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1

Chapter 1
Introduction

1.1 Introduction

Since the mid-nineties, the computing industry has been using object-oriented 
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented 
middleware was an important step forward toward making distributed computing 
available to application developers. For the first time, it was possible to build 
distributed applications without having to be a networking guru: the middleware 
platform took care of the majority of networking chores, such as marshaling and 
unmarshaling (encoding and decoding data for transmission), mapping logical 
object addresses to physical transport endpoints, changing the representation of 
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the 
distributed computing market, for a number of reasons:

• DCOM was a Microsoft-only solution that could not be used in heterogeneous 
networks containing machines running a variety of operating systems.

• DCOM was impossible to scale to large numbers (hundreds of thousands or 
millions) of objects, largely due to the overhead of its distributed garbage 
collection mechanism.

• Although available from a variety of vendors, it was rarely possible to find a 
single vendor that could provide an implementation for all of the environ-
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ments in a heterogeneous network. Despite much standardization effort, lack 
of interoperability between different CORBA implementations continued to 
cause problems, and source code compatibility for languages such as C or 
C++ was never fully achieved, usually due to vendor-specific extensions and 
CORBA’s lack of a specification for multi-threaded environments.

• Both DCOM and CORBA suffered from excessive complexity. Becoming 
proficient and designing for and programming with either platform was a 
formidable task that took many months (or, to reach expert level, many years) 
to master.

• Performance issues have plagued both platforms through their respective 
histories. For DCOM, only one implementation was available, so shopping 
around for a better-performing implementation was not an option. While 
CORBA was available from a number of vendors, it was difficult (if not 
impossible) to find standards-compliant implementations that performed well, 
mainly due to the complexity imposed by the CORBA specification itself 
(which, in many cases, was feature-rich beyond need).

• In heterogeneous environments, the coexistence of DCOM and CORBA was 
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While 
.NET offers more powerful distributed computing support than DCOM, it is still a 
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a 
number of vendors have left the market, leaving the customer with a platform that 
is no longer widely supported; the interest of the few remaining vendors in further 
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.

Simultaneously with the decline of DCOM and CORBA, a lot of interest arose 
in the distributed computing community around SOAP [26] and web 
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and 
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP 
and web services had the promise of becoming the lingua franca of distributed 
computing on the Internet. Despite much publicity and many published papers, 
web services have failed to deliver on that promise: as of this writing, very few 
commercial systems that use the web services architecture have been developed. 
There are a number of reasons for this:
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• SOAP imposes very serious performance penalties on applications, both in 
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

• While SOAP provides an “on-the-wire” specification, this is insufficient for 
the development of realistic applications because the abstraction levels 
provided by the specifications are too low. While an application can cobble 
SOAP messages together, doing so is tedious and error-prone in the extreme.

• The lack of higher-level abstractions prompted a number of vendors to 
provide application development platforms that automate the development of 
SOAP-compliant applications. However, these development platforms, 
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used 
with middleware products from other vendors.

• There are serious concerns [15] about the architectural soundness of SOAP 
and web services. In particular, many experts have expressed concerns about 
the inherent lack of security of the platform.

• Web services is a technology in its infancy. Little standardization has taken 
place so far [27], and it appears that it will be years before standardization 
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with 
a number of equally unpleasant options:

• Choose .NET

The most serious drawback is that non-Microsoft platforms are not supported.

• Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging 
platform, coupled with ongoing vendor attrition.

• Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use 
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can either choose a 
platform that won’t run on anything but Microsoft architectures, or you can 
choose a platform that is complex and suffering from gradual abandonment, or 
you can choose a platform that is inefficient and, due to the lack of standardiza-
tion, proprietary.
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1.2 The Internet Communications Engine (Ice)

It is against this unpleasant background of choices that ZeroC, Inc. decided to 
develop the Internet Communications Engine, or Ice for short.1 The main design 
goals of Ice are:

• Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

• Provide a full set of features that support development of realistic distributed 
applications for a wide variety of domains.

• Avoid unnecessary complexity, making the platform easy to learn and to use.

• Provide an implementation that is efficient in network bandwidth, memory 
use, and CPU overhead.

• Provide an implementation that has built-in security, making it suitable for use 
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a 
middleware platform that is as powerful as CORBA, without making all of 
CORBA’s mistakes.”

1.3 Organization of this Book

This book is divided into four parts and a number of appendixes:

• Part I, Ice Overview, provides an overview of the features offered by Ice and 
explains the Ice object model. After reading this part, you will understand the 
major features and architecture of the Ice platform, its object model and 
request dispatch model, and know the basic steps required to build a simple 
application in C++, Java, C#, Visual Basic, and Python.

• Part II, Slice, explains the Slice definition language. After reading this part, 
you will have detailed knowledge of how to specify interfaces and types for a 
distributed application.

• Part III, Language Mappings, contains a sub-part for each of the language 
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.
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• Part IV, Advanced Ice, presents many Ice features in detail and covers 
advanced aspects of server development, such as properties, threading, object 
life cycle, object location, persistence, and asynchronous as well as dynamic 
method invocation and dispatch. After reading this part, you will understand 
the advanced features of Ice and how to effectively use them to find the 
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

• Part V, Ice Services, covers the services provided with Ice, such as IceGrid (a 
sophisticated deployment tool), Glacier2 (the Ice firewall solution), IceStorm 
(the Ice messaging service), and IcePatch2 (a software patching service).2

• The appendixes contain the Ice reference material.

1.4 Typographical Conventions

This book uses the following typographical conventions:

• Slice source code appears in Lucida Sans Typewriter.

• Programming-language source code appears in Courier.

• File names appear in Courier.

• Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such 
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash). 
Output presented by the system is shown in Courier, and input is presented in 
Courier Bold, for example:

$ echo hello 
hello

Slice and the various programming languages often use the same identifiers. 
When we talk about an identifier in its generic, language-independent sense, we 
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that 
software developers are still inveterate punsters.
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1.5 Source Code Examples

Throughout the book, we use a case study to illustrate various aspects of Ice. The 
case study implements a simple distributed hierarchical file system, which we 
progressively improve to take advantage of more sophisticated features as the 
book progresses. The source code for the case study in its various stages is 
provided with the distribution of this book. We encourage you to experiment with 
these code examples (as well as the many demonstration programs that ship with 
Ice).

1.6 Contacting the Authors

We would very much like to hear from you in case you find any bugs (however 
minor) in this book. We also would like to hear your opinion on the contents, and 
any suggestions as to how it might be improved. You can contact us via e-mail at 
mailto:icebook@zeroc.com.

1.7 Ice Support

ZeroC maintains a discussion and support forum at 
http://www.zeroc.com/support.html. You can use this forum for any questions or 
suggestions you may have about the Ice platform, as well as to get support for 
specific problems you encounter.

mailto:icebook@zeroc.com
http://www.zeroc.com/support.html
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Chapter 2
Ice Overview

2.1 Chapter Overview

In this chapter, we present a high-level overview of the Ice architecture. 
Section 2.2 introduces fundamental concepts and terminology, and outlines how 
Slice definitions, language mappings, and the Ice run time and protocol work in 
concert to create clients and servers. Section 2.3 briefly presents the object 
services provided by Ice, and Section 2.4 outlines the benefits that result from the 
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and 
CORBA architectures.

2.2 The Ice Architecture

2.2.1 Introduction
Ice is an object-oriented middleware platform. Fundamentally, this means that Ice 
provides tools, APIs, and library support for building object-oriented client–server 
applications. Ice applications are suitable for use in heterogeneous environments: 
client and server can be written in different programming languages, can run on 
different operating systems and machine architectures, and can communicate 
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using a variety of networking technologies. The source code for these applications 
is portable regardless of the deployment environment.

2.2.2 Terminology
Every computing technology creates its own vocabulary as it evolves. Ice is no 
exception. However, the amount of new jargon used by Ice is minimal. Rather 
than inventing new terms, we have used existing terminology as much as possible. 
If you have used another middleware technology, such as CORBA, in the past, 
you will be familiar with most of what follows. (However, we suggest you at least 
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an 
application; rather, they denote roles that are taken by parts of an application for 
the duration of a request:

• Clients are active entities. They issue requests for service to servers.

• Servers are passive entities. They provide services in response to client 
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue 
requests and only respond to requests. Instead, servers often act as a server on 
behalf of some client but, in turn, act as a client to another server in order to 
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only 
request service from an object. Instead, clients are frequently client–server 
hybrids. For example, a client might start a long-running operation on a server; as 
part of starting the operation, the client can provide a callback object to the server 
that is used by the server to notify the client when the operation is complete. In 
that case, the client acts as a client when it starts the operation, and as a server 
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client–server 
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:



2.2 The Ice Architecture 11

• An Ice object is an entity in the local or a remote address space that can 
respond to client requests.

• A single Ice object can be instantiated in a single server or, redundantly, in 
multiple servers. If an object has multiple simultaneous instantiations, it is still 
a single Ice object.

• Each Ice object has one or more interfaces. An interface is a collection of 
named operations that are supported by an object. Clients issue requests by 
invoking operations.

• An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a 
direction: in-parameters are initialized by the client and passed to the server; 
out-parameters are initialized by the server and passed to the client. (The 
return value is simply a special out-parameter.)

• An Ice object has a distinguished interface, known as its main interface. In 
addition, an Ice object can provide zero or more alternate interfaces, known as 
facets. Clients can select among the facets of an object to choose the interface 
they want to work with.

• Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object 
model assumes that object identities are globally unique, that is, no two 
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as 
UUIDs [14], only identities that do not clash with any other identity within 
your domain of interest. However, there are architectural advantages to using 
globally unique identifiers, which we explore in XREF.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the 
Ice object.1 A proxy is an artifact that is local to the client’s address space; it 
represents the (possibly remote) Ice object for the client. A proxy acts as the local 

1. A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference” 
to avoid confusion: “reference” already has too many other meanings in various programming 
languages.



12 Ice Overview

ambassador for an Ice object: when the client invokes an operation on the proxy, 
the Ice run time:

1. Locates the Ice object

2. Activates the Ice object’s server if it is not running

3. Activates the Ice object within the server

4. Transmits any in-parameters to the Ice object

5. Waits for the operation to complete

6. Returns any out-parameters and the return value to the client (or throws an 
exception in case of an error)

A proxy encapsulates all the necessary information for this sequence of steps to 
take place. In particular, a proxy contains:

• Addressing information that allows the client-side run time to contact the 
correct server

• An object identity that identifies which particular object in the server is the 
target of a request

• An optional facet identifier that determines which particular facet of an object 
the proxy refers to

Section 30.10 provides more information about proxies.

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls 
that allow you to convert a proxy to its stringified form and vice versa. This is 
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing 
information, it can create a proxy “out of thin air” by supplying that information. 
In other words, no part of the information inside a proxy is considered opaque; a 
client needs to know only an object’s identity, addressing information, and (to be 
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the 
address at which its server runs. The address is completely specified by:

• a protocol identifier (such TCP/IP or UDP)
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• a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the 
addressing information in the proxy to contact the server; the identity of the object 
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it 
may specify an identity together with an object adapter identifier. An object that is 
accessible using only its identity is called a well-known object. For example, the 
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified 

form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of 
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a 
location service (see Section 30.17). In turn, the location service uses the object 
identity or the object adapter identifier as the key in a lookup table that contains 
the address of the server and returns the current server address to the client. The 
client-side run time now knows how to contact the server and dispatches the client 
request as usual.

The entire process is similar to the mapping from Internet domain names to IP 
address by the Domain Name Service (DNS): when we use a domain name, such 
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP 
address behind the scenes and, once the correct IP address is known, the IP 
address is used to connect to the server. With Ice, the mapping is from an object 
identity or object adapter identifier to a protocol–address pair, but otherwise very 
similar. The client-side run time knows how to contact the location service via 
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol–address pair is 
known as binding. Not surprisingly, direct binding is used for direct proxies, and 
indirect binding is used for indirect proxies.
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The main advantage of indirect binding is that it allows us to move servers 
around (that is, change their address) without invalidating existing proxies that are 
held by clients. In other words, direct proxies avoid the extra lookup to locate the 
server but no longer work if a server is moved to a different machine. On the other 
hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of 
containing addressing information or an adapter name, the proxy contains a 
connection handle. The connection handle stays valid only for as long as the 
connection stays open so, once the connection is closed, the proxy no longer 
works (and will never work again). Fixed proxies cannot be marshaled, that is, 
they cannot be passed as parameters on operation invocations. Fixed proxies are 
used to allow bidirectional communication, so a server can make callbacks to a 
client without having to open a new connection (see Section 34.7).

Replication

In Ice, replication involves making object adapters (and their objects) available at 
multiple addresses. The goal of replication is usually to provide redundancy by 
running the same server on several computers. If one of the computers should 
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same 
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to 
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple 
addresses for an object. The Ice run time selects one of the addresses at random 
for its initial connection attempt (see Section 30.10) and tries all of them in the 
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h server1 -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity SimplePrinter is available 
using TCP at two addresses, one on the host server1 and another on the host 
server2. The burden falls to users or system administrators to ensure that the 
servers are actually running on these computers at the specified ports.
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Replica Groups

In addition to the proxy-based replication described above, Ice supports a more 
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 30.17).

A replica group has a unique identifier and consists of any number of object 
adapters. An object adapter may be a member of at most one replica group; such 
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified 
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.” 
The behavior of the location service when resolving an indirect proxy containing a 
replica group id is an implementation detail. For example, the location service 
could decide to return the addresses of all object adapters in the group, in which 
case the client’s Ice run time would select one of the addresses at random using 
the limited form of replication discussed earlier. Another possibility is for the 
location service to return only one address, which it decided upon using some 
heuristic.

