
Mixture Model Clustering with the Multimix Program
Murray JorgensenDepartment of StatisticsUniversity of WaikatoHamilton, New Zealand Lynette HuntDepartment of StatisticsUniversity of WaikatoHamilton, New ZealandAbstractHunt [1996] has implemented the �nite mix-ture model approach to clustering in a pro-gram called Multimix. The program is de-signed to cluster multivariate data with cat-egorical and continuous variables and possi-bly containing missing values. In this pre-sentation we describe the approach taken tothe design of Multimix and how some of thestatistical problems were dealt with. As ex-amples of the use of the program we clus-ter a large medical dataset and a version ofFisher's Iris data in which a third of the val-ues are randomly made `missing'.1 INTRODUCTIONThe Multimix computer program, written in Fortranby Lynette Hunt, �ts a mixture of distributions tomultivariate data where the variables may be eithercontinuous or categorical. The model �tted simulta-neously generalises the Latent Class model and themixture of multivariate normals model. Like either ofthese models Multimix can be used to form clusters bythe Bayes allocation rule. This is the intended use ofthe program, although the parameter estimates can beused to give a succinct description of the clusters.The program is designed to encourage the use of par-simonious models that explain the associations andcovariances by the cluster structure; it favours mix-ture component models with independent variables.In fact the user speci�es a partition of the variablesinto groups such that variables in di�erent groups areindependent in the component models.Use of the EM algorithm, with its view of the ob-served data as being notionally augmented by missinginformation to form the `complete data', gives a broadframework for estimation which is able to handle two

types of missing information: unknown cluster assign-ment and missing data. Using the methodology ofLittle and Rubin [1987] in this wayMultimix is able tohandle missing data in a less ad hoc way than manyclustering algorithms. The program runs in acceptabletime with large data matrices (say hundreds of obser-vations on tens of variables). Use of the missing-datafacility increases execution time somewhat.2 STRUCTURE OF THE MODELSFITTED BY MultimixWe expect the data to be in the form of an n � pmatrix of observations by variables which we regardas a random sample from the distribution f(x) =P�kfk(x), itself a �nite mixture of K componentdistributions fk in proportions �k � 0 satisfyingP�k = 1. We suppose that the vector of variablesx = (x1; : : : ; xj ; : : : ; xp)0 has been partitioned into(x̂01 j : : : j x̂0l j : : : j x̂0L)0. We consider componentdistributions that factorize fk(x) = Ql fkl(x̂l), con-formably with this partition. This is a weak form of`local independence' : within each of the K subpopula-tions the variables in the subvector x̂l are independentof the variables in x̂l0 for 1 � l < l0 � L. True `localindependence' is the independence of each xj withinsubpopulations. We can write the model for the ithobservation asf(xi;�) = KXk=1 �k LYl=1 fkl(x̂il;�kl) (2:1)where �kl consists of the parameters of the distribu-tion fkl and the �k are the mixing proportions. Thisformulation includes the motivating examples of La-tent Class analysis [Aitkin et al., 1981] and mixturesof multivariate normals [McLachlan and Basford, 1988]When a subvector contains only a single variable, thatvariable is independent of all other variables withineach subpopulation. It is convenient to assume formsfor the fkl, and hence for the fk, that belong to the



exponential family. The model is then well suited formaximum likelihood estimation of its parameters bythe EM algorithm of Dempster et al. [1977].2.1 LOCAL INDEPENDENCEA simple case of the model class (2.1) occurs when eachx̂l consists of a single variable. In this case true localindependence holds and all variables are independentof each other within each subpopulation, even thoughthey may be strongly related within the population asa whole. A succinct description of the data may thenbe given by reporting the proportions within each com-ponent and individual distribution summary statisticsfor each variable within each component. When allvariables are discrete the model is then known as theLatent Class Model.A natural way to generalize the Latent Class modelto multivariate data involving variables of di�erentkinds, discrete and continuous, is to consider local in-dependence models with a range of di�erent univari-ate distributions allowed for each variable. This kindof model often leads to fairly good cluster assignmentseven when it does not �t very well and the number ofparameters that need to be estimated is fairly small.However it is easy to manufacture arti�cial exampleswhere poor results are obtained, such as elliptical clus-ters in di�erent orientations.2.2 UNSTRUCTURED MODELSAnother extreme is where we take L = 1 and make noassumptions about independence within clusters. Thisis the case when we seek to �t a mixture of p-variatenormals to the data, estimating means and covariancematrices separately for each component.These models may be worth considering when p isquite small, but not otherwise. Highly parameterizedmodels are very di�cult to estimate unless very largeamounts of data are available. E�ective failure of iden-ti�ability may occur in which quite di�erent parametervalues give nearly equal likelihood values.Another problem is that for variables of di�erent typesno explicit and tractable multivariate distributionsmay be known. This is the case when within-clusterassociations need to be modeled for several categoricaland several continuous variables.2.3 MODELS SUPPORTED IN MultimixOnly some distribution types are currently available inMultimix although it is hoped to progressively extendthese. Currently available are

