structured
mesh is needed. In future, reading meshes in files should be allowed, also.

4.5 Problem definition.

4.5.1 The solver bloc.

solve: The solve block is of course special to FreeFEM3D and should be studied with attention:

solve (<unknown list>) in <domain> by <mesh> [<solver options>]{ { pde (<unknown1>)<pde><boundary condition list>[pde(< unknown2>)<pde><boundary condition list>[...]]| test(<test function list>)<variational formula><dirichlet boundary condition list> }}
Remark 6 Note that the solve bloc can be used with two different kinds of body. The first one is
systems of PDEs, the second is variational formulae.

Lets focus on the common part and then on the <unknown list>, it is a set of unknown of
the form:u,v,w
Those unknowns can already have been defined as functions! If it is the case, this function will
be the first guess for iterative methods, otherwise it will be 0. An instruction like

30 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

in <domain> by <mesh>
gives informations to the solver has to know which <domain> and which <mesh> use.

Remark 7 If the unknown list contains n elements, n pde statements have to be defined (one per
unknown)

Remark 8 The unknowns computed by the solver can be used later as if they were decalred as femfunctions
of the solving mesh (whatever they were before).

Remark 9 If an unknown was previously defined as a function its interpolate will be taken as the initial
guess for iterative methods.

Solver options The <solver options> is used to pass arguments to the solver such as
the type of algorithm to solve the linear system (conjugate gradient, bi-conjugate gradient) and
associated parameters (type of preconditioner, maximum number of iterations, value of �6),
discretization method,. . .

Below is a list of solver options7

The syntax of options is

[<option name> (<suboption> = <value> [,<suboption> = <value>]...) [,...]]
Here comes the complete list of options.

bicg to change bi-conjugate gradient options� integer parameters� maxiter the maximum number of iterations. Default value is 500� double parameters� epsilon the factor of reduction of the residu. Default value is 1E-5bicgstab to change bi-conjugate gradient stabilized options� integer parameters� maxiter the maximum number of iterations. Default value is 500� double parameters� epsilon the factor of reduction of the residu. Default value is 1E-5cg specifies conjugate gradient options� integer parameters

6An condition is often used by iterative methods to stop the process. Solving linear system this condition is often
of the form jAun - bj < �jAu0 - bj.

7the list is extracted from the code automatically to make it up-to-date. The draw back of this is that reading it
may be boring, it is to be considered as a reference.

4.5. PROBLEM DEFINITION. 31

� maxiter sets maximum number of iteration. Default value is 500� double parameters� epsilon sets the required reduction factor of the residu. Default value is 1E-5multigrid to change multigrid options (Not working anymore!)� integer parameters� maxiter maximum number of iterations. Default value is 1� level grid level. Default value is 3� nu1 �1. Default value is 2� nu2 �2. Default value is 2� mu1 �1. Default value is 1� mu2 �2. Default value is 1� double parameters� epsilon the factor of reduction of the residu. Default value is 1E-4� omega!, the relaxation parameter for Jacobi solver. Default value is 2./3.eliminate Options for elimination method (by now none)fatBoundary options for fat boundary method. Not implemented yet!krylov used to modify krylov solver� selectable parameters� type is used to select the type of solver. Default value is cg. Available values are� cg: selects the conjugate gradient� bicg: selects the bi-conjugate gradient (for non symetric problems)� bicgstab: selects the bi-conjugate gradient stabilized (for non symetric problems)� ilufact: selects the iterative LU factorization� precond is used to select the preconditioner. Default value is diagonal. Available
values are� diagonal: preconditions with the diagonal of the operator� ichol: incomplete choleski factorization� multigrid: multigrid finite difference solver. By now, the grid must be (2nx +1)� (2ny + 1)� (2nz + 1).� none: no preconditioningmemory sets memory management options� selectable parameters� matrix sets matrix type. Default value is sparse. Available values are� sparse: used for sparse matrices, cost is approximatly 27� nv � nu2, where nv

is the number of vertices and nu the number of unknown (for a Q1 discretization)� none: do not store the matrix. Cost no memory, but is slower