Regardless of the way in which a location service resolves a replica group, the 
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 10, an Ice object is a conceptual entity that has a type, 
identity, and addressing information. However, client requests ultimately must end 
up with a concrete server-side processing entity that can provide the behavior for 
an operation invocation. To put this differently, a client request must ultimately 
end up executing code inside the server, with that code written in a specific 
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is 
known as a servant. A servant provides substance for (or incarnates) one or more 
Ice objects. In practice, a servant is simply an instance of a class that is written by 
the server developer and that is registered with the server-side run time as the 
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.
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A single servant can incarnate a single Ice object at a time or several Ice 
objects simultaneously. If the former, the identity of the Ice object incarnated by 
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate 
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we 
might choose to create a proxy for an Ice object with two different addresses for 
different machines. In that case, we will have two servers, with each server 
containing a servant for the same Ice object. When a client invokes an operation 
on such an Ice object, the client-side run time sends the request to exactly one 
server. In other words, multiple servants for a single Ice object allow you to build 
redundant systems: the client-side run time attempts to send the request to one 
server and, if that attempt fails, sends the request to the second server. Only if the 
second attempt fails is an error reported back to the client-side application code.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver 
a request to the correct destination and, depending on the exact circumstances, 
may retry a failed request. Ice guarantees that it will either deliver the request, or, 
if it cannot deliver the request, inform the client with an appropriate exception; 
under no circumstances is a request delivered twice, that is, retries are attempted 
only if it is known that a previous attempt definitely failed.2

At-most-once semantics are important because they guarantee that operations 
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example, 
x = 1; is an idempotent operation: if we execute the operation twice, the end 
result is the same as if we had executed it once. On the other hand, x++; is not 
idempotent: if we execute the operation twice, the end result is not the same as if 
we had executed it once.

Without at-most-once semantics, we can build distributed systems that are 
more robust in the presence of network failures. However, realistic systems 
require non-idempotent operations, so at-most-once semantics are a necessity, 
even though they make the system less robust in the presence of network failures. 
Ice permits you to mark individual operations as idempotent. For such operations, 

2. One exception to this rule are datagram invocations over UDP transports. For these, duplicated 
UDP packets can lead to a violation of at-most-once semantics.
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the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the 
client thread is suspended for the duration of the call and resumes when the call 
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback 
object and the client invocation returns immediately. Once the operation 
completes, the client-side run time invokes a method on the callback object passed 
initially, passing the results of the operation to the callback object (or, in case of 
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous 
one—either way, the server simply sees that a client has invoked an operation on 
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For 
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread 
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is 
informed of the arrival of an operation invocation. However, instead of being 
forced to process the request immediately, the server-side application can choose 
to delay processing of the request and, in doing so, releases the execution thread 
for the request. The server-side application code is now free to do whatever it 
likes. Eventually, once the results of the operation are available, the server-side 
application code makes an API call to inform the server-side Ice run time that a 
request that was dispatched previously is now complete; at that point, the results 
of the operation are returned to the client.
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Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server 
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available. 
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen 
clients. With asynchronous dispatch, hundreds or thousands of clients can be 
blocked in the same operation invocation without tying up any threads in the 
server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This 
allows you to continue processing after results have been returned to the client, for 
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, 
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has 
“best effort” semantics. For a oneway invocation, the client-side run time hands 
the invocation to the local transport, and the invocation completes on the client 
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not 
reply to oneway invocations, that is, traffic flows only from client to server, but not 
vice versa.

Oneway invocations are unreliable. For example, the target object may not 
exist, in which case the invocation is simply lost. Similarly, the operation may be 
dispatched to a servant in the server, but the operation may fail (for example, 
because parameter values are invalid); if so, the client receives no notification that 
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return 
value, do not have out-parameters, and do not throw user exceptions (see 
Chapter 4).

To the application code on the server-side, oneway invocations are transparent, 
that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.
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Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented 
transport, they may be processed out of order in the server. This can happen 
because each invocation may be dispatched in its own thread: even though the 
invocations are initiated in the order in which the invocations arrive at the server, 
this does not mean that they will be processed in that order—the vagaries of 
thread scheduling can result in a oneway invocation to complete before other 
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of 
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each 
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations 
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the 
oneway invocations you want to send, you make a separate API call to send all the 
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single 
message. This avoids the overhead of repeatedly trapping into the kernel for both 
client and server, and is much easier on the network between them because one 
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a 
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in 
order in the server.

Batched oneway invocations are particularly useful for messaging services, 
such as IceStorm (see Chapter 42), and for fine-grained interfaces that offer set 
operations for small attributes.

Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations. 
However, datagram invocations require the object to offer UDP as a transport 
(whereas oneway invocations require TCP/IP).
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Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A data-
gram invocation uses UDP to invoke the operation. The operation returns as soon 
as the local UDP stack has accepted the message; the actual operation invocation 
is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not 
exist in the server, the server may not be running, or the operation may be invoked 
in the server but fail due to invalid parameters sent by the client. As for oneway 
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of 
additional error scenarios:

• Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you 
invoke three operations in sequence, the middle invocation may be lost. (The 
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be 
lost.)

• Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is 
sent as a separate datagram, and individual datagrams can take different paths 
through the network, it can happen that invocations arrive in an order that 
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the 
likelihood of loss is small. They are also suited to situations in which low latency 
is more important than reliability, such as for fast, interactive internet applications.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to 
accumulate a number of invocations in a buffer and then send the entire buffer as a 
single datagram by making an API call to flush the buffer. Batched datagrams 
reduce the overhead of repeated system calls and allow the underlying network to 
operate more efficiently. However, batched datagram invocations are useful only 
for batched messages whose total size does not substantially exceed the PDU limit 
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the 
loss of the entire batched message. However, you are guaranteed that either all 
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invocations in a batch will be delivered, or none will be delivered. It is impossible 
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual 
invocations in a batch. This guarantees that the invocations are made in the order 
in which they were queued—invocations cannot appear to be reordered in the 
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are 
pre-defined by the Ice run time and cover common error conditions, such as 
connection failure, connection timeout, or resource allocation failure. Run-time 
exceptions are presented to the application as proper C++, Java, or C# exceptions 
and so integrate neatly with the native exception handling capabilities of these 
languages.

User Exceptions

User exceptions are used to indicate application-specific error conditions to 
clients. User exceptions can carry an arbitrary amount of complex data and can be 
arranged into inheritance hierarchies, which makes it easy for clients to handle 
categories of errors generically, by catching an exception that is further up the 
inheritance hierarchy. Like run-time exceptions, user exceptions map to native 
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name–value 
pairs, such as Ice.Default.Protocol=tcp. Properties are typically stored 
in text files and parsed by the Ice run time to configure various options, such as the 
thread pool size, the level of tracing, and various other configuration parameters.

2.2.3 Slice (Specification Language for Ice)
As mentioned on page 11, each Ice object has an interface with a number of oper-
ations. Interfaces, operations, and the types of data that are exchanged between 
client and server are defined using the Slice language. Slice allows you to define 
the client-server contract in a way that is independent of a specific programming 
language, such as C++, Java, or C#. The Slice definitions are compiled by a 
compiler into an API for a specific programming language, that is, the part of the 
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API that is specific to the interfaces and types you have defined consists of gener-
ated code.

2.2.4 Language Mappings
The rules that govern how each Slice construct is translated into a specific 
programming language are known as language mappings. For example, for the 
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector, 
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a 
Java array. In order to determine what the API for a specific Slice construct looks 
like, you only need the Slice definition and knowledge of the language mapping 
rules. The rules are simple and regular enough to make it unnecessary to read the 
generated code to work out how to use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is 
inefficient because the generated code is not necessarily suitable for human 
consumption. We recommend that you familiarize yourself with the language 
mapping rules; that way, you can mostly ignore the generated code and need to 
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#,3 Visual Basic 
.NET, Python, and, for the client side, PHP (see Chapter 26).

3. The C# implementation of Ice is affectionately known as Icicle.



2.2 The Ice Architecture 23

2.2.5 Client and Server Structure
Ice clients and servers have the logical internal structure shown in Figure 2.1

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and 
code generated from Slice definitions:

• The Ice core contains the client- and server-side run-time support for remote 
communication. Much of this code is concerned with the details of 
networking, threading, byte ordering, and many other networking-related 
issues that we want to keep away from application code. The Ice core is 
provided as a number of libraries that client and server link with.

• The generic part of the Ice core (that is, the part that is independent of the 
specific types you have defined in Slice) is accessed through the Ice API. You 
use the Ice API to take care of administrative chores, such as initializing and 
finalizing the Ice run time. The Ice API is identical for clients and servers 
(although servers use a larger part of the API than clients).

• The proxy code is generated from your Slice definitions and, therefore, 
specific to the types of objects and data you have defined in Slice. The proxy 
code has two major functions:

• It provides a down-call interface for the client. Calling a function in the 
generated proxy API ultimately ends up sending an RPC message to the 
server that invokes a corresponding function on the target object.
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• It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a 
sequence or a dictionary, for transmission on the wire. The marshaling code 
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that 
arrives over the network and reconstructing a local representation of the data 
in types that are appropriate for the programming language in use.

• The skeleton code is also generated from your Slice definition and, therefore, 
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it 
provides an up-call interface that permits the Ice run time to transfer the thread 
of control to the application code you write. The skeleton also contains 
marshaling and unmarshaling code, so the server can receive parameters sent 
by the client, and return parameters and exceptions to the client.

• The object adapter is a part of the Ice API that is specific to the server side: 
only servers use object adapters. An object adapter has several functions:

• The object adapter maps incoming requests from clients to specific methods 
on programming-language objects. In other words, the object adapter tracks 
which servants with what object identity are in memory.

• The object adapter is associated with one or more transport endpoints. If 
more than one transport endpoint is associated with an adapter, the servants 
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint 
with an adapter, to provide alternate quality-of-service and performance 
characteristics.

• The object adapter is responsible for the creation of proxies that can be 
passed to clients. The object adapter knows about the type, identity, and 
transport details of each of its objects and embeds the correct details when 
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes 
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice 
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve 
proxies to transport endpoints.)
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2.2.6 The Ice Protocol
Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying 
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server are encrypted.

The Ice protocol defines:

• a number of message types, such as request and reply message types,

• a protocol state machine that determines in what sequence different message 
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

• encoding rules that determine how each type of data is represented on the 
wire,

• a header for each message type that contains details such as the message type, 
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter, 
you can arrange for all network traffic to be compressed to conserve bandwidth. 
This is useful if your application exchanges large amounts of data between client 
and server.

The Ice protocol is suitable for building highly-efficient event forwarding 
mechanisms because it permits forwarding of a message without knowledge of the 
details of the information inside a message. This means that messaging switches 
need not do any unmarshaling and remarshaling of messages—they can forward a 
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to 
send a message to a callback object provided by the client, the callback can be 
made over the connection that was originally created by the client. This feature is 
especially important when the client is behind a firewall that permits outgoing 
connections, but not incoming connections.

2.2.7 Object Persistence
Ice has a built-in object persistence service, known as Freeze. Freeze makes it 
easy to store object state in a database: you define the state stored by your objects 
in Slice, and the Freeze compiler generates code that stores and retrieves object 
state to and from a database. By default, Freeze uses Berkeley DB [18] as its data-
base. However, if you prefer to store object state in another database, you can do 
so. We discuss Freeze in detail in Chapter 37.
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Ice also offers a number of tools that make it easier to maintain databases and 
to migrate the contents of existing databases to a new schema if the type defini-
tions of objects change. We discuss these tools in Chapter 38.

2.3 Ice Services

The Ice core provides a sophisticated client–server platform for distributed appli-
cation development. However, realistic applications usually require more than just 
a remoting capability: typically, you also need a way to start servers on demand, 
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The 
services are implemented as Ice servers to which your application acts as a client. 
None of the services use Ice-internal features that are hidden from application 
developers so, in theory, you could develop equivalent services yourself. However, 
having these services available as part of the platform allows you to focus on 
application development instead of having to build a lot of infrastructure first. 
Moreover, building such services is not a trivial effort, so it pays to know what is 
available and use it instead of reinventing your own wheel.

2.3.1 IceGrid
IceGrid is an implementation of an Ice location service that resolves the symbolic 
information in an indirect proxy to a protocol–address pair for indirect binding. A 
location service is only the beginning of IceGrid’s capabilities:

• IceGrid allows you to register servers for automatic start-up: instead of 
requiring a server to be running at the time a client issues a request, IceGrid 
starts servers on demand, when the first client request arrives.

• IceGrid provides tools that make it easy to configure complex applications 
containing several servers.

• IceGrid supports replication and load-balancing.

• IceGrid automates the distribution and patching of server executables and 
dependent files.

• IceGrid provides a simple query service that allows clients to obtain proxies 
for objects they are interested in.



2.3 Ice Services 27

2.3.2 IceBox
IceBox is a simple application server that can orchestrate the starting and stopping 
of a number of application components. Application components can be deployed 
as a dynamic library instead of as a process. This reduces overall system load, for 
example, by allowing you to run several application components in a single Java 
virtual machine instead of having multiple processes, each with its own virtual 
machine.

2.3.3 IceStorm
IceStorm is a publish–subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events 
to the service, which, in turn, passes the events to subscribers. In this way, a single 
event published by a publisher can be sent to multiple subscribers. Events are cate-
gorized by topic, and subscribers specify the topics they are interested in. Only 
events that match a subscriber’s topic are sent to that subscriber. The service 
permits selection of a number of quality-of-service criteria to allow applications to 
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to 
large numbers of application components. (A typical example is a stock ticker 
application with a large number of subscribers.) IceStorm decouples the 
publishers of information from subscribers and takes care of the redistribution of 
the published events. In addition, IceStorm can be run as a federated service, that 
is, multiple instances of the service can be run on different machines to spread the 
processing load over a number of CPUs.

2.3.4 IcePatch2
IcePatch24 is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch2 server and request 
updates for a particular application. The service automatically checks the version 
of the client’s software and downloads any updated application components in a 
compressed format to conserve bandwidth. Software patches can be secured using 
the Glacier2 service, so only authorized clients can download software updates.

4. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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2.3.5 Glacier2
Glacier25 is the Ice firewall service: it allows clients and servers to securely 
communicate through a firewall without compromising security. Client-server 
traffic is fully encrypted using public key certificates and is bidirectional. Glacier2 
offers support for mutual authentication as well as secure session management.

2.4 Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

• Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is 
chosen depending on the actual run-time (not static) type of an object.

• Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and 
dispatch, as well as publish–subscribe messaging via IceStorm. This allows 
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

• Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining 
a single object identity across these interfaces. This provides great flexibility, 
particularly as an application evolves but needs to remain compatible with 
older, already deployed clients.

• Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying 
machine architecture. Issues such as byte ordering and padding are hidden 
from application code.