1. arbitrary discrete univariate distributions2. multivariate normal distributions3. location model distributions.The location model is a joint distribution of a singlecategorical distribution with several continuous vari-ables. Conditional on each value of the categoricalvariable, the continuous variables follow a multivari-ate normal distribution. The mean vector of the mul-tivariate normal may depend on the categorical vari-able, but the covariance matrix is the same whateverthe value of the categorical variable. See Krzanowski[1983] for details.The user of Multimix must partition the variables intogroups or `subvectors' in such a manner that each sub-vector corresponds to an available model. For examplein a data set with 2 categorical variables and 15 con-tinuous variables we might divide the variables into� a group containing a single categorical variable� a group containing a categorical variable andthree continuous variables� a group containing four continuous variables� eight groups each containing a single continuousvariablethese groups would be associated with a discrete distri-bution, a location model, a multivariate normal distri-bution, and eight univariate normal distributions andthen the corresponding Multimix model would be a �-nite mixture of distributions, all having a joint densityof the same form: a product of the 11 densities givenabove.The model �tting strategy for �tting a mixture that weemploy is to �rst �t the model with full local indepen-dence (in which each subvector of variables is a single-ton). The EM algorithm which is used to calculate themaximum likelihood estimates of the parameters alsoproduces for each observation the estimated probabil-ities ẑij that the observation i belongs to componentj. We may `sharpen' the resultant fuzzy classi�cationby allocating each observation to the component thatit has the highest probability of belonging to. Theclusters so constructed can be examined for within-cluster correlations or associations. The model maythen be modi�ed by coarsening the partition of thevariables so that variables with within-cluster associa-tions are grouped in the same partition. One di�cultythat may arise is the discovery of within-cluster asso-ciations involving more than one categorical variable.These may be handled by replacing those categorical



variables by a single new categorical variable indexingthe cells of the multi-way table that they de�ne, pos-sibly with some appropriate pooling of cells to reducethe number of values of the new variable.The EM algorithm for �tting �nite mixtures [McLach-lan and Basford, 1988] treats the assignments zij ofobservations to clusters as it they were missing data.The adoption of the framework for Multimix meansthat it has been possible to extend the approach tocope with missing values in the data as well as missingcluster assignments. In fact having two categories ofmissing data complicates the situation su�ciently thatthe version of Multimix that handles missing data isabout twice the length of the original Multimix. Thealgorithm used is an extension by Hunt [1996] of thatof Little and Schluchter [1985] to �nite mixtures ofdistributions. The E-step of the EM algorithm usedincorporates a very e�cient `sweeping' on augmentedcovariance matrices to estimate the missing portion ofthe complete-data su�cient statistics. It is useful tohave both versions of the program available, becausethe speed of the simpler program on data withoutmissing values is greater than that of the missing-dataversion, and the parameter estimates found using thecomplete cases and the simpler program usually makegood starting values for the larger program.3 SOME EXAMPLES OFCLUSTERING WITH Multimix3.1 BYAR PROSTATE CANCER DATAThe ultimate test of any clustering methodology iswhether the clusters that result have any value forthe user. To examine whether the clusters formed byMultimix have any usefulness we have clustered Byar'sProstate Cancer data [Andrews and Herzberg, 1985,pp. 5-8] into 2 groups using 12 pre-treatment covari-ates; 8 continuous variables and 4 categorical variableswith between 2 and 7 levels. This is a useful data setto test clustering programs on, because the patientsare classi�ed into Stage 3 and Stage 4 (more severe)of the disease, and post-trial information on the sur-vival status of the patients is available. The Stage4 patients had some signs of the cancer spreading toother parts of the body. The stages were not used inthe clustering, nor was the information on post-trialstatus (alive/dead/cause of death).We report only an outline of our analysis of this dataset, more details are given in Hunt [1996] and Hunt andJorgensen [1999]. We use only the 475 out of 506 pa-tients with complete pre-trial information. The initialmodel �tted was a 2-component model with completelocal independence.