32 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

penalty sets penalty parameters� double parameters� epsilon �’s value. (� coming from 1� R� (u- g)v). Default value is 1E-3method use to tune the discretization method� selectable parameters� type selects the discretization method. Default value is penalty. Available values
are� penalty: sets Dirichlet boundary conditions to be computed by penalty� eliminate: sets Dirichlet boundary conditions using elimination� fatBoundary: sets boundary conditions using FBM (not implemented)

FreeFEM3D treats the options the following way: the parser reads the option set and builds
a tree associated to it. Then when solve starts, each parametrizable object reads its options when
it is built. It looks first in the tree and if an option is not specified here, it uses the default value.

Knowing the rules, lets look at some examples.

solve(u) in Omega by Mkrylov(precond=diagonal){
Parsing this leads to the modification of a Krylov solver option: it changes the precondi-

tioner from the default none to diagonal. This behaves as expected. Lets now look to a more
confusing case:

solve(u) in Omega by Mbicg(epsilon=1E-10, maxiter=1000){
Parsing will modify bi-conjugate gradient’s options, epsilon will be 10-10 and the maximum

number of iterations (maxiter) 1000.
There is no mistake here, but this option will have no effect during execution! The reason

is simple. The Krylov solver’s options are not modified and that default linear system solver is
conjugate gradient (cg). So, bi-conjugate gradient will never start and will have no opportunity to
read its options.

To have those options used, one has to specify the use of bicg:

solve(u) in Omega by Mbicg(epsilon=1E-10, maxiter=1000),krylov(type=bicg){
To conclude with options, consider the code

4.5. PROBLEM DEFINITION. 33

1 solve(u) in Omega by M
2 cg(epsilon=1E-10),
3 cg(epsilon=1E-3,maxiter=15),
4 cg(maxiter=200),
5 {

First the epsilon parameter of cg is set to 10-10, at line 2. Then it is change to 10-3 andmaxiter becomes 15. Finally, at line 4, maxiter is modified to become 200. So conjugate gradient
will run with � = 10-3 and maxiter=200.

Between the two brackets ({ and }) comes the problem description. We will first focus one
PDE system-like descriptions and then on Variational formula-like descriptions.

PDE and System of PDEs. The general principle is that equations and boundary condi-
tions are defined variable per variable, even in the case of a coupled system. Each new PDE is
announced using the pde(<unknownid>) structure.

Remark 10 It helps to rememeber that FreeFEM3D uses this information to construct a variational
formulation 8. If the informations are not given at the right place, the reconstructed variational formu-
lation may not be the right one, and yet no error message will appear. Moreover, one may need to repeat
informations when defining PDE systems, this will be clear in the second example below.

Here is a simple example for illustration

solve (u) in O by M{ pde (u)-div(grad(u)) = 1;u = 1 on M;}
it stands for solving: 8><>:

-�u = 1 in
,u = 1 on @
 \ @M,@u@n = 0 on @
 n @M.

FreeFEM3D and the mathematical syntax are quite close, but that the condition @u@n = 0 on @
n@M is implicit in FreeFEM3D because the user has forgotten to specify what boundary condition
to apply on that boundary. For more details on boundary conditions see section 4.5.2, and 4.5.3.
Uniqueness of the solution assumes that the measure of @
 \ @M is positive.

Now look a second example which focuses on the a system description and the underlying
variational problem as suggested in remark 10.

8This variational formulation is needed by the finite element discretization process.

34 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

Lets solve the following problem8>>>>>>>>><>>>>>>>>>:

-�u- 12�v = f1 in
,-12�u-�v = f2 in
,u = u0 on �1,@u@n = u1 on �2,v = v0 on �1,@v@n = v1 on �2,

(4.2)

where
 is the cube]0, 1[3 (for seek of simplicity), �1 [�2 = @
, �1 \ �2 = ∅, �2 being the
face x = 0, and f1, f2,u0, v0,u1, v1 given functions such that the problem (4.2) is well posed.