• Language independence

Client and server can be developed independently and in different program-
ming languages (currently C++, Java, C#, and, for the client side, PHP). The 

5. Glacier2 supersedes Glacier, which was a previous version of this service.
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Slice definition used by both client and server establishes the interface 
contract between them and is the only thing they need to agree on.

• Implementation independence

Clients are unaware of how servers implement their objects. This means that 
the implementation of a server can be changed after clients are deployed, for 
example, to use a different persistence mechanism or even a different 
programming language.

• Operating system independence

The Ice APIs are fully portable, so the same source code compiles and runs 
under both Windows and UNIX.

• Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond 
synchronizing access to shared data) is required on part of the application 
developer to develop threaded, high-performance clients and servers.

• Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither 
client nor server code are aware of the underlying transport. (The desired 
transport can be chosen by a configuration parameter.)

• Location and server transparency

The Ice run time takes care of locating objects and managing the underlying 
transport mechanism, such as opening and closing connections. Interactions 
between client and server appear connection-less. Via IceGrid, you can 
arrange for servers to be started on demand if they are not running at the time 
a client invokes an operation. Servers can be migrated to different physical 
addresses without breaking proxies held by clients, and clients are completely 
unaware how object implementations are distributed over server processes.

• Security

Communications between client and server can be fully secured with strong 
encryption over SSL, so applications can use unsecured public networks to 
communicate securely. Via Glacier2, you can implement secure forwarding of 
requests through a firewall, with full support for callbacks.

• Built-in persistence

With Freeze, creating persistent object implementations becomes trivial. Ice 
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.
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• Source code availability

The source code for Ice is available. While it is not necessary to have access to 
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment 
for distributed computing that is more complete than any other platform we are 
aware of.

2.5 A Comparison with CORBA

Obviously, Ice uses many ideas that can be found in CORBA and earlier distrib-
uted computing platforms, such as DCE [14]. In some areas, Ice is remarkably 
close to CORBA whereas, in others, the differences are profound and have far-
reaching architectural implications. If you have used CORBA in the past, it is 
important to be aware of these differences.

2.5.1 Differences in the Object Model
The Ice object model, even though superficially the same, differs in a number of 
important points from the CORBA object model.

Type System

An Ice object, like a CORBA object, has exactly one most derived main interface. 
However, an Ice object can provide other interfaces as facets. It is important to 
notice that all facets of an Ice object share the same object identity, that is, the 
client sees a single object with multiple interfaces instead of several objects, each 
with a different interface.

Facets provide great architectural flexibility. In particular, they offer an 
approach to the versioning problem: it is easy to extend functionality in a server 
without breaking existing, already deployed clients by simply adding a new facet 
to an already existing object.

Proxy Semantics

Ice proxies (the equivalent of CORBA object references) are not opaque. Clients 
can always create a proxy without support from any other system component, as 
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long as they know the type and identity of the object. (For indirect binding, it is 
not necessary to be aware of the transport address of the object.)

Allowing clients to create proxies on demand has a number of advantages:

• Clients can create proxies without the need to consult an external look-up 
service, such as a naming service. In effect, the object identity and the object’s 
name are considered to be one and the same. This eliminates the problems that 
can arise from having the contents of the naming service go out of sync with 
reality, and reduces the number of system components that must be functional 
for clients and servers to work correctly.

• Clients can easily bootstrap themselves by creating proxies to the initial 
objects they need. This eliminates the need for a separate bootstrap service.

• There is no need for different encodings of stringified proxies. A single, 
uniform representation is sufficient, and that representation is readable to 
humans. This avoids the complexities introduced by CORBA’s three different 
object reference encodings (IOR, corbaloc, and corbaname).

Experience over many years with CORBA has shown that, pragmatically, opacity 
of object references is problematic: not only does it require more complex APIs 
and run-time support, it also gets in the way of building realistic systems. For that 
reason, mechanisms such as corbaloc and corbaname were added, as well as 
the (ill-defined) is_equivalent and hash operations for reference comparison. 
All of these mechanisms compromise the opacity of object references, but other 
parts of the CORBA platform still try to maintain the illusion of opaque refer-
ences. As a result, the developer gets the worst of both worlds: references are 
neither fully opaque nor fully transparent—the resulting confusion and 
complexity are considerable.

Object Identity

The Ice object model assumes that object identities are universally unique (but 
without imposing this requirement on the application developer). The main advan-
tage of universally unique object identities is that they permit you to migrate 
servers and to combine the objects in multiple separate servers into a single server 
without concerns about name collisions: if each Ice object has a unique identity, it 
is impossible for that identity to clash with the identity of another object in a 
different domain.

The Ice object model also uses strong object identity: it is possible to deter-
mine whether two proxies denote the same object as a local, client-side operation. 
(With CORBA, you must invoke operations on the remote objects to get reliable 
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identity comparison.) Local identity comparison is far more efficient and crucial 
for some application domains, such as a distributed transaction service.

2.5.2 Differences in Platform Support
CORBA, depending on which specification you choose to read, provides many of 
the services provided by Ice. For example, CORBA supports asynchronous 
method invocation and, with the component model, a form of multiple interfaces. 
However, the problem is that it is typically impossible to find these features in a 
single implementation. Too many CORBA specifications are either optional or not 
widely implemented so, as a developer, you are typically faced with having to 
choose which feature to do without.

Other features of Ice do not have direct CORBA equivalents:

• Asynchronous Method Dispatch (AMD)

The CORBA APIs do not provide any mechanism to suspend processing of an 
operation in the server, freeing the thread of control, and resuming processing 
of the operation later.

• Security

While there are many pages of specifications relating to security, most of them 
remain unimplemented to date. In particular, CORBA to date offers no prac-
tical solution that allows CORBA to coexist with firewalls.

• Protocol Features

The Ice protocol offers bidirectional support, which is a fundamental require-
ment for allowing callbacks through firewalls. (CORBA specified a bidirec-
tional protocol at one point, but the specification was technically flawed and, 
to the best of our knowledge, never implemented.) In addition, Ice allows you 
to use UDP as well as TCP, so event distribution on reliable (local) networks 
can be made extremely efficient and light-weight. CORBA provides no 
support for UDP as a transport.

Another important feature of the Ice protocols is that all messages and data are 
fully encapsulated on the wire. This allows Ice to implement services such as 
IceStorm extremely efficiently because, to forward data, no unmarshaling and 
remarshaling is necessary. Encapsulation is also important for the deployment 
of protocol bridges, such as Glacier2, because the bridge does not need to be 
configured with type-specific information.
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• Language Mappings

CORBA does not specify a language mapping for C#, Visual Basic, or PHP.

2.5.3 Differences in Complexity
CORBA is known as a platform that is large and complex. This is largely a result 
of the way CORBA is standardized: decisions are reached by consensus and 
majority vote. In practice, this means that, when a new technology is being stan-
dardized, the only way to reach agreement is to accommodate the pet features of 
all interested parties. The result are specifications that are large, complex, and 
burdened with redundant or useless features. In turn, all this complexity leads to 
implementations that are large and inefficient. The complexity of the specifica-
tions is reflected in the complexity of the CORBA APIs: even experts with years 
of experience still need to work with a reference manual close at hand, and, due to 
this complexity, applications are frequently plagued with latent bugs that do not 
show up until after deployment.

CORBA’s object model adds further to CORBA’s complexity. For example, 
opaque object references force the specification of a naming service because 
clients must have some way to access object references. In turn, this requires the 
developer to learn yet another API, and to configure and deploy yet another 
service when, as with the Ice object model, no naming service is necessary in the 
first place.

One of the most infamous areas of complexity in CORBA is the C++ 
mapping. The CORBA C++ API is arcane in the extreme; in particular, the 
memory management issues of this mapping are more than what many developers 
are willing to endure. Yet, the code required to implement the C++ mapping is 
neither particularly small nor efficient, leading to binaries that are larger and 
require more memory at run time than they should. If you have used CORBA with 
C++ in the past, you will appreciate the simplicity, efficiency, and neat integration 
with STL of the Ice C++ mapping.

In contrast to CORBA, Ice is first and foremost a simple platform. The 
designers of Ice took great care to pick a feature set that is both sufficient and 
minimal: you can do everything you want, and you can do it with the smallest and 
simplest possible API. As you start to use Ice, you will appreciate this simplicity. 
It makes it easy to learn and understand the platform, and it leads to shorter devel-
opment time with lower defect counts in deployed applications. At the same time, 
Ice does not compromise on features: with Ice, you can achieve everything you 
can achieve with CORBA and do so with less effort, less code, and less 
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complexity. We see this as the most compelling advantage of Ice over any other 
middleware platform: things are simple, so simple, in fact, that you will be devel-
oping industrial-strength distributed applications after only a few days exposure to 
Ice.
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Chapter 3
A Hello World Application

3.1 Chapter Overview

In this chapter, we will see how to create a very simple client–server application in 
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic 
(Section 3.6), and Python (Section 3.7). Rather than reading the entire chapter, we 
suggest that you read Section 3.2 and then skip to the section that deals with the 
programming language of your choice.

The application enables remote printing: a client sends the text to be printed to 
a server, which in turn sends that text to a printer. For simplicity (and because we 
do not want to concern ourselves with the idiosyncrasies of print spoolers for 
various platforms), our printer will simply print to a terminal instead of a real 
printer. This is no great loss: the purpose of the exercise is to show how a client 
can communicate with a server; once the thread of control has reached the server 
application code, that code can of course do anything it likes (including sending 
the text to a real printer). How to do this is independent of Ice and therefore not 
relevant here.

Note that much of the detail of the source code will remain unexplained for 
now. The intent is to show you how to get started and give you a feel for what the 
development environment looks like; we will provide all the detail throughout the 
remainder of this book.
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3.2 Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing 
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo { 
    interface Printer { 
        void printString(string s); 
    }; 
};

We save this text in a file called Printer.ice.
Our Slice definitions consist of the module Demo containing a single interface 

called Printer. For now, the interface is very simple and provides only a single 
operation, called printString. The printString operation accepts a string as its 
sole input parameter; the text of that string is what appears on the (possibly 
remote) printer.

3.3 Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to 
generate C++ proxies and skeletons. Under UNIX, you can compile the definition 
as follows:

$ slice2cpp Printer.ice

The slice2cpp compiler produces two C++ source files from this definition, 
Printer.h and Printer.cpp.

• Printer.h

The Printer.h header file contains C++ type definitions that correspond to 
the Slice definitions for our Printer interface. This header file must be 
included in both the client and the server source code.

• Printer.cpp

The Printer.cpp file contains the source code for our Printer interface. 
The generated source contains type-specific run-time support for both clients 



3.3 Writing an Ice Application with C++ 37

and servers. For example, it contains code that marshals parameter data (the 
string passed to the printString operation) on the client side and unmarshals 
that data on the server side.

The Printer.cpp file must be compiled and linked into both client and 
server.

Writing and Compiling a Server

The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h> 
#include <Printer.h> 
 
using namespace std; 
using namespace Demo; 
 
class PrinterI : public Printer { 
public: 
    virtual void printString(const string& s, 
                             const Ice::Current&); 
}; 
 
void  
PrinterI:: 
printString(const string& s, const Ice::Current&) 
{ 
    cout << s << endl; 
} 
 
int 
main(int argc, char* argv[]) 
{ 
    int status = 0; 
    Ice::CommunicatorPtr ic; 
    try { 
        ic = Ice::initialize(argc, argv); 
        Ice::ObjectAdapterPtr adapter 
            = ic->createObjectAdapterWithEndpoints( 
                "SimplePrinterAdapter", "default -p 10000"); 
        Ice::ObjectPtr object = new PrinterI; 
        adapter->add(object, ic->stringToIdentity("SimplePrinter")
); 
        adapter->activate(); 
        ic->waitForShutdown(); 
    } catch (const Ice::Exception& e) { 
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        cerr << e << endl; 
        status = 1; 
    } catch (const char* msg) { 
        cerr << msg << endl; 
        status = 1; 
    } 
    if (ic) { 
        try { 
            ic->destroy(); 
        } catch (const Ice::Exception& e) { 
            cerr << e << endl; 
            status = 1; 
        } 
    } 
    return status; 
}

There appears to be a lot of code here for something as simple as a server that just 
prints a string. Do not be concerned by this: most of the preceding code is boiler 
plate that never changes. For this very simple server, the code is dominated by this 
boiler plate.

Every Slice source file starts with an include directive for Ice.h, which 
contains the definitions for the Ice run time. We also include Printer.h, which 
was generated by the Slice compiler and contains the C++ definitions for our 
printer interface, and we import the contents of the std and Demo namespaces 
for brevity in the code that follows:

#include <Ice/Ice.h> 
#include <Printer.h> 
 
using namespace std; 
using namespace Demo;

Our server implements a single printer servant, of type PrinterI. Looking at 
the generated code in Printer.h, we find the following (tidied up a little to get 
rid of irrelevant detail):

namespace Demo { 
    class Printer : virtual public Ice::Object { 
    public: 
        virtual void printString(const std::string&, 
                                 const Ice::Current& 
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                                 = Ice::Current() 
                                ) = 0; 
    }; 
};

The Printer skeleton class definition is generated by the Slice compiler. (Note 
that the printString method is pure virtual so the skeleton class cannot be 
instantiated.) Our servant class inherits from the skeleton class to provide an 
implementation of the pure virtual printString method. (By convention, we 
use an I-suffix to indicate that the class implements an interface.)

class PrinterI : public Printer { 
public: 
    virtual void printString(const string& s, 
                             const Ice::Current&); 
};

The implementation of the printString method is trivial: it simply writes its 
string argument to stdout:

void  
PrinterI:: 
printString(const string& s, const Ice::Current&) 
{ 
    cout << s << endl; 
}

Note that printString has a second parameter of type Ice::Current. As 
you can see from the definition of Printer::printString, the Slice 
compiler generates a default argument for this parameter, so we can leave it 
unused in our implementation. (We will examine the purpose of the 
Ice::Current parameter in Section 30.6.)

What follows is the server main program. Note the general structure of the 
code:

int 
main(int argc, char* argv[]) 
{ 
    int status = 0; 
    Ice::CommunicatorPtr ic; 
    try { 
 
        // Server implementation here... 
 
