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We introduce a class of multivariate mixture models that includes latent

class models and mixtures of multivariate normal distributions as special cases. These

models are fitted by maximum likelihood using the EM algorithm but the emphasis is

less on parameter estimation than on the use of the estimated component distributions

to cluster the data. To demonstrate the potential for application of these methods we

use the program to fit several models to a large medical dataset.
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1 Introduction

Two major difficulties frustrate the applica-
tion of multivariate normal mixture models
Firstly, they are not easily
This

is unfortunate because most real clustering

to clustering.
adapted to cope with discrete data.

problems involve both continuous and dis-
crete variables. Secondly, they lead to models
with large numbers of parameters: for exam-
ple if there are 8 variables we will need to
estimate 36 parameters for even a common
covariance matrix, many more if they must
be estimated separately for each group.
Highly parameterized models can lead to
difficulties in several ways. As discussed by
McLachlan and Basford[13] (p. 11) the like-
lihood function of a mixture model can have
singularities in a neighbourhood of which it is
unbounded. Tterative methods for computing
maximum likelihood estimates are drawn to-
wards these singularities from many starting

values if the model is highly parameterized.
It is also common to find many local maxima
in such models. Even if we find the largest of
the local maxima we will often find the likeli-
hood nearly constant in a low-dimensional set
containing the local maximum.

When background information is available
from subject-area theory or from previous sta-
tistical analysis of similar datasets it may well
be possible to specify component distribu-
tion functions that are not highly parameter-
ized and that are believed to represent the
true shape of the components. We are con-
cerned, however, with exploratory data anal-
yses where very little may be known a priori
about the structure of the data. What we
need is a flexible, but not overly flexible, fam-
ily of multivariate distributions that we can
use as a ‘default’ for the component distribu-
tions in the absence of knowledge that would
justify a more detailed specification. We draw
our inspiration from Latent Class Analysis.



LLatent Class Analysis was developed by the
mathematical sociologist Paul Lazarsfeld who
was interested in making more precise the re-
lationship between underlying or latent states
that were not observable, and directly ob-
servable categorical variables indicating these
states. Latent class models can be described
as follows: we assume the population to be
made up of K groups or sub-populations
(1,...,Gg in proportions m, ..., 7. Let x
be the vector of responses on the p variables
that we observe on each observation, where
the jth variable can take on levels numbered
from 1 to M;. If the sth observation x; hap-
pens to come from (7 then its probability

function is given by

X“ Hk

H )‘kﬂw

where 8}, is used here and elsewhere in this pa-
per to mean the parameters of the distribution
of the responses in the kth subpopulation, in
this case being the probabilities {Ag;,, } that
variable 7 takes level m, conditional on the
observation belonging to group k. The over-
all probability function is a mixture of these
conditional probability functions:

f(xi; ) = Zﬂ'kfk X;; 0y)

so that the latent class model is a finite mix-
ture model. The parameter vector ¢ is made
up of the 7 and the Ay, as k, j, and m take
on all allowable values. We have overparame-
terized here as the 7, summed over k& and the
Arim summed over m for any fixed j, k will
total 1.

The original method of fitting these mod-
els, discussed at some length by lLazarsfeld
and Henry [10] for the case of binary vari-
ables, was to attempt to solve the system of
equations given by equating the predicted cell
probabilities to the observed cell proportions.
The solution of these equations can be diffi-
cult and Latent Class analysis became much

easier to use when Goodman[4] introduced a
new iterative algorithm for the maximum like-
lihood fitting of latent class models. Tt soon
became clear that this algorithm was a spe-
cial case of the very general EM algorithm

discussed by Dempster, Laird and Rubin[3].

2 A general approach to
multivariate mixture
models

We will now sketch out a general class of mul-
tivariate mixture models for multivariate ob-
servations on both categorical and continuous
variables. More specifically within this class
we will describe the class of models that we ac-
tually use which generalises both latent class
and multivariate normal models.

We expect the data to be in the form of
an n X p matrix of observations by variables
which we regard as a random sample from the
distribution

K
= > mful(z)
k=1

which is a finite mixture of the K component
distributions fr and where 7, > 0, > 7, = 1.
The distributions fi(2) must be kep‘r simple
in structure for two reasons. Firstly we would
like the model to give us an understandable
decomposition of the data that aids us in vi-
Secondly the f; must be
restricted if we are to be able to have any

sualizing the data.

hope of identifying the mixing proportions 7,
if this were not so then corresponding to any
decomposition f = > 7 fr we could consider
another decomposition where, for example,
f=f,mm=1and 7y = ... =7 = 0. The
simple structure that we choose is based on lo-
cal independence. We suppose that the vector
of variables x = (24,...,2; 2,)" has been

I TERRR R

partitioned so that

Ny Y /
X = (X|... x| ... |x}).