Here comes the associated code in FreeFEM3D:example3.txt
23 solve(u,v) in Omega by M
24 {
25 pde(u)
26 -div(grad(u))-div(0.5*grad(v))=f1;
27 dnu(u) = u1 on M xmin;
28 dnu(v) = 0.5*v1 on M xmin;
29 u=u0 on M xmax;
30 u=u0 on M ymin;
31 u=u0 on M ymax;
32 u=u0 on M zmin;
33 u=u0 on M zmax;
34

35 pde(v)
36 -div(0.5*grad(u))-div(grad(v))=f2;
37 dnu(u) = 0.5*u1 on M xmin;
38 dnu(v) = v1 on M xmin;
39 v=v0 on M xmax;
40 v=v0 on M ymin;
41 v=v0 on M ymax;
42 v=v0 on M zmin;
43 v=v0 on M zmax;
44 }

The lines 28 and 37 are very important! Even if they are redundant they must be provided by
the user since the Green formula is not computed by FreeFEM3D, but only a correspondence is
made between PDE operators and variational operators.

This comes from the fact that the variational formula associated to (4.2) isZ

ru � rw1 - Z�2 ru � n w1 + 12

Z

rv � rw1 - 12

Z
�2 rv � n w1

+ 12
Z

ru � rw2 - 12

Z
�2 ru � n w2 + Z
rv � rw2 - Z�2 rv � n w2

= Z
 f1w1 + Z
 f2w2. (4.3)

4.5. PROBLEM DEFINITION. 35

For given w1 and w2.
The boxed terms are the one which should not be forgotten! Using the information coming

from (4.2) boundary conditions, one writes:�����
12 R�2 ru � n w2 = 12 R�2 u1w2, and12 R�2 rv � n w1 = 12 R�2 v1w1.

This leads to the final variational formula:Z

ru � rw1 + 12

Z

rv � rw1 + 12

Z

ru � rw2 + Z
rv � rw2

= Z
 f1w1 + Z
 f2w2 + Z�2 u1w1 + 12
Z
�2 v1w1 + 12

Z
�2 u1w2 + Z�2 v1w2. (4.4)

It would not be an easy task to make FreeFEM3D automagically compute (4.4), which means
not forgetting the boxed terms. So those terms have to be provided explicitly by the user fol-
lowing the example. Some of the translations are given bellow.FreeFEM3D interpretation comment-div(grad(u)) R
ru � rw1 it is w1 since we are describing the pde(u)dnu(u)=u1 R
 u1w1 goes to right hand sidednu(v)=0.5*v1 12 R
 v1w1 it will not be deduced from the pde(v) bloc!

One then understands the logic behind it and can look at the table 4.3 for the complete list of
domain operators interpretation.

Variational problem description. Entering a problem with a variational formula is quite
different from giving its PDE system. First, there is only one variational formula (even in the
case of systems) and second, only the Dirichlet conditions are given outside that formula, since
the Neuman and Robin conditions are included in the variational formula.

For example to solve the problem: find u in H1(
) such that8>><>>:
-r � �ru = 0 in
,

u+ @u@n = g on �1,u = u0 on �2 = @
 n �1.

one sets the variational problemZ

 �ru � rw- Z@
 �ru � n w = 0 8w.

Using the fact that Z
@
 �ru � n w = Z@
 �(g-�u)w

the variational problem is written, find u 2 H1(
) such that u = u0 on �2 andZ

 �ru � rw+ Z@
 � uw = Z@
 � gw 8w, (4.5)

It is this formula (4.5) that must be entered in the FreeFEM3D code

36 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

example4.txt
13 solve(u) in Omega by M
14 {
15 test(w)
16 int(mu*grad(u)*grad(w)) + int(M xmin)(mu*u*w) = int(M xmin)(mu*g*w);
17 u=uexact on M xmax;
18 u=uexact on M ymin;
19 u=uexact on M ymax;
20 u=uexact on M zmin;
21 u=uexact on M zmax;
22 }

Note the presence of the test(w) statement. It is here to define a (list of) test functions used in
the bilinear forms. The test function variables only live within the solve bloc9.