    } catch (const Ice::Exception& e) { 
        cerr << e << endl; 
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        status = 1; 
    } catch (const char* msg) { 
        cerr << msg << endl; 
        status = 1; 
    } 
    if (ic) { 
        try { 
            ic->destroy(); 
        } catch (const Ice::Exception& e) { 
            cerr << e << endl; 
            status = 1; 
        } 
    } 
    return status; 
}

The body of main contains the declaration of two variables, status and ic. 
The status variable contains the exit status of the program and the ic variable, 
of type Ice::CommunicatorPtr, contains the main handle to the Ice run 
time.

Following these declarations is a try block in which we place all the server 
code, followed by two catch handlers. The first handler catches all exceptions 
that may be thrown by the Ice run time; the intent is that, if the code encounters an 
unexpected Ice run-time exception anywhere, the stack is unwound all the way 
back to main, which prints the exception and then returns failure to the operating 
system. The second handler catches string constants; the intent is that, if we 
encounter a fatal error condition somewhere in our code, we can simply throw a 
string literal with an error message. Again, this unwinds the stack all the way back 
to main, which prints the error message and then returns failure to the operating 
system.

Following the try block, we see a bit of cleanup code that calls the destroy 
method on the communicator (provided that the communicator was initialized). 
The cleanup call is outside the first try block for a reason: we must ensure that 
the Ice run time is finalized whether the code terminates normally or terminates 
due to an exception.1

The body of the first try block contains the actual server code:

1. Failure to call destroy on the communicator before the program exits results in undefined 
behavior.
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        ic = Ice::initialize(argc, argv); 
        Ice::ObjectAdapterPtr adapter 
            = ic->createObjectAdapterWithEndpoints( 
                "SimplePrinterAdapter", "default -p 10000"); 
        Ice::ObjectPtr object = new PrinterI; 
        adapter->add(object, ic->stringToIdentity("SimplePrinter")
); 
        adapter->activate(); 
        ic->waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice::initialize. (We pass 
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not 
require any command-line arguments.) The call to initialize returns a 
smart pointer to an Ice::Communicator object, which is the main handle to 
the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.) The server starts to process incoming 
requests from clients as soon as the adapter is activated.

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice::Application—see Section 8.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: six lines for the definition of the 
PrinterI class, plus three2 lines to instantiate a PrinterI object and register 
it with the object adapter.

Assuming that we have the server code in a file called Server.cpp, we can 
compile it as follows:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICE_HOME environment variable is set to the 
top-level directory containing the Ice run time. (For example, if you have installed 
Ice in /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you 
may have to add additional include directives or other options to the compiler 
(such as an include directive for the STLport headers, or to control template 
instantiation); please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -o server Printer.o Server.o \ 
-L$ICE_HOME/lib -lIce -lIceUtil

Again, depending on the platform, the actual list of libraries you need to link 
against may be longer. The demo programs that ship with Ice contain all the detail. 
The important point to note here is that the Ice run time is shipped in two libraries, 
libIce and libIceUtil.

Writing and Compiling a Client

The client code looks very similar to the server. Here it is in full:

#include <Ice/Ice.h> 
#include <Printer.h> 
 
using namespace std; 
using namespace Demo; 
 
int 

2. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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main(int argc, char* argv[]) 
{ 
    int status = 0; 
    Ice::CommunicatorPtr ic; 
    try { 
        ic = Ice::initialize(argc, argv); 
        Ice::ObjectPrx base = ic->stringToProxy( 
                                "SimplePrinter:default -p 10000"); 
        PrinterPrx printer = PrinterPrx::checkedCast(base); 
        if (!printer) 
            throw "Invalid proxy"; 
 
        printer->printString("Hello World!"); 
    } catch (const Ice::Exception& ex) { 
        cerr << ex << endl; 
        status = 1; 
    } catch (const char* msg) { 
        cerr << msg << endl; 
        status = 1; 
    } 
    if (ic) 
        ic->destroy(); 
    return status; 
}

Note that the overall code layout is the same as for the server: we include the 
headers for the Ice run time and the header generated by the Slice compiler, and 
we use the same try block and catch handlers to deal with errors.

The code in the try block does the following:

1. As for the server, we initialize the Ice run time by calling 
Ice::initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, 
which is at the root of the inheritance tree for interfaces and classes. But to 
actually talk to our printer, we need a proxy for a Printer interface, not an 
Object interface. To do this, we need to do a down-cast by calling Print-
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erPrx::checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy to a Printer; otherwise, if the proxy denotes an interface of 
some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Client.cpp 
$ c++ -o client Printer.o Client.o -L$ICE_HOME/lib -lIce -lIceUtil

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ./client 
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Section 8.3.1.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException: 
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some plat-
form-dependent environment variables. For example, under Linux, you need to 
add the Ice library directory to your LD_LIBRARY_PATH. Please have a look at 
the demo applications that ship with Ice for the details for your platform.
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3.4 Writing an Ice Application with Java

This section shows how to create an Ice application with Java.

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to 
generate Java proxies and skeletons. Under UNIX, you can compile the definition 
as follows:3

$ mkdir generated 
$ slice2java --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2java compiler produces a number of Java 
source files from this definition. The exact contents of these files do not concern 
us for now—they contain the generated code that corresponds to the Printer 
interface we defined in Printer.ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file PrinterI.java:

public class PrinterI extends Demo._PrinterDisp { 
    public void 
    printString(String s, Ice.Current current) 
    { 
        System.out.println(s); 
    } 
}

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2java compiler. The base class is abstract and 
contains a printString method that accepts a string for the printer to print and 
a parameter of type Ice.Current. (For now we will ignore the 
Ice.Current parameter. We will see its purpose in detail in Section 30.6.) Our 

3. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.
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implementation of the printString method simply writes its argument to the 
terminal.

The remainder of the server code is in a source file called Server.java, 
shown in full here:

public class Server { 
    public static void 
    main(String[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            ic = Ice.Util.initialize(args); 
            Ice.ObjectAdapter adapter 
                = ic.createObjectAdapterWithEndpoints( 
                    "SimplePrinterAdapter", "default -p 10000"); 
            Ice.Object object = new PrinterI(); 
            adapter.add( 
                    object, 
                    Ice.Util.stringToIdentity("SimplePrinter")); 
            adapter.activate(); 
            ic.waitForShutdown(); 
        } catch (Ice.LocalException e) { 
            e.printStackTrace(); 
            status = 1; 
        } catch (Exception e) { 
            System.err.println(e.getMessage()); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                System.err.println(e.getMessage()); 
                status = 1; 
            } 
        } 
        System.exit(status); 
    } 
}

Note the general structure of the code:
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public class Server { 
    public static void 
    main(String[] args) { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
 
            // Server implementation here... 
 
        } catch (Ice.LocalException e) { 
            e.printStackTrace(); 
            status = 1; 
        } catch (Exception e) { 
            System.err.println(e.getMessage()); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                System.err.println(e.getMessage()); 
                status = 1; 
            } 
        } 
        System.exit(status); 
    } 
}

The body of main contains a try block in which we place all the server code, 
followed by two catch blocks. The first block catches all exceptions that may be 
thrown by the Ice run time; the intent is that, if the code encounters an unexpected 
Ice run-time exception anywhere, the stack is unwound all the way back to main, 
which prints the exception and then returns failure to the operating system. The 
second block catches Exception exceptions; the intent is that, if we encounter a 
fatal error condition somewhere in our code, we can simply throw an exception 
with an error message. Again, this unwinds the stack all the way back to main, 
which prints the error message and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.
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The body of our try block contains the actual server code:

            ic = Ice.Util.initialize(args); 
            Ice.ObjectAdapter adapter 
                = ic.createObjectAdapterWithEndpoints( 
                    "SimplePrinterAdapter", "default -p 10000"); 
            Ice.Object object = new PrinterI(); 
            adapter.add( 
                    object, 
                    Ice.Util.stringToIdentity("SimplePrinter")); 
            adapter.activate(); 
            ic.waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 12.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: seven lines for the definition of 
the PrinterI class, plus four4 lines to instantiate a PrinterI object and 
register it with the object adapter.

We can compile the server code as follows:

$ mkdir classes 
$ javac -d classes -classpath classes:$ICEJ_HOME/lib/Ice.jar\ 
-source 1.4 Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICEJ_HOME environment variable is set to 
the top-level directory containing the Ice run time. (For example, if you have 
installed Ice in /opt/Icej, set ICEJ_HOME to that path.) Note that Ice for Java 
uses the ant build environment to control building of source code. (ant is 
similar to make, but more flexible for Java applications.) You can have a look at 
the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client

The client code, in Client.java, looks very similar to the server. Here it is in 
full:

public class Client { 
    public static void 
    main(String[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            ic = Ice.Util.initialize(args); 
            Ice.ObjectPrx base = ic.stringToProxy( 
                    "SimplePrinter:default -p 10000"); 
            Demo.PrinterPrx printer 
                = Demo.PrinterPrxHelper.checkedCast(base); 
            if (printer == null) 
                throw new Error("Invalid proxy"); 

4. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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            printer.printString("Hello World!"); 
        } catch (Ice.LocalException e) { 
            e.printStackTrace(); 
            status = 1; 
        } catch (Exception e) { 
            System.err.println(e.getMessage()); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                System.err.println(e.getMessage()); 
                status = 1; 
            } 
        } 
        System.exit(status); 
    } 
}

Note that the overall code layout is the same as for the server: we use the same 
try and catch blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
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returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICEJ_HOME/lib/Ice.jar\ 
-source 1.4 Client.java PrinterI.java generated/Demo/*.java

Running Client and Server

To run client and server, we first start the server in a separate window:

$ java Server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ java Client 
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 12.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Ice.ConnectFailedException 
        at IceInternal.Network.doConnect(Network.java:201) 
        at IceInternal.TcpConnector.connect(TcpConnector.java:26) 
        at 
IceInternal.OutgoingConnectionFactory.create(OutgoingConnectionFac 
tory.java:80) 
        at Ice._ObjectDelM.setup(_ObjectDelM.java:251) 
        at Ice.ObjectPrxHelper.__getDelegate(ObjectPrxHelper.java: 
642) 
        at Ice.ObjectPrxHelper.ice_isA(ObjectPrxHelper.java:41) 
        at Ice.ObjectPrxHelper.ice_isA(ObjectPrxHelper.java:30) 
        at Demo.PrinterPrxHelper.checkedCast(Unknown Source) 
        at Client.main(Unknown Source) 



Caused by: java.net.ConnectException: Connection refused 
        at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method 
) 
        at 
sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java: 
518) 
        at IceInternal.Network.doConnect(Network.java:173) 
        ... 8 more

Note that, to successfully run client and server, your CLASSPATH must include 
the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH:./classes:$ICEJ_HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for 
your platform.

3.5 Writing an Ice Application with C#

This section shows how to create an Ice application with C#.

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to 
generate C# proxies and skeletons. You can compile the definition as follows:5

$ mkdir generated 
$ slice2cs --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2cs compiler produces a single source file, 
Printer.cs, from this definition. The exact contents of this file do not concern 
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

5. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.
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Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file Server.cs:

using System; 
 
public class PrinterI : Demo.PrinterDisp_ 
{ 
   public override void printString(string s, Ice.Current current) 
   { 
      Console.WriteLine(s); 
   } 
}

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2cs compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server.cs and is shown in full 
here:

public class Server 
{ 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            ic = Ice.Util.initialize(ref args); 
            Ice.ObjectAdapter adapter 
                = ic.createObjectAdapterWithEndpoints( 
                    "SimplePrinterAdapter", "default -p 10000"); 
            Ice.Object obj = new PrinterI(); 
            adapter.add( 
                    obj, 
                    Ice.Util.stringToIdentity("SimplePrinter")); 
            adapter.activate(); 
            ic.waitForShutdown(); 
        } catch (Exception e) { 
            Console.Error.WriteLine(e); 
            status = 1; 
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        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                Console.Error.WriteLine(e); 
                status = 1; 
            } 
        } 
        Environment.Exit(status); 
    } 
}

Note the general structure of the code:

public class Server 
{ 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
 
            // Server implementation here... 
 
        } catch (Exception e) { 
            Console.Error.WriteLine(e); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                Console.Error.WriteLine(e); 
                status = 1; 
            } 
        } 
        Environment.Exit(status); 
    } 
}
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The body of Main contains a try block in which we place all the server code, 
followed by a catch block. The catch block catches all exceptions that may be 
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which 
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our try block contains the actual server code:

            ic = Ice.Util.initialize(ref args); 
            Ice.ObjectAdapter adapter 
                = ic.createObjectAdapterWithEndpoints( 
                    "SimplePrinterAdapter", "default -p 10000"); 
            Ice.Object obj = new PrinterI(); 
            adapter.add( 
                    obj, 
                    Ice.Util.stringToIdentity("SimplePrinter")); 
            adapter.activate(); 
            ic.waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)
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5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 16.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: seven lines for the definition of 
the PrinterI class, plus four6 lines to instantiate a PrinterI object and 
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:icecs.dll /lib:$ICICLE_HOME/lib Server.cs \ 
generated/Printer.cs

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICICLE_HOME environment variable is set to 
the top-level directory containing the Ice run time. (For example, if you have 
installed Ice in /opt/Icicle, set ICICLE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client.cs, looks very similar to the server. Here it is in full:

using System; 
using Demo; 
 
public class Client 
{ 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 

6. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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        try { 
            ic = Ice.Util.initialize(ref args); 
            Ice.ObjectPrx obj = ic.stringToProxy( 
                    "SimplePrinter:default -p 10000"); 
            PrinterPrx printer 
                    = PrinterPrxHelper.checkedCast(obj); 
            if (printer == null) 
                throw new ApplicationException("Invalid proxy"); 
 
            printer.printString("Hello World!"); 
        } catch (Exception e) { 
            Console.Error.WriteLine(e); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                Console.Error.WriteLine(e); 
                status = 1; 
            } 
        } 
        Environment.Exit(status); 
    } 
}

Note that the overall code layout is the same as for the server: we use the same 
try and catch blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
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to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:icecs.dll /lib:$ICICLE_HOME/lib Client.cs \ 
generated/Printer.cs

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server.exe

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ./client.exe 
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Ice.ConnectFailedException: Connect failed: connection refused 
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalExcep 
tion ex, Int32 cnt) 
   at Ice.ObjectPrxHelperBase.__handleException(LocalException ex, 
 Int32 cnt) 
   at Ice.ObjectPrxHelperBase.ice_isA(String __id, Context __conte 
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xt) 
   at Ice.ObjectPrxHelperBase.ice_isA(String __id) 
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b) 
   at Client.Main(String[] args)

Note that, to successfully run client and server, the C# run time must be able to 
locate the Icecs.dll library. (Under Windows, the simplest way to ensure this 
is to copy the library into the current directory. Please consult the documentation 
for your C# run time to see how it locates libraries.)