We will consider component distributions of
the form

fe(z) = lj[,sz(iz)-

We will refer to the subvector of variables x;
as the [th cell of the partition, or simply ‘the
Ith cell” if the partition being referred to is
clear.

The form of local independence that we
are assuming is that within each of the K
subpopulations the variables in the cell x;
are independent of the variables in x; for
1 <1< !" < L. The functions f;; form the
‘atoms’ out of which our model is built by
crossing and mixing. The present work uses
the following distributions for the xy;, but it
should be stressed that to a considerable de-
gree the choice is arbitrary.

(a) Discrete Distribution

Where x; = {2} is a I-dimensional discrete
random variable taking values 1,..., M; with
probabilities Ap, ..., Auar,. We will denote
this distribution by D(Apn, ..., Apag, ). TF all
fr are of this form then f is a latent class
model.

(b) Multivariate Normal

Where X; is a p;-dimensional vector of con-
tinuous random variables with the
Ny, (g, Sgr) distribution.

(¢) Location Model

Where x; is a 1 + p; dimensional vector of
random variables with one discrete variable,
x;, and p; continuous variables as elements.
The discrete random variable takes values
I,...., M; with probabilities Apn, ..., A,
Conditional on the discrete variable taking
value m the p; continuous random variables

have the multivariate normal distribution

Ny (Vs Zh1)-
We can write the model for the 2th obser-
vation as

K
f(xi;¢) = Z T

k=1 =

I,
Jri(Xir; 051)
’

where 6, consists of the parameters of the dis-
tribution fi; as described above. This model

has been used for multivariate data with both
categorical and continuous variables by Olkin
and Tate [14], Krzanowski [7], and Little and
Schluchter [12].

that TLawrence and Krzanowski [9] also con-

A referee has pointed out

sider the fitting of finite mixtures of location
models. Strictly speaking the location model
in full generality can have several categorical
variables but for programming convenience we
have reduced this to one. Location models are
termed homogeneous conditional Gaussian by
Lauritzen and Wermuth[8].

Note that in each of the K classes or sub-
populations the vector random variable x; of
the Ith cell has the same type, either (a) or
(b) or (¢), but the parameters may vary from
group to group. In fitting the model to a
particular data set we have considerable dis-
cretion in how we form the x;. In general
the larger the dimensions of the x;, the more
covariance parameters must be added to the
model, and the poorer the stability of the pa-
On the other hand too

few covariances in the model will result in a

rameter estimates.

poor fit, which may or may not have conse-
quences for the cluster assignments. A rea-
sonable model selection strategy appears to
be to begin with the model with complete lo-
cal independence and fit it for a few values
of K, the number of classes. Then variables
with strong within-cluster associations can be
grouped together in a cell for the next series

of fits, and so on.

Although we prefer to think of our mod-
els as mixture models it is interesting to note
that they can be described in the language
of graphical models used by Lauritzen and

Wermuth[g] :

tices for each variable, and an extra vertex

if we draw a graph with ver-

for the latent variable giving the class assign-
ment, then variables in the same cell form a
cligue (maximal complete subgraph), all vari-
ables are connected to the latent variable, and
variables in different cells are connected to
each other only by a path through the latent
variable.



3 Estimation and the
MULTIMIX program.

As the model has been described, it is a mix-
ture of K distributions, each of which can be
seen to belong to the exponential family. It
is therefore well suited for maximum likeli-
hood estimation of its parameters by the EM
algorithm of Dempster, Laird and Rubin [3],
and the Fortran program MULTIMIX has been
written by Lynette Hunt to do this. Asis well
known the EM algorithm works by the con-
ceptual adjoining of ‘missing data’ onto the
observed data to form the ‘complete data’ for
which maximum likelihood estimation is sim-
ple. In the case of mixtures of distributions
the ‘missing data’ is an extra variable giving
the assignment of each observation to a class.