Then comes the variational formula. As one can see, it is really close to the mathematics,
but still needs some explanation:int(mu*grad(u)*grad(w)) defines

R
 �ru � rw. The integration domain is implicit;int(M xmin)(mu*u*w) corresponds to
R�1 �uwwith �1 being the face x = 0 of the domain; and

int(M xmin)(mu*g*w) which is
R�1 �gw.

The last lines define the Dirichlet boundary conditions. Note that as in section 4.5.3, only
Dirichlet conditions are allowed at this level of the problem description.

This example shows what is a “FreeFEM3D variational formula”. Basically, it is an equation
made of linear and bilinear terms. A linear form is

w 7�! l(w)
where w must be a test function. A bilinear form is

(u,w) 7�! a(u,w)
where w must be a test function too and u must be an unknown. All others combination are forbid-

den!
So the general form of a “FreeFEM3D variational formula” isX

j
X
i aij(ui,wj) =Xj lj(wj).

Where (aij) is a family of bilinear forms, (lj) is a family of linear forms, (ui) is a family of un-
knowns and (wj) is a family of test functions.

Bilinear and linear forms will be described more precisely in the sections 4.5.4 and 4.5.5.

Lets now reconsider the problem (4.2) and solve it using a variational formula.
The associated variational formula is still given by (4.4). So, the FreeFEM3D code is written

immediately by

9This is an exception but test function names are not really variables, but tags...

4.5. PROBLEM DEFINITION. 37

example5.txt
23 solve(u,v) in Omega by M
24 memory(matrix=none)
25 {
26 test(w1,w2)
27 int(grad(u)*grad(w1)) + int(0.5*grad(v)*grad(w1))
28 + int(0.5*grad(u)*grad(w2)) + int(grad(v)*grad(w2))
29 = int(f1*w1) + int(f2*w2)
30 + int(M xmin)(v1*w2 + u1*w1)
31 + int(M xmin)(0.5*v1*w1 + 0.5*u1*w2);
32 u=u0 on M xmax;
33 u=u0 on M ymin;
34 u=u0 on M ymax;
35 u=u0 on M zmin;
36 u=u0 on M zmax;
37 v=v0 on M xmax;
38 v=v0 on M ymin;
39 v=v0 on M ymax;
40 v=v0 on M zmin;
41 v=v0 on M zmax;
42 }

This really looks like (4.4)!

4.5.2 PDE system syntax.

The PDE structure uses the syntax

[-] <pdeoperator> [{+|-} <pdeoperator>] ... = <function>;
Supported PDE operators are shown on the table 4.3.

FreeFEM3D operator mathematical bilinear form (8v)mu*u �u R �uvdx(u) @xu R @xuvdy(u) @yu R @yuvmu*dz(u) �@zu R �@zuvdiv(grad(u)) r � ru = �u - Rrurvdx(dx(u))+dy(dy(u))+dz(dz(u)) r � ru = �u - R @xu@xv+ @yu@yv+ @zu@zvdx(mu*dy(u)) @x�@yu - R �@yu@xv
Table 4.3: partial differential operators. u is an unknown and mu a function representing �. The
third column shows the bilinear operator that will be used to discretize the partial differential
operator, note that in the case of second order operators a Green formula is used. This means
that border term are to be supplied by user on need, through boundary conditions.

Some examples:

38 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

u - div(grad(u)) = f;
stands for u-r � ru = f.-dx(dy(u)) - dy(dx(u)) + dz(u) = f;
stands for -@x@yu- @y@xu+ @zu = f.
4.5.3 Boundary Conditions

To define boundary conditions, one has to use<condition> on <border>;
The <condition> is defined using the followings:

Dirichlet: u = g is written u=g,

Neumann: �@nu = g is written dnu(u)=g,

Robin (Fourrier): �u+ �@nu = g is written alpha*u+dnu(u)=g.