3.6 Writing an Ice Application with Visual Basic

This section shows how to create an Ice application with Visual Basic.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to 
generate VB proxies and skeletons. You can compile the definition as follows:7

$ mkdir generated 
$ slice2vb --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2vb compiler produces a single source file, 
Printer.vb, from this definition. The exact contents of this file do not concern 
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file Server.vb:

7. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.



Imports System 
Imports Demo 
 
Public Class PrinterI 
    Inherits PrinterDisp_ 
 
    Public Overloads Overrides Sub printString( _ 
                                ByVal s As String, _ 
                                ByVal current As Ice.Current) 
        Console.WriteLine(s) 
    End Sub 
 
End Class

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2vb compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server.vb and is shown in full 
here:

Module Server 
 
    Public Sub Main(ByVal args() As String) 
 
        Dim status As Integer = 0 
        Dim ic As Ice.Communicator = Nothing 
        Try 
            ic = Ice.Util.initialize(args) 
            Dim adapter As Ice.ObjectAdapter = _ 
                ic.createObjectAdapterWithEndpoints( _ 
                    "SimplePrinterAdapter", "default -p 10000") 
            Dim obj As Ice.Object = New PrinterI 
            adapter.add(obj, Ice.Util.stringToIdentity( _ 
                                        "SimplePrinter")) 
            adapter.activate() 
            ic.waitForShutdown() 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        If Not ic Is Nothing Then 
            ' Clean up 
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            ' 
            Try 
                ic.destroy() 
            Catch e As Exception 
                Console.Error.WriteLine(e) 
                status = 1 
            End Try 
        End If 
        Environment.Exit(status) 
    End Sub 
 
End module

Note the general structure of the code:

Module Server 
 
    Public Sub Main(ByVal args() As String) 
 
        Dim status As Integer = 0 
        Dim ic As Ice.Communicator = Nothing 
        Try 
 
            ' Server implementation here... 
 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        If Not ic Is Nothing Then 
            ' Clean up 
            ' 
            Try 
                ic.destroy() 
            Catch e As Exception 
                Console.Error.WriteLine(e) 
                status = 1 
            End Try 
        End If 
        Environment.Exit(status) 
    End Sub 
 
End module

The body of Main contains a Try block in which we place all the server code, 
followed by a Catch block. The catch block catches all exceptions that may be 
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thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which 
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our Try block contains the actual server code:

            ic = Ice.Util.initialize(args) 
            Dim adapter As Ice.ObjectAdapter = _ 
                ic.createObjectAdapterWithEndpoints( _ 
                    "SimplePrinterAdapter", "default -p 10000") 
            Dim obj As Ice.Object = New PrinterI 
            adapter.add(obj, Ice.Util.stringToIdentity( _ 
                                        "SimplePrinter")) 
            adapter.activate() 
            ic.waitForShutdown()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
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that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 16.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: ten lines for the definition of the 
PrinterI class, plus three8 lines to instantiate a PrinterI object and register 
it with the object adapter.

We can compile the server code as follows:

$ vbc /reference:Icecs.dll /lib:$ICICLE_HOME/lib Server.vb \ 
generated/Printer.vb

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICICLE_HOME environment variable is set to 
the top-level directory containing the Ice run time. (For example, if you have 
installed Ice in /opt/Icicle, set ICICLE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client.vb, looks very similar to the server. Here it is in full:

Imports System 
Imports Demo 
 
Module Client 
 
    Public Sub Main(ByVal args() As String) 
        Dim status As Integer = 0 
        Dim ic As Ice.Communicator = Nothing 
        Try 
            ic = Ice.Util.initialize(args) 
            Dim obj As Ice.ObjectPrx = ic.stringToProxy( _ 
                                "SimplePrinter:default -p 10000") 

8. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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            Dim printer As PrinterPrx = _ 
                                PrinterPrxHelper.checkedCast(obj) 
            If printer Is Nothing Then 
                Throw New ApplicationException("Invalid proxy") 
            End If 
 
            printer.printString("Hello World!") 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        If Not ic Is Nothing Then 
            ' Clean up 
            ' 
            Try 
                ic.destroy() 
            Catch e As Exception 
                Console.Error.WriteLine(e) 
                status = 1 
            End Try 
        End If 
        Environment.Exit(status) 
    End Sub 
 
End Module 

Note that the overall code layout is the same as for the server: we use the same 
Try and Catch blocks to deal with errors. The code in the Try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Printer interface, not an Object inter-
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face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ vbc /reference:Icecs.dll /lib:$ICICLE_HOME/lib Client.vb \ 
generated/Printer.vb

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server.exe

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ./client.exe 
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Ice.ConnectFailedException: Connect failed: connection refused 
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalExcep 
tion ex, Int32 cnt) 
   at Ice.ObjectPrxHelperBase.__handleException(LocalException ex, 
 Int32 cnt) 
   at Ice.ObjectPrxHelperBase.ice_isA(String __id, Context __conte 
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xt) 
   at Ice.ObjectPrxHelperBase.ice_isA(String __id) 
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b) 
   at Client.Main(String[] args)

Note that, to successfully run client and server, the VB run time must be able to 
locate the Icecs.dll library. (Under Windows, the simplest way to ensure this 
is to copy the library into the current directory. Please consult the documentation 
for your VB run time to see how it locates libraries.)

3.7 Writing an Ice Application with Python

This section shows how to create an Ice application with Python.

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition 
to generate Python proxies and skeletons. You can compile the definition as 
follows:9

$ slice2py Printer.ice

The slice2py compiler produces a single source file, Printer_ice.py, 
from this definition. The compiler also creates a Python package for the Demo 
module, resulting in a subdirectory named Demo. The exact contents of the source 
file do not concern us for now—it contains the generated code that corresponds to 
the Printer interface we defined in Printer.ice.

Writing a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI:

class PrinterI(Demo.Printer): 
    def printString(self, s, current=None): 
        print s

9. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.



3.7 Writing an Ice Application with Python 67

The PrinterI class inherits from a base class called Demo.Printer, which 
is generated by the slice2py compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code, in Server.py, follows our servant class 
and is shown in full here:

import sys, traceback, Ice 
import Demo 
 
class PrinterI(Demo.Printer): 
    def printString(self, s, current=None): 
        print s 
 
status = 0 
ic = None 
try: 
    ic = Ice.initialize(sys.argv) 
    adapter = ic.createObjectAdapterWithEndpoints( 
        "SimplePrinterAdapter", "default -p 10000") 
    object = PrinterI() 
    adapter.add(object, Ice.stringToIdentity("SimplePrinter")) 
    adapter.activate() 
    ic.waitForShutdown() 
except: 
    traceback.print_exc() 
    status = 1 
 
if ic: 
    # Clean up 
    try: 
        ic.destroy() 
    except: 
        traceback.print_exc() 
        status = 1 
 
sys.exit(status)

Note the general structure of the code:
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status = 0 
ic = None 
try: 
 
    # Server implementation here... 
 
except: 
    traceback.print_exc() 
    status = 1 
 
if ic: 
    # Clean up 
    try: 
        ic.destroy() 
    except: 
        traceback.print_exc() 
        status = 1 
 
sys.exit(status)

The body of the main program contains a try block in which we place all the 
server code, followed by an except block. The except block catches all excep-
tions that may be thrown by the code; the intent is that, if the code encounters an 
unexpected run-time exception anywhere, the stack is unwound all the way back 
to the main program, which prints the exception and then returns failure to the 
operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.initialize(sys.argv) 
adapter = ic.createObjectAdapterWithEndpoints( 
    "SimplePrinterAdapter", "default -p 10000") 
object = PrinterI() 
adapter.add(object, Ice.stringToIdentity("SimplePrinter")) 
adapter.activate() 
ic.waitForShutdown()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.initialize. (We pass 
sys.argv to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
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any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 24.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: three lines for the definition of the 
PrinterI class, plus two lines to instantiate a PrinterI object and register it 
with the object adapter.

Writing a Client

The client code, in Client.py, looks very similar to the server. Here it is in full:

import sys, traceback, Ice 
import Demo 
 
status = 0 
ic = None 
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try: 
    ic = Ice.initialize(sys.argv) 
    base = ic.stringToProxy("SimplePrinter:default -p 10000") 
    printer = Demo.PrinterPrx.checkedCast(base) 
    if not printer: 
        raise RuntimeError("Invalid proxy") 
 
    printer.printString("Hello World!") 
except: 
    traceback.print_exc() 
    status = 1 
 
if ic: 
    # Clean up 
    try: 
        ic.destroy() 
    except: 
        traceback.print_exc() 
        status = 1 
 
sys.exit(status)

Note that the overall code layout is the same as for the server: we use the same 
try and except blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Demo::Printer interface, not an Object 
interface. To do this, we need to do a down-cast by calling Demo.Print-
erPrx.checkedCast. A checked cast sends a message to the server, effec-
tively asking “is this a proxy for a Demo::Printer interface?” If so, the call 
returns a proxy of type Demo.PrinterPrx; otherwise, if the proxy denotes 
an interface of some other type, the call returns None.
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4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Running Client and Server

To run client and server, we first start the server in a separate window:

$ python Server.py

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ python Client.py 
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Traceback (most recent call last): 
  File "Client.py", line 10, in ? 
    printer = Demo.PrinterPrx.checkedCast(base) 
  File "Printer_ice.py", line 43, in checkedCast 
    return Demo.PrinterPrx.ice_checkedCast(proxy, '::Demo::Printer
', facet) 
ConnectionRefusedException: Ice.ConnectionRefusedException: 
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be 
able to locate the Ice extension for Python. See the Ice for Python installation 
instructions for more information.

3.8 Summary

This chapter presented a very simple (but complete) client and server. As we saw, 
writing an Ice application involves the following steps:
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1. Write a Slice definition and compile it.

2. Write a server and compile it.

3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, 
you do not need to write the Slice definition, only compile it (and, obviously, you 
do not need to write the server in that case).

Do not be concerned if, at this point, much appears unclear. The intent of this 
chapter is to give you an idea of the development process, not to explain the Ice 
APIs in intricate detail. We will cover all the detail throughout the remainder of 
this book.
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Chapter 4
The Slice Language

4.1 Chapter Overview

In this chapter we present the Slice language. We start by discussing the role and 
purpose of Slice, explaining how language-independent specifications are 
compiled for particular implementation languages to create actual implementa-
tions. Sections 4.10 and 4.11 cover the core Slice concepts of interfaces, opera-
tions, exceptions, and inheritance. These concepts have profound influence on the 
behavior of a distributed system and should be read in detail. 

This chapter also presents slice2docbook, which you can use to automate 
generation of documentation for Slice definitions.

4.2 Introduction

Slice1 (Specification Language for Ice) is the fundamental abstraction mechanism 
for separating object interfaces from their implementations. Slice establishes a 
contract between client and server that describes the types and object interfaces 
used by an application. This description is independent of the implementation 

1. Even though Slice is an acronym, it is pronounced as single syllable, like a slice of bread.
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language, so it does not matter whether the client is written in the same language 
as the server.

Slice definitions are compiled for a particular implementation language by a 
compiler. The compiler translates the language-independent definitions into 
language-specific type definitions and APIs. These types and APIs are used by the 
developer to provide application functionality and to interact with Ice. The trans-
lation algorithms for various implementation languages are known as language 
mappings. Currently, Ice defines language mappings for C++, Java, C#, Visual 
Basic .NET, Python, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a 
purely declarative language; there is no way to write executable statements in 
Slice.

Slice definitions focus on object interfaces, the operations supported by those 
interfaces, and exceptions that may be raised by operations. In addition, Slice 
offers features for object persistence (see Chapter 37). This requires quite a bit of 
supporting machinery; in particular, quite a bit of Slice is concerned with the defi-
nition of data types. This is because data can be exchanged between client and 
server only if their types are defined in Slice. You cannot exchange arbitrary C++ 
data between client and server because it would destroy the language indepen-
dence of Ice. However, you can always create a Slice type definition that corre-
sponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice 
is based on C++ and Java, we focus on those areas where Slice differs from C++ 
or Java or constrains the equivalent C++ or Java feature in some way. Slice 
features that are identical to C++ and Java are mentioned mostly by example.

4.3 Compilation

A Slice compiler produces source files that must be combined with application 
code to produce client and server executables.

The outcome of the development process is a client executable and a server 
executable. These executables can be deployed anywhere, whether the target envi-
ronments use the same or different operating systems and whether the executables 
are implemented using the same or different languages. The only constraint is that 
the host machines must provide the necessary run-time environment, such as any 
required dynamic libraries, and that connectivity can be established between 
them.
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4.3.1 Single Development Environment for Client and Server
Figure 4.1 shows the situation when both client and server are developed in C++. 
The Slice compiler generates two files from a Slice definition in a source file 
Printer.ice: a header file (Printer.h) and a source file (Printer.cpp).

Figure 4.1. Development process if client and server share the same development environment.

• The Printer.h header file contains definitions that correspond to the types 
used in the Slice definition. It is included in the source code of both client and 
server to ensure that client and server agree about the types and interfaces used 
by the application.

• The Printer.cpp source file provides an API to the client for sending 
messages to remote objects. The client source code (Client.cpp, written 
by the client developer) contains the client-side application logic. The gener-
ated source code and the client code are compiled and linked into the client 
executable.

The Printer.cpp source file also contains source code that provides an up-
call interface from the Ice run time into the server code written by the devel-
oper and provides the connection between the networking layer of Ice and the 
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application code. The server implementation file (Server.cpp, written by 
the server developer) contains the server-side application logic (the object 
implementations, properly termed servants). The generated source code and 
the implementation source code are compiled and linked into the server 
executable.

Both client and server also link with an Ice library that provides the necessary run-
time support.