Rather than adjoining a single variable of
class assignments, it is more convenient to add
K indicator variables corresponding to each of
the K classes. The ‘complete data’, then, con-
sists of the n X p array of observed data {x;;}
and the conceptual n x K array {z;.} of class
membership indicators. The indicator vectors
Zis.enyZiy. .., %y are independently and iden-
tically distributed according to a multinomial
distribution generated by one draw on a popu-
lation made up of K categories in proportions
Ty TK-

The complete-data specification treats the
z; as known leading to the log-likelihood

= log | IT11

=1 k=1

Lc(o) (rn K {W;M {ﬁfw(xi;ﬂm}j})

I
= >3 {Ziklog Tk + zik »_ 10g fr(xi; Hkl)}
1=1

=1 k=1
n K K
= Z Z Zik log Tk + Z ]k(ek)
i=1 k=1 k=1
where

I

le(6r) = i{zv:kzloaq.fm(xi;ﬁkz)}

1=1

I. =n
= D> zilog fr(xi; 6x)-

=1 1=1

Maximising the complete data log-likelihood
Le(¢) is equivalent to maximising () sep-
arately for each cell. The local independence
principles embodied in our models thus effec-
tively reduce the dimensionality of the model-
fitting, as well as improving the identifiability
of the mixture components.

The ‘missing data’ formulation of the EM
algorithm has made it possible to extend MUL-
TIMIX to situations where the data are miss-
ing at random in the sense of Little and
Rubin[11].
components of the x; to the z; as data to be es-
timated at the F-step of the fitting algorithm.
More strictly what are estimated at the F-

We add the genuinely missing

step are the functions of the missing quanti-
ties as they appear in the sufficient statistics
for the complete data log likelihood. Details
are given by Hunt [6].

4 Does MULTIMIX give
useful clusters? A
medical example

There can never be one ‘correct” method for
performing a vaguely defined task like cluster-
ing. MULTIMIX clusters are based on maximum
likelihood estimation of a parametric model,
so one way to validate the program is to look
at the performance of the program on data
generated from the model. This was done re-
peatedly during the development of the pro-
gram as a check on the code and, except where
coding errors were indeed detected, the pro-
gram performed well. Another method, using
real data, is to withhold some variables from
a cluster analysis and then examine whether
the clusters found have any relationship with
the excluded variables.

In this paper we consider the clustering of
cases on the basis of pre-trial covariates alone
for the Prostate Cancer clinical trial data of



Byar and Green [2] reproduced in Andrews
and Herzberg[1], (pp. 261 274).

This data was obtained from a randomized
clinical trial comparing four treatments for
506 patients with prostatic cancer grouped
on clinical criteria into stages 3 and 4 of
the disease. As reported by Byar and Green
Stage 3 represents local extension of the dis-
ease without evidence of distant metastasis,
while Stage 4 represents distant metastasis as
evidenced by elevated acid phosphatase, x-ray
evidence, or both. We will compare the clus-
ters obtained by MULTIMIX with the clinical
stages, and also consider the trial outcomes
for patients in different clusters.

There are twelve pre-trial covariates (Ta-
ble 1) measured on each patient, seven may
be taken to be continuous, four to be discrete,
and one variable (SG) is an index nearly all
of whose values lie between 7 and 15, and
which could be considered either discrete or
continuous. We treat SG as a continuous vari-

able.

showed that the size of the primary tumour

A preliminary inspection of the data

(S7) and serum prostatic acid phosphatase
(AP) were both skewed variables. These vari-
ables have therefore been transformed, S7 un-

and AP

using a logarithmic transformation, to nor-

der a square root transformation,
malize their distributions. (As for correla-
tion, skewness over the whole data set does
not necessarily mean skewness within clusters
but when clusters were formed within-cluster
skewness was observed for these variables.)
Observations that had missing values in any of
the twelve pretreatment covariates were omit-
ted from further analysis, leaving 475 out of
the original 506 observations available. In fact
several of the analyses to be described were
also carried out using the version of the pro-
gram which allows for missing observations.
There was little variation from the results us-
ing only the complete observations.

Firstly we will consider two-group models:
these have especial interest because of the
clinical division into Stage 3 and Stage 4.

Model-based classifications can be compared
with this clinical classification.

We regard the data as a random sample
from the distribution

¢) = Z ﬂ—k.fk(m; Hk)v
k=1

where Zﬂ'k—] and 7, > 0, k =1,2. Un-

der ‘rhe mode] with complete local indepen-
dence for two clusters, which we will refer to
as Model 1, the component distributions will
be of the form

H Jri(Xir5 041),

X“ Hk

where 6y is the parameter vector for group k,
cell I; and k= 1,2. We see that fi(Xxi; 6k) is
N(ﬂkhﬂm) for each of the 8 continuous vari-
ables, and D(Ap, ..., Mg, ) for each of the 4
categorical variables.