Remark 11 dnu(u) denotes the co-normal derivative, the term which arises in the variational form
when applying the Green formula to the second order operator. In the case of -r � �ru the term is�ru, coming from

- Z
r � �ruv = Z
 �ru � rv+ Z@
 �ru � n v 8v.

To set borders one uses the following syntax:� on <a,b,c> when the condition is applied on the border of the object having a POV-Ray
reference <a,b,c>.� on M (where M is a structured mesh) when the condition is to be applied on the border of M.� on M <modifier> where <modifier> is one of xmin, xmax, ymin, ymax, zmin or zmax,
means that it will be applied to the corresponding face on the structured mesh M.� on S (where S is a surface mesh) is used to impose a condition on an already built surface
mesh (read in a file or previously built).

For example:u = 0 on M;
u = 0 on @M.dnu(u) = g on <1,0,0>;
imposes a Neumann condition on the border of objects <1,0,0>, the co-normal derivative of u
will be equal to g in a weak sense. Similarlyu + dnu(u) = g on S;
a Robin condition on the surface meshed by S.

4.5. PROBLEM DEFINITION. 39

4.5.4 Bilinear forms.

Bilinear forms implemented in FreeFEM3D are of the type

a(u,w) = Z
O
A(u,w),

where O is an R3 domain or an R3 surface, and A is such that

A(u,w) =Xi giDiu(u)Diw(w),
with Diu and Diw being two partial differential operators of order 0 or 1; and u,w two functions.
To be a “FreeFEM3D bilinear form”, it is required for u to be an unknown and for w to be a test
function.

The possible choices for operators Du and Dw are given at table 4.4.

FreeFEM3D operator mathematical meaningv v (order 0 operator)dx(v) @xvdy(v) @yvdz(v) @zvgrad(v) rv
Table 4.4: partial differential operators. v is an unknown or a test function.

Note that using variational formula, one can discretize
R @xiuv or

R u@xivwhile only
R @xiuv

is used in PDEs (see table 4.3).

4.5.5 Linear forms.

In the same way, linear forms implemented in FreeFEM3D are defined as

l(w) = Z
O

X
i Li(w).

Where O is an R3 domain or an R3 surface. L can be of the following forms:����� L(w) = gw, orL(w) = grf � rw.

Let us write some examples combining linear and bilinear forms.int(<1,0,0>)(2*u*alpha*v)+int(grad(v)*grad(u))-int(v)=0;
is associated to

R
rurv+ R�i 2�uv = R
 v, where �i is the border referenced by <1,0,0>. By
the way, solvingint(u*v)=int(f*v*g);
for all v, makes u the L2 projection of fg on the finite element space.

40 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

4.5.6 convection operator.

The convection operator @t'+ ui � @xi', (4.6)

can be implemented by using a discrete method of characteristics[?]. To call this operator one
usesconvect(phi,ux,uy,uz);
phi is the transported function at the speed (ux, uy, uz).

One has to note that this function is evaluated when needed. This means that if one writes

1 function f = convect(phi,ux,uy,uz);
f is ‘convect(phi,ux,uy,uz)’.
the convect operator adapts to the context:

1 function f = convect(phi,ux,uy,uz);
2 femfunction g(M) = f;
3 solve (h) in Omega by M
4 {
5 test(v)
6 int(h*v)=int(f*v);
7 }

The g function will be a Q1 function with values at vertices of the mesh M which are the same
as those of f, but to compute h, the values of f will be evaluated at the quadrature vertices.

4.6 Other Instructions.

4.6.1 Input and output.

Built-in. A built-in input and output instruction set can be used to read/write files using
complex formats. User cannot really change them but can provide options.