You are not limited to a single implementation of a client or server. For 
example, you can build multiple servers, each of which implements the same 
interfaces but uses different implementations (for example, with different perfor-
mance characteristics). Multiple such server implementations can coexist in the 
same system. This arrangement provides one fundamental scalability mechanism 
in Ice: if you find that a server process starts to bog down as the number of objects 
increases, you can run an additional server for the same interfaces on a different 
machine. Such federated servers provide a single logical service that is distributed 
over a number of processes on different machines. Each server in the federation 
implements the same interfaces but hosts different object instances. (Of course, 
federated servers must somehow ensure consistency of any databases they share 
across the federation.)

Ice also provides support for replicated servers. Replication permits multiple 
servers to each implement the same set of object instances. This improves perfor-
mance and scalability (because client load can be shared over a number of servers) 
as well as redundancy (because each object is implemented in more than one 
server).

4.3.2 Different Development Environments for Client and Server
Client and server cannot share any source or binary components if they are devel-
oped in different languages. For example, a client written in Java cannot include a 
C++ header file.

Figure 4.2 shows the situation when a client written in Java and the corre-
sponding server is written in C++. In this case, the client and server developers are 
completely independent, and each uses his or her own development environment 
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and language mapping. The only link between client and server developers is the 
Slice definition each one uses.

Figure 4.2. Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on 
the names of various Slice constructs. (These files are collectively referred to as 
*.java in Figure 4.2.)

4.4 Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
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4.4.1 File Naming
Files containing Slice definitions must end in a .ice file extension, for example, 
Clock.ice is a valid file name. Other file extensions are rejected by the 
compilers.

For case-insensitive file systems (such as DOS), the file extension may be 
written as uppercase or lowercase, so Clock.ICE is legal. For case-sensitive file 
systems (such as UNIX), Clock.ICE is illegal. (The extension must be in lower-
case.)

4.4.2 File Format
Slice is a free-form language so you can use spaces, horizontal and vertical tab 
stops, form feeds, and newline characters to lay out your code in any way you 
wish. (White space characters are token separators). Slice does not attach seman-
tics to the layout of a definition. You may wish to follow the style we have used 
for the Slice examples throughout this book.

4.4.3 Preprocessing
Slice is preprocessed by the C++ preprocessor, so you can use the usual prepro-
cessor directives, such as #include and macro definitions. However, Slice permits 
#include directives only at the beginning of a file, before any Slice definitions.

If you use a #include directive it is a good idea to protect them with guard to 
prevent double inclusion of a file:

// File Clock.ice 
#ifndef _CLOCK_ICE 
#define _CLOCK_ICE 
 
// #include directives here... 
// Definitions here... 
 
#endif _CLOCK_ICE

#include directives permit a Slice definition to use types defined in a different 
source file. The Slice compilers parse all of the code in a source file, including the 
code in #included files. However, the compilers generate code only for the top-
level file(s) nominated on the command line. You must separately compile 
#included files to obtain generated code for all the files that make up your Slice 
definition.
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4.4.4 Definition Order
Slice constructs, such as modules, interfaces, or type definitions, can appear in any 
order you prefer. However, identifiers must be declared before they can be used.

4.5 Lexical Rules

Slice’s lexical rules are very similar to those of C++ and Java, except for some 
differences for identifiers.

4.5.1 Comments

Slice definitions permit both the C and the C++ style of writing comments:

/* 
 * C-style comment. 
 */ 
 
// C++-style comment extending to the end of this line.

4.5.2 Keywords
Slice uses a number of keywords, which must be spelled in lowercase. For 
example, class and dictionary are keywords and must be spelled as shown. 
There are two exceptions to this lowercase rule: Object and LocalObject are 
keywords and must be capitalized as shown. You can find a full list of Slice 
keywords in Appendix A.

4.5.3 Identifiers
Identifiers begin with an alphabetic character followed by any number of alpha-
betic characters or digits. Slice identifiers are restricted to the ASCII range of 
alphabetic characters and cannot contain non-English letters, such as Å. 
(Supporting non-ASCII identifiers would make it very difficult to map Slice to 
target languages that lack support for this feature.)

Unlike C++ identifiers, Slice identifiers cannot contain underscores. This 
restriction may seem draconian at first but is necessary: by reserving underscores, 
the various language mappings gain a namespace that cannot clash with legitimate 
Slice identifiers. That namespace can then be used to hold language-native identi-
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fiers that are derived from Slice identifiers without fear of clashing with another, 
legitimate Slice identifier that happens to be the same as one of the derived identi-
fiers.

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, 
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming 
scope. However, Slice enforces consistent capitalization. After you have intro-
duced an identifier, you must capitalize it consistently throughout; otherwise, the 
compiler will reject it as illegal. This rule exists to permit mappings of Slice to 
languages that ignore case in identifiers as well as to languages that treat differ-
ently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation 
languages. For example, switch is a perfectly good Slice identifier but is a C++ 
and Java keyword. Each language mapping defines rules for dealing with such 
identifiers. The solution typically involves using a prefix to map away from the 
keyword. For example, the Slice identifier switch is mapped to _cpp_switch 
in C++ and _switch in Java.

The rules for dealing with keywords can result in hard-to-read source code. 
Identifiers such as native, throw, or export will clash with C++ or Java 
keywords (or both). To make life easier for yourself and others, try to avoid Slice 
identifiers that are implementation language keywords. Keep in mind that 
mappings for new languages may be added to Ice in the future. While it is not 
reasonable to expect you to compile a list of all keywords in all popular program-
ming languages, you should make an attempt to avoid at least common keywords. 
Slice identifiers such as self, import, and while are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with 
a backslash, for example:

struct dictionary {     // Error! 
    // ... 
}; 
 
struct \dictionary {    // OK 
    // ... 
}; 
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struct \foo {           // Legal, same as "struct foo" 
    // ... 
};

The backslash escapes the usual meaning of a keyword; in the preceding example, 
\dictionary is treated as the identifier dictionary. The escape mechanism 
exists to permit keywords to be added to the Slice language over time with 
minimal disruption to existing specifications: if a pre-existing specification 
happens to use a newly-introduced keyword, that specification can be fixed by 
simply prepending a backslash to the new keyword. Note that, as a matter of style, 
you should avoid using Slice keywords as identifiers (even though the backslash 
escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword 
with a backslash—the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier Ice and all identifiers beginning with Ice (in any 
capitalization) for the Ice implementation. For example, if you try to define a type 
named Icecream, the Slice compiler will issue an error message.2

Slice identifiers ending in any of the suffixes Helper, Holder, Prx, and Ptr are 
also reserved. These endings are used by the various language mappings and are 
reserved to prevent name clashes in the generated code.

4.6 Modules

A common problem in large systems is pollution of the global namespace: over 
time, as isolated systems are integrated, name clashes become quite likely. Slice 
provides the module construct to alleviate this problem:

module ZeroC { 
    module Client { 
        // Definitions here... 
    }; 

2. You can suppress this behavior by using the --ice compiler option, which enables definition of 
identifiers beginning with Ice. However, do not use this option unless you are compiling the 
Slice definitions for the Ice run time itself.
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    module Server { 
        // Definitions here... 
    }; 
};

A module can contain any legal Slice construct, including other module defini-
tions. Using modules to group related definitions together avoids polluting the 
global namespace and makes accidental name clashes quite unlikely. (You can use 
a well-known name, such as a company or product name, as the name of the outer-
most module.)

Slice requires all definitions to be nested inside a module, that is, you cannot 
define anything other than a module at global scope. For example, the following is 
illegal:

interface I {   // Error: only modules can appear at global scope 
    // ... 
};

Definitions at global scope are prohibited because the cause problems with some 
implementation languages (such as Python, which does not have a true global 
scope).

NOTE: Throughout the remainder of this book, you will occasionally see Slice definitions 
that are not nested inside a module. This is to keep the examples short and free of 
clutter. Whenever you see such a definition, assume that it is nested in a module.

Modules can be reopened:

module ZeroC { 
    // Definitions here... 
}; 
 
// Possibly in a different source file: 
 
module ZeroC {  // OK, reopened module 
    // More definitions here... 
};

Reopened modules are useful for larger projects: they allow you to split the 
contents of a module over several different source files. The advantage of doing 
this is that, when a developer makes a change to one part of the module, only files 
dependent on the changed part need be recompiled (instead of having to recompile 
all files that use the module).
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Modules map to a corresponding scoping construct in each programming 
language. (For example, for C++, C#, and Visual Basic, Slice modules map to 
namespaces and, for Java, they map to packages.) This allows you to use an appro-
priate C++ using or Java import declaration to avoid excessively long identi-
fiers in the source code.

4.7 The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls 
that cannot be expressed in Ice, are defined in the Ice module. In other words, 
most of the Ice API is actually expressed as Slice definitions. The advantage of 
doing this is that a single Slice definition is sufficient to define the API for the Ice 
run time for all supported languages. The respective language mapping rules then 
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the Ice module throughout the 
remainder of this book.
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4.8 Basic Slice Types

Slice provides a number of built-in basic types, shown in Table 4.1.

All the basic types (except byte) are subject to changes in representation as they 
are transmitted between clients and servers. For example, a long value is byte-
swapped when sent from a little-endian to a big-endian machine. Similarly, strings 
undergo translation in representation if they are sent, for example, from an 
EBCDIC to an ASCII implementation, and the characters of a string may also 
change in size. (Not all architectures use 8-bit characters). However, these 
changes are transparent to the programmer and do exactly what is required.

4.8.1 Integer Types
Slice provides integer types short, int, and long, with 16-bit, 32-bit, and 64-bit 
ranges, respectively. Note that, on some architectures, any of these types may be 
mapped to a native type that is wider. Also note that no unsigned types are 
provided. (This choice was made because unsigned types are difficult to map into 
languages without native unsigned types, such as Java. In addition, the unsigned 
integers add little value to a language. See [9] for a good treatment of the topic.)

Table 4.1. Slice basic types.

Type Range of Mapped Type Size of Mapped Type

bool false or true ≥ 1bit

byte −128−127a

a. Or 0−255, depending on the language mapping

≥ 8 bits

short −215 to 215−1 ≥ 16 bits

int −231 to 231−1 ≥ 32 bits

long −263 to 263−1 ≥ 64 bits

float IEEE single-precision ≥ 32 bits

double IEEE double-precision ≥ 64 bits

string All Unicode characters, excluding 
the character with all bits zero.

Variable-length
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4.8.2 Floating-Point Types
These types follow the IEEE specification for single- and double-precision 
floating-point representation [6]. If an implementation cannot support IEEE 
format floating-point values, the Ice run time converts values into the native 
floating-point representation (possibly at a loss of precision or even magnitude, 
depending on the capabilities of the native floating-point format).

4.8.3 Strings
Slice strings use the Unicode character set. The only character that cannot appear 
inside a string is the zero character.3

The Slice data model does not have the concept of a null string (in the sense of 
a C++ null pointer). This decision was made because null strings are difficult to 
map to languages without direct support for this concept (such as Python). Do not 
design interfaces that depend on a null string to indicate “not there” semantics. If 
you need the notion of an optional string, use a class (see Section 4.11), a 
sequence of strings (see Section 4.9.3), or use an empty string to represent the idea 
of a null string. (Of course, the latter assumes that the empty string is not other-
wise used as a legitimate string value by your application.)

4.8.4 Booleans
Boolean values can have only the values false and true. Language mappings use 
the corresponding native boolean type if one is available.

4.8.5 Bytes
The Slice type byte is an (at least) 8-bit type that is guaranteed not to undergo any 
changes in representation as it is transmitted between address spaces. This guar-
antee permits exchange of binary data such that it is not tampered with in transit. 
All other Slice types are subject to changes in representation during transmission.

3. This decision was made as a concession to C++, with which it becomes impossibly difficult to 
manipulate strings with embedded zero characters using standard library routines, such as 
strlen or strcat.
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4.9 User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define 
complex types: enumerations, structures, sequences, and dictionaries.

4.9.1 Enumerations
A Slice enumerated type definition looks like the C++ version:

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fruit that becomes a new type in its own 
right. Slice does not define how ordinal values are assigned to enumerators. For 
example, you cannot assume that the enumerator Orange will have the value 2 in 
different implementation languages. Slice guarantees only that the ordinal values 
of enumerators increase from left to right, so Apple compares less than Pear in all 
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of 
enumerators (because many implementation languages do not support such a 
feature):

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you 
do not transmit the ordinal value of an enumerator between address spaces. For 
example, sending the value 0 to a server to mean Apple can cause problems 
because the server may not use 0 to represent Apple. Instead, simply send the 
value Apple itself. If Apple is represented by a different ordinal value in the 
receiving address space, that value will be appropriately translated by the Ice run 
time.

As with C++, Slice enumerators enter the enclosing namespace, so the 
following is illegal:

enum Fruit { Apple, Pear, Orange }; 
enum ComputerBrands { Apple, IBM, Sun, HP };    // Apple redefined

Slice does not permit empty enumerations.

4.9.2 Structures
Slice supports structures containing one or more named members of arbitrary 
type, including user-defined complex types. For example:
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struct TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
};

As in C++, this definition introduces a new type called TimeOfDay. Structure defi-
nitions form a namespace, so the names of the structure members need to be 
unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can 
appear inside a structure. It is impossible to, for example, define a structure inside 
a structure:

struct TwoPoints { 
    struct Point {      // Illegal! 
                short x; 
                short y; 
    }; 
    Point       coord1; 
    Point       coord2; 
};

This rule applies to Slice in general: type definitions cannot be nested (except for 
modules, which do support nesting—see Section 4.6). The reason for this rule is 
that nested type definitions can be difficult to implement for some target 
languages and, even if implementable, greatly complicate the scope resolution 
rules. For a specification language, such as Slice, nested type definitions are 
unnecessary—you can always write the above definitions as follows (which is 
stylistically cleaner as well):

struct Point { 
    short x; 
    short y; 
}; 
 
struct TwoPoints {      // Legal (and cleaner!) 
    Point coord1; 
    Point coord2; 
};

4.9.3 Sequences
Sequences are variable-length vectors of elements:
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sequence<Fruit> FruitPlatter;

A sequence can be empty — that is, it can contain no elements, or it can hold any 
number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrange-
ment allows you to create lists of lists:

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, 
sets, bags, or trees. (It is up to the application to decide whether or not order is 
important; by discarding order, a sequence serves as a set or bag.)