This model was fitted iteratively using the
EM algorithm with the initial estimates of
the group parameters being based on those
resulting from the clinical classification. As
the likelihood equation for mixture models
usually has multiple roots, the EM algorithm
should be applied from several starting val-
ues in order to search for local maxima. In
order to search for other maxima, and to dis-
pell any suspicion that the estimated param-
eters are close to the statistics for the clin-
ical classification merely because these were
used as starting values, the algorithm was
run again 10 more times from initial parame-
ter estimates taken from classifications gener-
ated by randomly splitting the patients into
Three solutions of the likelihood
From 10
starting values, 7 converged to a solution with
a log-likelihood of -11386.265, the same so-
lution that was found using the parameters
Two it-
erations converged to a solution with a log-

likelihood of -11476.051,

two groups.
equation were found for Model 1.

based on the clinical classification.

and one iteration



Covariate Abbreviation  Number of Levels
(if categorical)

Age Age

Weight Wt

Performance rating PF 4

Cardiovascular disease history HX 2

Systolic Blood pressure SBP

Diastolic blood pressure DBP

Electrocardiogram code EKG 7

Serum haemoglobin HG

Size of primary tumour S7,

Index of tumour stage and histolic grade SG

Serum prostatic acid phosphatase AP

Bone metastases BM 2

Table 1: Pretreatment covariates.

converged to a solution with a log-likelihood
of -11392.972.

Model 1 is relatively easy to fit because of
the small number of parameters. Tt is also
easy to comprehend because the dependence
between variables is totally explained by the
cluster structure. Once this model has been
fitted, we can seek ways of improving the fit
by adding more covariance parameters.

An observation x; is assigned to the popu-
lation to which it has the highest estimated
posterior probability of belonging; that is, we
assign to the population Gy if Tk(Xi;(;g) >

T (X,¢) where 7.(X;; )

= pr (ithobserva,ﬁon € Gk|x7;,¢)
2

= e fe(xs 00) [{ Y wrfr(xi; 01)}-
k=1

On examination of the within group corre-
lation structure (using the group assignment
resulting from Model 1), we find that both
groups exhibit a high correlation between sys-
tolic blood pressure (SBP) and diastolic blood
pressure (DBP), 0.629 for Group 1 and 0.622
for Group 2.

This correlation is incorporated into a new

model in which variables SBP and DBP are
grouped together in a cell, which we will re-
fer to as Model 2.

ture of two component distributions, each of

This model is a mix-

which is a product of 4 discrete distributions,
6 univariate normal distributions, and one
bivariate normal distribution (for the blood
pressures). The local independence condition
has been weakened only by adding a covari-
ance parameter between the blood pressures
in each of the two clusters. The iteration
for fitting Model 2 may be begun either from
the Model 1 parameter estimates or from the
cluster assignments based on Model 1 or the
clinical classification. Using the Model 1 es-
timates as starting values, the log-likelihood
converged to -11268.723. Two other solutions
(log-likelihoods -11275.551 and -11358.818) of
the likelihood equation were also found when
the EM algorithm was applied from a wide va-
riety of starting values in the search of local
maxima.

Using the cluster assignment from Model 2,
the within group correlation structure is re-
examined. There are small correlations be-
tween Wt and the blood pressures SBP and
DBP, 0.169 and 0.187 for Group 1, and 0.166



and 0.262 for Group 2. A small correlation
also shows up between Wt and HG, (0.193 for
Group 1, and 0.297 for Group 2. We will fit
two further models involving some of these
correlations.

The two group mixture model is fitted with
the variables Wt, SBP and DBP grouped to-
gether in a cell (Model 3), and with the vari-
ables Wt and HG grouped in one cell, and
SBP and DBP grouped together in another
cell (Model 4).

Table 2 compares the classifications of the
observations under the four models with the
clinical classification.

The model classifications emerge as very
similar to the clinical classification and seem
to be little affected by the choice of model.
In fact only a handful of observations change
classification under the different models, these
being observations 32, 58, 294 and 482. For
observation 32 the estimated posterior prob-
ability of belonging to Group 1 (the less-
seriously ill group) was 0.64, 0.58, 0.31 and
0.40 under Models 1 to 4 respectively. The
corresponding probabilities for observations
58; 294; and 482 were 0.58, 0.62, (.43 and
0.52; 0.49, 0.49, 0.51 and 0.45; and 0.49, 0.52,
0.45 and 0.42. None of these observations is
decisively classified by any of the models, so
from a clustering viewpoint the groups formed
in this example are remarkably stable under
these changes to the model.