Those functions are typically variants ofsave and read. Their syntax is

save(<format>, <filename>, [<function>,] <mesh>[, <filetype>]);
With the following options:� <format> is the data storage format, one can refer to the table 4.5 for the list of supported

formats,

Format Identifier
OpenDX opendx
MEdit (mesh) medit

Table 4.5: Supported file formats

4.6. OTHER INSTRUCTIONS. 41

� <filename> is a string containing the name of the file stored on the disk,� the optional parameter <function> is used to refer to a function (usually an function vari-
able), if this argument is specified, the given function will be stored in the at mesh vertices;
if not, the mesh will be saved. Note that only one of the mesh or the function will be saved at
once. This is done to avoid saving the mesh each time a function is stored.� <mesh> is used to define the mesh which will be used to proceed saving.� The last parameter <filetype> is the second optional parameter, it is used to define the
file type. Possible file types are given on table 4.6.1

Format Identifier
Unix unix
MS-DOS/Windows dos
Machintoch mac
Binary binary

Table 4.6: File types

User “defined” This provides more basic stuffs to allow the user to read/write to console or
files. The way to use them is similar to C++ streams so one manipulates low level objects and
builds his own format.

The syntax is the following<ostream> [<< <expression>] ... ;
By now the only stream implemented is the ostream cout but streams to files and input stream
will be easily introduced. In the same way just strings and doubles can be output. Here comes
a simple example.double i = 10;cout << "i=";cout << i << "\n";cout << "----\n";
produces the following output:i=10----
4.6.2 Statements.

Syntax for statements in FreeFEM3D follows the rules of C or C++.

Conditional statements. In FreeFEM3D, only the if statement is implemented. Its syntax isif (<boolexp>) { <instruction>; | <bloc> }[else { <instruction>; | <bloc> }]

42 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D.

Loops. Standard do-while, while and for structures are implemented:

do { <instruction> | <bloc> } while (<boolexp>);
while (<boolexp>) { <instruction>; | <bloc> }
for (<instruction>;<boolexp>;<instruction>) { <instruction>; | <bloc> }

The following contains a set of examples:statements.txt
1 for (double i=0; i<5; i=i+1)
2 if (i<3)
3 cout << i << " ";
4 else {
5 double j=0;
6 while (j<i) {
7 cout << j-i << " ";
8 do {
9 j=j+1;

10 } while (0>1);
11 }
12 }
13 cout << "\n";

It produces the following output

0 1 2 -3 -2 -1 -4 -3 -2 -1

Chapter 5

Examples

5.1 A Simple Example: the Poisson Problem in a Cube.

Find u such that � -�u = f in
,uj� = 0,
(5.1)

where f 2 L2(
), and � = @
. Lets assume that
 = (-1, 1)3, and choose f = 1.
Here the domain is a cube so there will be no informations coming from the POV-Rayfile.

The mesh is built bymesh M = structured((-1,1,-1),(1,-1,1),(10,10,10));
We recall that the mesh M is built in a box specified by its two opposite corners (-1, 1,-1) and(1,-1, 1) and (10, 10, 10) specifies the number of discretization points on each edge.

For more clarity one may prefer the following notations:example2.txt
1 vector n = (10, 10, 10);
2 vertex a = (-1, 1,-1);
3 vertex b = (1,-1, 1);
4 mesh M = structured(n,a,b);

Since the geometry is very simple here one has to create an empty scene. This POV-Ray scene
will be describe by an empty file: "empty.pov". The domain O will be declared byexample2.txt

6 scene S = pov("void.pov"); // the pov-ray file for the geometry
7 domain O = domain(S);

The PDE is specified by example2.txt
9 solve(u) in O by M

10 {
11 pde(u)
12 - div(grad(u)) = 1;
13 u = 0 on M;
14 };
15 save(opendx,"u.dat",u,M);

43

44 CHAPTER 5. EXAMPLES

The last line is used to save the data in the file "u.dat".

Index

domain, 12
double, 12

function, 12

mesh, 12
method, 3

scene, 12

vector, 12
vertex, 12

45