One particular use of sequences has become idiomatic, namely, the use of a 
sequence to indicate an optional value. For example, we might have a Part struc-
ture that records the details of the parts that go into a car. The structure could 
record things such as the name of the part, a description, weight, price, and other 
details. Spare parts commonly have a serial number, which we can model as a 
long value. However, some parts, such as simple screws, often do not have a serial 
number, so what are we supposed to put into the serial number field of a screw? 
There a number of options for dealing with this situation:

• Use a sentinel value, such as zero, to indicate the “no serial” number condi-
tion.

This approach is workable, provided that a sentinel value is actually available. 
While it may seem unlikely that anyone would use a serial number of zero for 
a part, it is not impossible. And, for other values, such as a temperature value, 
all values in the range of their type can be legal, so no sentinel value is avail-
able.

• Change the type of the serial number from long to string.

Strings come with their own built-in sentinel value, namely, the empty string 
so we can use an empty string to indicate the “no serial number” case. This is 
workable, but leaves a bad taste in most people’s mouth: we should not have 
to change the natural data type of something to string just so we get a 
sentinel value.

• Add an indicator as to whether the contents of the serial number are valid:
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struct Part { 
    string name; 
    string description; 
    // ... 
    bool   serialIsValid;  // true if part has serial number 
    long   serialNumber; 
};

This is distasteful to most people and guaranteed to get you into trouble even-
tually: sooner or later, some programmer will forget to check whether the 
serial number is valid before using it and create havoc.

• Use a sequence to model the optional field.

This technique uses the following convention:

sequence<long> SerialOpt; 
 
struct Part { 
    string    name; 
    string    description; 
    // ... 
    SerialOpt serialNumber; // optional: zero or one element 
};

By convention, the Opt suffix is used to indicate that the sequence is used to 
model an optional value. If the sequence is empty, the value is obviously not 
there; if it contains a single element, that element is the value. The obvious 
drawback of this scheme is that someone could put more than one element into 
the sequence. This could be rectified by adding a special-purpose Slice 
construct for optional values. However, optional values are not used 
frequently enough to justify the complexity of adding a dedicated language 
feature. (As we will see in Section 4.11, you can also use class hierarchies to 
model optional fields.)

4.9.4 Dictionaries
A dictionary is a mapping from a key type to a value type. For example:
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struct Employee { 
    long   number; 
    string firstName; 
    string lastName; 
}; 
 
dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named EmployeeMap that maps from an 
employee number to a structure containing the details for an employee. Whether 
or not the key type (the employee number, of type long in this example) is also 
part of the value type (the Employee structure in this example) is up to you—as far 
as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data struc-
ture with non-integral key type. Even though a sequence of structures containing 
key–value pairs could be used to model the same thing, a dictionary is more 
appropriate:

• A dictionary clearly signals the intent of the designer, namely, to provide a 
mapping from a domain of values to a range of values. (A sequence of struc-
tures of key–value pairs does not signal that same intent as clearly.)

• At the programming language level, sequences are implemented as vectors (or 
possibly lists), that is, they are not well suited to model sparsely populated 
domains and require a linear search to locate an element with a particular 
value. On the other hand, dictionaries are implemented as a data structure 
(typically a hash table or red-black tree) that supports efficient searching in 
O(log n) average time or better.

The key type of a dictionary need not be an integral type. For example, we could 
use the following definition to translate the names of the days of the week:

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key–
value pairs Monday–Montag, Tuesday–Dienstag, and so on.

The value type of a dictionary can be any user-defined type. However, the key 
type of a dictionary is limited to one of the following types:

• Integral types (byte, short, int, long, bool, and enumerated types)
• string

• sequences with elements of integral type or string

• structures containing only data members of integral type or string
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Complex nested types, such as nested structures or dictionaries, and floating-point 
types (float and double) cannot be used as the key type. Complex nested types 
are disallowed because they complicate the language mappings for dictionaries, 
and floating-point types are disallowed because representational changes of values 
as they cross machine boundaries can lead to ill-defined semantics for equality.

4.9.5 Constant Definitions and Literals
Slice allows you to define constants. Constant definitions must be of one of the 
following types:

• An integral type (bool, byte, short, int, long, or an enumerated type)

• float or double
• string

Here are a few examples:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor excep-
tions):

• Boolean constants can only be initialized with the keywords false and true. 
(You cannot use 0 and 1 to represent false and true.)

• As for C++, integer literals can be specified in decimal, octal, or hexadecimal 
notation. For example:

const byte TheAnswer = 42; 
const byte TheAnswerInOctal = 052; 
const byte TheAnswerInHex = 0x2A;       // or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you 
may get different results in different languages. For example, for C++, byte 
maps to unsigned char whereas, for Java, byte maps to byte, which is a 
signed type.

Note that suffixes to indicate long and unsigned constants (l, L, u, U, used by 
C++) are illegal:
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const long Wrong = 0u;          // Syntax error 
const long WrongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as 
shown in Table 4.1 on page 86; otherwise the compiler will issue a diagnostic.

• Floating-point literals use C++ syntax, except that you cannot use an l or L 
suffix to indicate an extended floating-point constant; however, f and F are 
legal (but are ignored). Here are a few examples:

const float P1 = -3.14f;    // Integer & fraction, with suffix 
const float P2 = +3.1e-3;   // Integer, fraction, and exponent 
const float P3 = .1;        // Fraction part only 
const float P4 = 1.;        // Integer part only 
const float P5 = .9E5;      // Fraction part and exponent 
const float P6 = 5e2;       // Integer part and exponent

Floating-point literals must be within the range of the constant type (float or 
double); otherwise, the compiler will issue a diagnostic.

• String literals support the same escape sequences as C++. Here are some 
examples:

const string AnOrdinaryString = "Hello World!"; 
 
const string DoubleQuote =      "\""; 
const string TwoSingleQuotes =  "'\'";     // ' and \' are OK 
const string Newline =          "\n"; 
const string CarriageReturn =   "\r"; 
const string HorizontalTab =    "\t"; 
const string VerticalTab =      "\v"; 
const string FormFeed =         "\f"; 
const string Alert =            "\a"; 
const string Backspace =        "\b"; 
const string QuestionMark =     "\?"; 
const string Backslash =        "\\"; 
 
const string OctalEscape =      "\007";    // Same as \a 
const string HexEscape =        "\x07";    // Ditto 
 
const string UniversalCharName = "\u03A9"; // Greek Omega

As for C++, adjacent string literals are concatenated:
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const string MSG1 = "Hello World!"; 
const string MSG2 = "Hello" " " "World!";       // Same message 
 
/* 
 * Escape sequences are processed before concatenation, 
 * so the string below contains two characters, 
 * '\xa' and 'c'. 
 */ 
 
const string S = "\xa" "c";

Note that Slice has no concept of a null string:

const string nullString = 0;    // Illegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal 
value for a string anywhere in the Ice platform. The reason for this decision is 
that null strings do not exist in many programming languages.4

4.10 Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

struct TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
interface Clock { 
    TimeOfDay getTime(); 
    void setTime(TimeOfDay time); 
};

This definition defines an interface type called Clock. The interface supports two 
operations: getTime and setTime. Clients access an object supporting the Clock 
interface by invoking an operation on the proxy for the object: to read the current 
time, the client invokes the getTime operation; to set the current time, the client 
invokes the setTime operation, passing an argument of type TimeOfDay.

4. Many languages other than C and C++ use a byte array as the internal string representation. Null 
strings do not exist (and would be very difficult to map) in such languages.
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Invoking an operation on a proxy instructs the Ice run time to send a message 
to the target object. The target object can be in another address space or can be 
collocated (in the same process) as the caller—the location of the target object is 
transparent to the client. If the target object is in another (possibly remote) address 
space, the Ice run time invokes the operation via a remote procedure call; if the 
target is collocated with the client, the Ice run time uses an ordinary function call 
instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a 
C++ class definition or as the equivalent of a Java interface, and of operation defi-
nitions as (virtual) member functions. Note that nothing but operation definitions 
are allowed to appear inside an interface definition. In particular, you cannot 
define a type, an exception, or a data member inside an interface. This does not 
mean that your object implementation cannot contain state—it can, but how that 
state is implemented (in the form of data members or otherwise) is hidden from 
the client and, therefore, need not appear in the object’s interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class 
type—see Section 4.11). Of course, you can create multiple Ice objects that have 
the same type; to draw the analogy with C++, a Slice interface corresponds to a 
C++ class definition, whereas an Ice object corresponds to a C++ class instance 
(but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets. We discuss 
facets in detail in Chapter 32.

A Slice interface defines the smallest grain of distribution in Ice: each Ice 
object has a unique identity (encapsulated in its proxy) that distinguishes it from 
all other Ice objects; for communication to take place, you must invoke operations 
on an object’s proxy. There is no other notion of an addressable entity in Ice. You 
cannot, for example, instantiate a Slice structure and have clients manipulate that 
structure remotely. To make the structure accessible, you must create an interface 
that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence 
on the overall architecture. Distribution boundaries must follow interface (or 
class) boundaries; you can spread the implementation of interfaces over multiple 
address spaces (and you can implement multiple interfaces in the same address 
space), but you cannot implement parts of interfaces in different address spaces.
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4.10.1 Parameters and Return Values
An operation definition must contain a return type and zero or more parameter 
definitions. For example, the getTime operation on page 95 has a return type of 
TimeOfDay and the setTime operation has a return type of void. You must use 
void to indicate that an operation returns no value—there is no default return type 
for Slice operations.

An operation can have one or more input parameters. For example, setTime 
accepts a single input parameter of type TimeOfDay called time. Of course, you 
can use multiple input parameters, for example:

interface CircadianRhythm { 
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime); 
    // ... 
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the 
parameter name, so the following is in error:

interface CircadianRhythm { 
    void setSleepPeriod(TimeOfDay, TimeOfDay);  // Error! 
    // ... 
};

By default, parameters are sent from the client to the server, that is, they are input 
parameters. To pass a value from the server to the client, you can use an output 
parameter, indicated by the out keyword. For example, an alternative way to 
define the getTime operation on page 95 would be:

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return 
value. As with input parameters, you can use multiple output parameters:

interface CircadianRhythm { 
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime); 
    void getSleepPeriod(out TimeOfDay startTime, 
                        out TimeOfDay stopTime); 
    // ... 
};

If you have both input and output parameters for an operation, the output parame-
ters must follow the input parameters:
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void changeSleepPeriod(    TimeOfDay startTime,     // OK 
                           TimeOfDay stopTime, 
                       out TimeOfDay prevStartTime, 
                       out TimeOfDay prevStopTime); 
void changeSleepPeriod(out TimeOfDay prevStartTime, 
                       out TimeOfDay prevStopTime, 
                           TimeOfDay startTime,     // Error 
                           TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call 
by reference). The reason is that, for remote calls, reference parameters do not 
result in the same savings that one can obtain for call by reference in program-
ming languages. (Data still needs to be copied in both directions and any gains in 
marshaling efficiency are negligible.) Also, reference (or input–output) parame-
ters result in more complex language mappings, with concomitant increases in 
code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition 
you use in Slice: Slice return types map to programming language return types, 
and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value 
from the operation instead of using an out-parameter. This style maps naturally 
into all programming languages. Note that, if you use an out-parameter instead, 
you impose a different API style on the client: most programming languages 
permit the return value of a function to be ignored whereas it is typically not 
possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as 
out-parameters and to use a return type of void. However, the rule is not all that 
clear-cut because operations with multiple output values can have one particular 
value that is considered more “important” than the remainder. A common example 
of this is an iterator operation that returns items from a collection one-by-one:

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a 
Boolean to indicate the end-of-collection condition. (If the return value is false, 
the end of the collection has been reached and the parameter r has an undefined 
value.) This style of definition can be useful because it naturally fits into the way 
programmers write control structures. For example:
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while (next(record)) 
    // Process record... 
 
if (next(record)) 
    // Got a valid record...

Overloading

Slice does not support any form of overloading of operations. For example:

interface CircadianRhythm { 
    void modify(TimeOfDay startTime, 
                TimeOfDay endTime); 
    void modify(    TimeOfDay startTime,        // Error 
                    TimeOfDay endTime, 
                out timeOfDay prevStartTime, 
                out TimeOfDay prevEndTime); 
};

Operations in the same interface must have different names, regardless of what 
type and number of parameters they have. This restriction exists because over-
loaded functions cannot sensibly be mapped to languages without built-in support 
for overloading.5

Nonmutating Operations

Some operations, such as getTime on page 95, do not modify the state of the 
object they operate on. They are the conceptual equivalent of C++ const 
member functions. You can indicate this in Slice as follows:

interface Clock { 
    nonmutating TimeOfDay getTime(); 
    void setTime(TimeOfDay time); 
};

The nonmutating keyword indicates that the getTime operation does not change 
the state of its object. This is useful for two reasons:

• Language mappings can take advantage of the additional knowledge about the 
behavior of the operation. For example, for C++, nonmutating operations 
map to C++ const member functions on skeleton classes.

5. Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable 
to humans.
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• Knowing that an operation will not modify the state of its object permits the 
Ice run time to attempt more aggressive error recovery. Specifically, Ice guar-
antees at-most-once semantics for operation invocations.

For normal operations, the Ice run time has to be conservative about how it 
deals with errors. For example, if a client sends an operation invocation to a 
server and then loses connectivity, there is no way for the client-side run time 
to find out whether the request it sent actually made it to the server. This 
means that the run time cannot attempt to recover from the error by re-estab-
lishing a connection and sending the request a second time because that could 
cause the operation to be invoked a second time and violate at-most-once 
semantics; the run time has no option but to report the error to the application.

For nonmutating operations, on the other hand, the client-side run time can 
attempt to re-establish a connection to the server and safely send the failed 
request a second time. If the server can be reached on the second attempt, 
everything is fine and the application never notices the (temporary) failure. 
Only if the second attempt fails need the run time report the error back to the 
application. (The number of retries can be increased with an Ice configuration 
parameter.)

Idempotent Operations

We can further modify the definition of the Clock interface on page 99 to indicate 
that the setTime operation is idempotent:

interface Clock { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time); 
};

An operation is idempotent if two successive invocations of the operation have the 
same effect as a single invocation. For example, x = 1; is an idempotent opera-
tion because it does not matter whether it is executed once or twice—either way, 
x ends up with the value 1. On the other hand, x += 1; is not an idempotent 
operation because executing it twice results in a different value for x than 
executing it once.