In the same table we also indicate the im-
provement in fit gained by adding covariances
to Model 1 by twice the log-likelihood ra-
tio. Compared with Model 1, Model 2 has
2 extra parameters - one covariance between
blood pressures for each of two clusters - and
twice the difference in log-likelihoods is 235.1,
Model 3
adds 4 extra parameters to Model 2 for a
—2log A gain of 28.0. Model 4 adds covari-
ances between Wt and HG to Model 2 gain-
ing 29.3 in —2log A at a cost of 2 parameters.
Both Model 3 and Model 4 offer significantly
better fitting models than the fully locally in-

clearly a significant improvement.

dependent model for a modest number of ex-
tra parameters. We do not recommend going
too far in the direction of adding covariance
parameters for fear of upsetting the stability
of the model classifications. We have tended
to prefer Model 3 on physical grounds be-
cause we would expect correlations between
patient weight and the two blood pressures.
We will remain with the covariance structure
of Model 3 as we investigate adding more
groups to the model.

4.1 Choosing the number of
groups.

In many situations in practice, there is no «
priori knowledge of the number K of compo-
nent groups in the data. An obvious way of
approaching this problem is to use the like-
lihood ratio test statistic A to test for the
smallest value of K compatible with the data.
However when testing for the number of com-
ponents in a mixture, the usual regularity con-
ditions do not hold for —2log A to have its
standard asymptotic null distribution of 2
with the degrees of freedom equal to the differ-
ence between the number of parameters under
the full and reduced models. The main prob-
lem is the lack of identifiability of the param-
eters even when the class of mixtures is iden-
tifiable. See for example, Hartigan[5], Tit-
terington, Smith and Makov[16], and Quinn,
McLachlan and Hjort[15].

We will use the likelihood ratio test merely
a guide to the possible number of underly-

ing groups.
the estimates of the posterior probabilities of

Another guide can be found in

group membership. Clearly a solution where
observations are clearly assigned to a partic-
ular component will be of more practical use
than one in which many observations have ap-
preciable probability of membership in each of
several classes. It must be remembered, how-
ever, that real populations do overlap, and
such solutions are not necessarily meaning-
less. The likelihood ratio test of Hy : K =1



Stage 3 Stage 4 Number of
Model  Group 1 Group 2 Group 1 Group 2 Parameters 2 loglR
1 252 21 20 182 55 0.0
2 252 21 21 181 57 235.1
3 252 21 18 184 61 263.0
4 252 21 19 183 59 264.3

Table 2: Comparison of 2-group models

K =
of the null hypothesis of a single population
(—2log A = 823.2), twice the difference in the
The test,
statistics for K = 2 versus K = 3 and for
K = 3 versus K = 4 are 188.3 and 175.8 re-

spectively. As more groups were included in
pectively. A p luded

versus H, 2 suggests the rejection

number of parameters being 60.

the model, there seemed to be an increasing
tendency to converge to a suboptimal local
maximum. This was not unexpected, since
each additional cluster requires an additional
set of 30 parameters to be estimated. We are
confident that the best endpoint was reached
for the 2 cluster solution, fairly sure for the
3 group solution, but are not at all confident
for the 4 cluster solution. Although likelihood
singularities are possible with these models,
we encountered no instances where the algo-
rithm failed to converge in the sense of our cri-
terion. For reasons of time it was not practical
to investigate 5 cluster models as the number
of number of possible model varients coupled
with increased sensitivity to starting values
would make this a lengthy task.

On examination of the posterior probabili-
ties for the groups fitted, we find (Table 3 )
that as the number of groups fitted to the data
increased, there was a decrease in the number
of observations that are definitely assigned to
a group (7;; > 0.95).

The two cluster model does give groups
with better separation. In this analysis, the
two clusters found largely agree with the clin-
ical classification of Stage 3 and Stage 4.
When a 3 cluster model was fitted most of

No. of Groups

Tii 2 3 4
25-80 33 97 140
80-.95 44 100 134
95-99 46 63 &84
99-1.0 352 215 117

Table 3: Posterior probabilities for 2-4 groups

the Stage 4 patients were assigned to a single
cluster, with the bulk of the Stage 3 patients
being divided between the two other clusters.