The initial clusters found had a strong relationship tothe clinical stages: Cluster 1 Cluster 2Stage 3 252 21Stage 4 20 182Inspection of the clusters showed three continuousvariables that appeared to be associated within clus-ters. These were Systolic Blood Pressure, DiastolicBlood Pressure and Body Weight Index (Weight cor-rected for height). The physical plausibility of correla-tions between these variables within clusters gave ad-ditional reason to modify the model partition of vari-ables bringing these three variables together in a sub-vector. Thus six additional covariance parameters arenow estimated, three for each cluster.The modi�cation of the model model makes little dif-ference to the clusters, in fact only four patients changecluster. The connection with the clinical stages tabu-lated above changes toCluster 1 Cluster 2Stage 3 252 21Stage 4 18 184Each patient in the data set has a survival statusrecorded that was not used in the clustering. A use-ful grouping of the status values is into four categories:alive(0), dead from prostatic cancer(1), dead from car-diovascular causes(2), dead from other causes(3). Thefollowing table shows that the clusters found havesome prognostic value. Survival StatusCluster 0 1 2 31 96 24 92 582 41 97 46 21We can go on to investigate the clusterings generatedby �tting models with more components. In the caseof a three component model based on the same parti-tioning of the variables clusters are generated with thefollowing relationship to the outcomes:Survival StatusCluster 0 1 2 3A 56 18 31 21B 43 12 63 40C 38 91 44 18To a good approximation Cluster 1 from the two com-ponent model splits into Cluster A and Cluster B, andCluster C is more or less the same as Cluster 2. Wecan describe Cluster A as the more healthy patients;Cluster B patients are less healthy, but with health



problems other than prostate cancer dominating; Clus-ter C patients are the main group at risk from prostatecancer.Hunt [1996] goes on to investigate 4- and 5-componentmixture models for the prostate cancer data. Some dif-�culty was experienced in �tting 5-component modelsas the EM algorithm took a long time to converge andmany local likelihood maxima where encountered.It is clear that Multimix is discovering structure re-lated to the prognosis of the patients even though theSurvival Status information is not used by the pro-gram.3.2 FISHER'S IRISES WITH MISSINGVALUESA less `real' but more familiar example is now derivedfrom the Fisher Iris data by randomly making valuesmissing with probability 1/3. The results in a dataset that would be challenging to most clustering algo-rithms, but which is clustered easily by Multimix.In the Iris data measurements of four variables Sepallength, Sepal width, Petal length, Petal width areavailable for 150 irises, 50 each from each of threespecies Setosa, Versicolor, and Virginica. As may benoted by graphical exploration the Setosa species isrelatively well-separated from the other two. In a�rst exercise we take the 100 observations for Setosaand Versicolor and make the data values missing withprobability 1/3. This is quite an extreme amount ofmissing data, in fact one Setosa observation �nishesup with all four variables missing!We consider two models: the local independencemodel, which in this case is a mixture of two 4-variatenormal distributions both having diagonal covariancematrices; and the unstructured model which is a mix-ture of two general 4-variate normal distributions. The100 observations are assigned by Multimix to clustersthat are related to the species as follows:Cluster 1 Cluster 2Setosa 48 2Versicolor 1 49Actually the assignment is the same for all observa-tions under the two models. For example the totallyunobserved Setosa iris is assigned to Versicolor byboth models as the estimated proportion of Versicoloris 0.5011, and 0.5064 under the local independence andunstructured models respectively.The assignment probabilities ẑij are somewhat closerto 0 or 1 under the unstructured model as it is able to�t the data better.

Separating Versicolor and Virginica is a harder task,even when all data values are present, but we repeatthe exercise above with this pair. With the local inde-pendence model the clusters found relate to the origi-nal species as follows: Cluster 1 Cluster 2Versicolor 37 13Virginica 6 44and with the unstructured model the correspondingtable is Cluster 1 Cluster 2Versicolor 36 14Virginica 6 44Although the results for the two models look similar,in fact 17 observations change their assignment to clus-ters between the two groups.4 COMPARISON WITH RELATEDSOFTWARE AND FUTUREDIRECTIONS4.1 AutoClassAutoClass [Cheeseman and Stutz, 1996] is a Bayesianclustering program developed by Peter Cheeseman andcolleagues at NASA Ames Research Center. The mod-els �tted by AutoClass are very similar to those �ttedby Multimix, although both programs were developedindependently. Two obvious di�erences are1. AutoClass has automated the process of model se-lection as well as that of parameter estimation butMultimix leaves model-speci�cation to the user;2. AutoClass uses Maximum Posterior estimation inplace of Maximum Likelihood estimation.In fact the �rst is the more crucial di�erence, becausethe EM algorithm at the basis of both programs ac-commodates both ML and MAP estimation. Auto-Class compares di�erent models by calculating an ap-proximation to the marginal density of the observeddata after the model parameters have been integratedout. In usual EM language the approximation usedis analogous to taking observed data likelihood to beproportional to complete data likelihood with the con-stant of proportionality to be evaluated at the maxi-mum likelihood estimates.The models currently available in AutoClass for at-tributes within a component are as follows. Cat-egorical attributes are modelled by general discrete