4.2 Clusters and outcomes

We may gain additional insight into the com-
position of the groups from examining the
cause of death. We will do this only infor-
mally as a detailed analysis of the data will
take us too far from our main purpose. In par-
ticular we will neglect the treatment effects.
Following [2], the survival status variable was
recoded to 4 levels, alive(0), death from pro-
static cancer(1), death due to cardiovascular
causes(2), and death from other causes(3).

We can see (Table 4) that patients in
Group 1 (corresponding to the clinical clas-
sification of Stage 3) have a high probabil-
ity of being alive or dying from cardiovascular
causes, whereas patients in Group 2 (clinical
classification of Stage 4) are likely to die from
prostatic cancer.

Model 3 uses a partitioning of the variables

in which Wt, SBP, and DBP share a cell but



Survival Status
0 1 2 3
1 96 24 92 58
2 ‘ 41 97 46 21

Group

Table 4: Survival Status for Model 3 classifi-

cations

Group | Survival Status
o 1 2 3

1 5 18 31 21

2 38 91 44 18

3 43 12 63 40

Table 5: Survival Status for a 3-group model

all other variables are locally independent. In
Table 5 we consider the 3 group model with
the same partitioning. Group 2 for this model
corresponds roughly to the clinical classifica-
tion of Stage 4 (Group 2 in the 2 cluster so-
lution). The patients in Group 1 have a high
probability of being alive at the end of the
trial whereas the Group 3 patients have a
high probability of death from cardiovascular
causes, and similar moderate probabilities of
death from other causes and alive at the end
of the trial.

The post-treatment variable ‘months of
follow-up’, provides another way to gain in-
sight into the composition of the group struc-
ture as it can be regarded as a surrogate
for survival time. Because each patient in
the study was followed up for at least four
years unless death occured, we will catego-
rize this variable to survival time greater than
48 months, and survival time less than or

With the Group 1
patients, 47% survive for greater than 48

equal to 48 months.

months, whereas only 26.6% of the Group 2

patients survive for greater than 48 months.
It is intriguing to have a closer look at the

patients whose classification by Model 3 is in

Survival Time
Group | <48 months

>48 months
1 9 9
2 18 3

Table 6: Survival time for the observations
classified by Model 3 to a different group than
the clinical classification

Group | Survival Status
0o 1 2 3
1 T3 3 5
2 ‘ 2 10 5 4

Table 7: Survival status for the observations
classified by Model 3 to a different group than
the clinical classification

conflict with the clinical classification, in Ta-
ble 6 we tabulate survival time against the
model classification for these patients alone.

In Table 7 survival status information is
summarised for the same patients.

Tables 6 & 7 suggest a more favourable out-
come for Stage 4 patients classified by the
model into Group 1 than for Stage 3 pa-
tients classified into Group 2. In short, the
model classification gives a better indication
of prognosis than the clinical classification,
the patients in Group 2 being likely to suc-
cumb to prostatic cancer, and the patients in
Group 1 more likely to survive, or die from
other causes.

5 Scope of the method

For fully categorical datasets the method of
lLatent Class Analysis has become a popu-
lar method of discovering underlying cluster
structure. The class of models that we have
introduced and utilized in this paper forms a
natural extension to this class to datasets con-
taining both categorical and continuous vari-



ables. Like Latent Class models, our models
make free use of local independence to reduce
the number of parameters in the model and
to lead to descriptions of the clusters that can
be easily understood. Provision is made, how-
ever, for the cautious introduction of within-
cluster covariances.

Because the EM algorithm is used to fit the
models it is feasible to fit them to datasets
with many variables and observations, so that
for many applications fitting these models be-
comes an alternative to conventional cluster
analysis algorithms. This may be particularly
attractive in situations where data is miss-
ing, because the program MULTIMIX has been
written to cope with data missing at random
whereas missing data often presents problems
for deterministic clustering algorithms.

The choice of discrete and multivariate nor-
mal distributions as the ‘atoms’ out of which
our models are built has been made con-
sciously in an effort to be bland and generic,
but

about the nature of the distributions in sub-

in situations where more was known

populations other types of distributions could
be used in place of these.

Fither taken as we have presented them, or
modified to incorporate subject-area knowl-
edge of distributions and parameters we be-
lieve that multivariate finite mixture models
will prove an invaluable tool in exploring large
complex datasets.
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