distributions (multi-category Bernoulli) as in Multi-mix. Continuous attributes may be taken to have uni-form or normal distributions, possibly after transfor-mation. Poisson distributions are available for countattributes. Cheeseman and Stutz [1996] report thatvon Mises-Fisher distributions for circular and spheri-cal attributes are under development. At present it ap-pears that AutoClass does not o�er facilities for mod-elling within cluster dependencies, that is, all mod-els assume within-cluster independence of attributes.Missing values are treated as a special kind of value insome attribute models, but there has been no imple-mentation of the Little and Rubin [1987] methodologyfor data missing at random.4.2 SnobSnob [Wallace and Dowe, 1998] is a clustering pro-gram developed by Chris Wallace and co-workersat the Monash University Department of Com-puter Science, beginning in the late sixties.[Wallaceand Boulton, 1968]. Snob has a home pageat http://www.cs.monash.edu.au/~dld/Snob.html.Snob is a mixture model similar in structure to Auto-Class and o�ering local independence models based ondiscrete, Normal, Poisson and von Mises distributions.In fact Snob is the older program. A novel feature ofSnob is that inference is by the principal of MinimumMessage Length [Wallace and Freeman, 1987]. Thisform of inference takes discrete variables as fundamen-tal and seeks to minimise the negative logarithm of theprobability of the model and parameter values plus thenegative logarithm of the probability of the data giventhe model and parameter values. A continuous ana-logue of this estimation principle is similar to Maxi-mum Posterior estimation (MAP) but introduces anadditional factor of (F (�))� 12 to the prior, where F (�)is the determinant of the Fisher information matrix atthe parameter vector �.In contrast to Multimix, where the user must spec-ify the number of classes, Snob selects the numberof classes automatically using the Minimum MessageLength criterion. Thus the MML criterion is used forall aspects of model selection and parameter estima-tion in the Snob approach.4.3 MclustBan�eld and Raftery [1993] have developed the classi�-cation likelihood approach of Scott and Symons [1971]further to introduce a controlled amount of 
exibilityto criterion-based cluster analysis for continuous data.Wallace and Dowe [1998] point out that in the caseof a substantially overlapping pair of normal distribu-tions having equal abundance and common � this kind

of estimation is likely to overestimate the di�erencein means and underestimate �. This inconsistency inclassi�cation likelihood is also discussed by McLachlanand Basford [1988].Ban�eld and Raftery characterize the dispersion ma-trices of multivariate normal clusters by their orien-tation, size, and shape. They mainly consider modelswhere the shape is the same in each component ofthe mixture, but orientation and size are permittedto vary. They also consider an approach to robus-tifying cluster analysis by allowing a very dispersed`noise' component in addition to the multivariate nor-mal components.A Fortran program called Mclust has been written byChris Fraley to �t these models and others. It is avail-able from StatLib either as a Fortran program or asan S-PLUS function. Although criterion-based, ratherthan being based on a distance matrix, Mclust is writ-ten to proceed initially as an agglomerative hierarchi-cal program. However once the number of clusters hasbeen determined by the user Mclust can proceed byreallocating points to seek a minimum of the criterionin a fashion similar to the k-means algorithm of Harti-gan [1975]. In recent versions of S-PLUS Mclust nowforms the core of the clustering functions provided.5 THE PLACE OF Multimix INMIXTURE MODELINGThe brief survey of other related programs helps toclarify the role of Multimix as a mixture modellingtool. In contrast to Snob and AutoClass it automatesonly parameter estimation, leaving model selection tothe control of the user. It appears to be unique ino�ering a maximum likelihood approach to a classof models extending mixtures of multivariate normalsand latent class models. (Although it is possible thatAutoClass and Snob might be coaxed into producingsimilar output for at least some models by appropriateprior speci�cation and the switching o� of their modelsearch facilities).A natural further development for Multimix would beto introduce new types of attribute distribution suchas the Poisson and circular von Mises distributions.To the extent that robust estimation is appropriate fora particular dataset it seems that it would be betterto add a very small proportion of a highly dispersedcomponent to the mixture than to follow Ban�eld andRaftery [1993] in modifying the likelihood criterion togain robustness.There are no present plans to automate model selec-tion in Multimix, but it must be acknowledged that
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