The idempotent keyword indicates that an operation can safely be executed 
more than once. As for nonmutating operations, the Ice run time uses this knowl-
edge to recover more aggressively from errors.

An operation can have either a nonmutating or an idempotent qualifier, but 
not both. (nonmutating implies idempotent.)
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4.10.2 User Exceptions
Looking at the setTime operation on page 95, we find a potential problem: given 
that the TimeOfDay structure uses short as the type of each field, what will 
happen if a client invokes the setTime operation and passes a TimeOfDay value 
with meaningless field values, such as -199 for the minute field, or 42 for the 
hour? Obviously, it would be nice to provide some indication to the caller that this 
is meaningless. Slice allows you to define user exceptions to indicate error condi-
tions to the client. For example:

exception Error {}; // Empty exceptions are legal 
 
exception RangeError { 
    TimeOfDay errorTime; 
    TimeOfDay minTime; 
    TimeOfDay maxTime; 
};

A user exception is much like a structure in that it contains a number of data 
members. However, unlike structures, exceptions can have zero data members, 
that is, be empty. Exceptions allow you to return an arbitrary amount of error 
information to the client if an error condition arises in the implementation of an 
operation. Operations use an exception specification to indicate the exceptions 
that may be returned to the client:

interface Clock { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time) 
                        throws RangeError, Error; 
};

This definition indicates that the setTime operation may throw either a 
RangeError or an Error user exception (and no other type of exception). If the 
client receives a RangeError exception, the exception contains the TimeOfDay 
value that was passed to setTime and caused the error (in the errorTime 
member), as well as the minimum and maximum time values that can be used (in 
the minTime and maxTime members). If setTime failed because of an error not 
caused by an illegal parameter value, it throws Error. Obviously, because Error 
does not have data members, the client will have no idea what exactly it was that 
went wrong—it simply knows that the operation did not work.

An operation can throw only those user exceptions that are listed in its excep-
tion specification. If, at run time, the implementation of an operation throws an 
exception that is not listed in its exception specification, the client receives a run-
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time exception (see Section 4.10.4) to indicate that the operation did something 
illegal. To indicate that an operation does not throw any user exception, simply 
omit the exception specification. (There is no empty exception specification in 
Slice.)

Exceptions are not first-class data types and first-class data types are not 
exceptions:

• You cannot pass an exception as a parameter value.

• You cannot use an exception as the type of a data member.

• You cannot use an exception as the element type of a sequence.

• You cannot use an exception as the key or value type of a dictionary.

• You cannot throw a value of non-exception type (such as a value of type int 
or string).

The reason for these restrictions is that some implementation languages use a 
specific and separate type for exceptions (in the same way as Slice does). For such 
languages, it would be difficult to map exceptions if they could be used as an ordi-
nary data type. (C++ is somewhat unusual among programming languages by 
allowing arbitrary types to be used as exceptions.)

4.10.3 Exception Inheritance
Exceptions support inheritance. For example:

exception ErrorBase { 
    string reason; 
}; 
 
enum RTError { 
    DivideByZero, NegativeRoot, IllegalNull /* ... */ 
}; 
 
exception RuntimeError extends ErrorBase { 
    RTError err; 
}; 
 
enum LError { ValueOutOfRange, ValuesInconsistent, /* ... */ }; 
 
exception LogicError extends ErrorBase { 
    LError err; 
}; 
 
exception RangeError extends LogicError { 
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    TimeOfDay errorTime; 
    TimeOfDay minTime; 
    TimeOfDay maxTime; 
};

These definitions set up a simple exception hierarchy:

• ErrorBase is at the root of the tree and contains a string explaining the cause 
of the error.

• Derived from ErrorBase are RuntimeError and LogicError. Each of these 
exceptions contains an enumerated value that further categorizes the error.

• Finally, RangeError is derived from LogicError and reports the details of the 
specific error.

Setting up exception hierarchies such as this not only helps to create a more read-
able specification because errors are categorized, but also can be used at the 
language level to good advantage. For example, the Slice C++ mapping preserves 
the exception hierarchy so you can catch exceptions generically as a base excep-
tion, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy on page 102, it is not clear whether, at run 
time, the application will only throw most derived exceptions, such as 
RangeError, or if it will also throw base exceptions, such as LogicError, Runt-
imeError, and ErrorBase. If you want to indicate that a base exception, interface, 
or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific 
exception type, at run time, the implementation of the operation may also throw 
more derived exceptions. For example:

exception Base { 
    // ... 
}; 
 
exception Derived extends Base { 
    // ... 
}; 
 
interface Example { 
    void op() throws Base;      // May throw Base or Derived 
};

In this example, op may throw a Base or a Derived exception, that is, any excep-
tion that is compatible with the exception types listed in the exception specifica-
tion can be thrown at run time.
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As a system evolves, it is quite common for new, derived exceptions to be 
added to an existing hierarchy. Assume that we initially construct clients and 
server with the following definitions:

exception Error { 
    // ... 
}; 
 
interface Application { 
    void doSomething() throws Error; 
};

Also assume that a large number of clients are deployed in field, that is, when you 
upgrade the system, you cannot easily upgrade all the clients. As the application 
evolves, a new exception is added to the system and the server is redeployed with 
the new definition:

exception Error { 
    // ... 
}; 
 
exception FatalApplicationError extends Error { 
    // ... 
}; 
 
interface Application { 
    void doSomething() throws Error; 
};

This raises the question of what should happen if the server throws a FatalAppli-
cationError from doSomething. The answer depends whether the client was 
built using the old or the updated definition: 

• If the client was built using the same definition as the server, it simply 
receives a FatalApplicationError.

• If the client was built with the original definition, that client has no knowledge 
that FatalApplicationError even exists. In this case, the Ice run time auto-
matically slices the exception to the most-derived type that is understood by 
the receiver (Error, in this case) and discards the information that is specific 
to the derived part of the exception. (This is exactly analogous to catching 
C++ exceptions by value—the exception is sliced to the type used in the 
catch-clause.)
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Exceptions support single inheritance only. (Multiple inheritance would be diffi-
cult to map into many programming languages.)

4.10.4 Ice Run-Time Exceptions
As mentioned in Section 2.2.2, in addition to any user exceptions that are listed in 
an operation’s exception specification, an operation can also throw Ice run-time 
exceptions. Run-time exceptions are predefined exceptions that indicate platform-
related run-time errors. For example, if a networking error interrupts communica-
tion between client and server, the client is informed of this by a run-time excep-
tion, such as ConnectTimeoutException or SocketException.

The exception specification of an operation must not list any run-time excep-
tions. (It is understood that all operations can raise run-time exceptions and you 
are not allowed to restate that.)

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, 
as shown in Figure 4.3.

Figure 4.3. Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are 
the (abstract) types Ice::LocalException and Ice::UserException. In turn, all 
run-time exceptions are derived from Ice::LocalException, and all user excep-
tions are derived from Ice::UserException.

LocalException UserException

Exception

Specific Run-Time Exceptions... Specific User Exceptions...
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Figure 4.4 shows the complete hierarchy of the Ice run-time exceptions.6

Figure 4.4. Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

6. We use the Unified Modeling Language (UML) for the object model diagrams in this book 
(see [1] and [13] for details).
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Note that Figure 4.4 groups several exceptions into a single box to save space 
(which, strictly, is incorrect UML syntax). Also note that some run-time excep-
tions have data members, which, for brevity, we have omitted in Figure 4.4. These 
data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Memo-
ryLimitException. Others indicate problems in the Ice run time, such as Encap-
sulationException. Still others can arise only through application programming 
errors, such as NotRegisteredException. In practice, you will likely never see 
most of these exceptions. However, there are a few run-time exceptions you will 
encounter and whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side. For example, if an attempt to 
contact a server fails, the client-side run time raises a ConnectTimeoutExcep-
tion. However, there are three specific error conditions (shaded in Figure 4.4) that 
are detected by the server and made known explicitly to the client-side run time 
via the Ice protocol:

• ObjectNotExistException

This exception indicates that a request was delivered to the server but the 
server could not locate a servant with the identity that is embedded in the 
proxy. In other words, the server could not find an object to dispatch the 
request to.

An ObjectNotExistException is a death certificate: it indicates that the 
target object in the server does not exist.7 Most likely, this is the case because 
the object existed some time in the past and has since been destroyed, but the 
same exception is also raised if a client uses a proxy with the identity of an 
object that has never been created. If you receive this exception, you are 
expected to clean up whatever resources you might have allocated that relate 
to the specific object for which you receive this exception.

• FacetNotExistException

The client attempted to contact a non-existent facet of an object, that is, the 
server has at least one servant with the given identity, but no servant with a 
matching facet name. (See Chapter 32 for a discussion of facets.)

7. The Ice run time raises ObjectNotExistException only if there are no facets in existence 
with a matching identity; otherwise, it raises FacetNotExistException (see Chapter 32).
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• OperationNotExistException

This exception is raised if the server could locate an object with the correct 
identity but, on attempting to dispatch the client’s operation invocation, the 
server found that the target object does not have such an operation. You will 
see this exception in only two cases:

• You have used an unchecked down-cast on a proxy of the incorrect type. 
(See page 201 and page 317 for unchecked down-casts.)

• Client and server have been built with Slice definitions for an interface that 
disagree with each other, that is, the client was built with an interface defini-
tion for the object that indicates that an operation exists, but the server was 
built with a different version of the interface definition in which the opera-
tion is absent.

Any error condition on the server side that is not described by one of the three 
preceding exceptions is made known to the client as one of three generic excep-
tions (shaded in Figure 4.4):

• UnknownUserException

This exception indicates that an operation implementation has thrown a Slice 
exception that is not declared in the operation’s exception specification (and is 
not derived from one of the exceptions in the operation’s exception specifica-
tion).

• UnknownLocalException

If an operation implementation raises a run-time exception other than 
ObjectNotExistException, FacetNotExistException, or OperationNo-
tExistException (such as a NotRegisteredException), the client receives 
an UnknownLocalException. In other words, the Ice protocol does not 
transmit the exact exception that was encountered in the server, but simply 
returns a bit to the client in the reply to indicate that the server encountered a 
run-time exception.

A common cause for a client receiving an UnknownLocalException is failure 
to catch and handle all exceptions in the server. For example, if the implemen-
tation of an operation encounters an exception it does not handle, the excep-
tion propagates all the way up the call stack until the stack is unwound to the 
point where the Ice run time invoked the operation. The Ice run time catches 
all Ice exceptions that “escape” from an operation invocation and returns them 
to the client as an UnknownLocalException.
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• UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in 
the server throws a C++ exception, such as a char *, or a Java exception, 
such as a ClassCastException, the client receives an UnknownExcep-
tion.

All other run-time exceptions (not shaded in Figure 4.4) are detected by the client-
side run time and are raised locally.

It is possible for the implementation of an operation to throw Ice run-time 
exceptions (as well as user exceptions). For example, if a client holds a proxy to 
an object that no longer exists in the server, your server application code is 
required to throw an ObjectNotExistException. If you do throw run-time excep-
tions from your application code, you should take care to throw a run-time excep-
tion only if appropriate, that is, do not use run-time exceptions to indicate 
something that really should be a user exception. Doing so can be very confusing 
to the client: if the application “hijacks” some run-time exceptions for its own 
purposes, the client can no longer decide whether the exception was thrown by the 
Ice run time or by the server application code. This can make debugging very 
difficult.

4.10.5 Interface Semantics and Proxies
Building on the Clock example, we can create definitions for a world-time server:

exception GenericError { 
    string reason; 
}; 
 
struct TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
exception BadTimeVal extends GenericError {}; 
 
interface Clock { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time) throws BadTimeVal; 
}; 
 
dictionary<string, Clock*> TimeMap; // Time zone name to clock map 
 



110 The Slice Language

exception BadZoneName extends GenericError {}; 
 
interface WorldTime { 
    idempotent void addZone(string zoneName, Clock* zoneClock); 
    void removeZone(string zoneName) throws BadZoneName; 
    nonmutating Clock* findZone(string zoneName) 
                                    throws BadZoneName; 
    nonmutating TimeMap listZones(); 
    idempotent void setZones(TimeMap zones); 
};

The WorldTime interface acts as a collection manager for clocks, one for each 
time zone. In other words, the WorldTime interface manages a collection of pairs. 
The first member of each pair is a time zone name; the second member of the pair 
is the clock that provides the time for that zone. The interface contains operations 
that permit you to add or remove a clock from the map (addZone and remove-
Zone), to search for a particular time zone by name (findZone), and to read or 
write the entire map (listZones and setZones).

The WorldTime example illustrates an important Slice concept: note that 
addZone accepts a parameter of type Clock* and findZone returns a parameter of 
type Clock*. In other words, interfaces are types in their own right and can be 
passed as parameters. The * operator is known as the proxy operator. Its left-hand 
argument must be an interface (or class—see Section 4.11) and its return type is a 
proxy. A proxy is like a pointer that can denote an object. The semantics of 
proxies are very much like those of C++ class instance pointers:

• A proxy can be null (see page 115).

• A proxy can dangle (point at an object that is no longer there)

• Operations dispatched via a proxy use late binding: if the actual run-time type 
of the object denoted by the proxy is more derived than the proxy’s type, the 
implementation of the most-derived interface will be invoked.

When a client passes a Clock proxy to the addZone operation, the proxy denotes 
an actual Clock object in a server. The Clock Ice object denoted by that proxy 
may be implemented in the same server process as the WorldTime interface, or in 
a different server process. Where the Clock object is physically implemented 
matters neither to the client nor to the server implementing the WorldTime inter-
face; if either invokes an operation on a particular clock, such as getTime, an RPC 
call is sent to whatever server implements that particular clock. In other words, a 
proxy acts as a local “ambassador” for the remote object; invoking an operation on 
the proxy forwards the invocation to the actual object implementation. If the 
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object implementation is in a different address space, this results in a remote 
procedure call; if the object implementation is collocated in the same address 
space, the Ice run time uses an ordinary local function call from the proxy to the 
object implementation.

Note that proxies also act very much like pointers in their sharing semantics: if 
two clients have a proxy to the same object, a state change made by one client 
(such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ 
and Java). This means that you cannot pass something other than a Clock proxy to 
the addZone operation; attempts to do so are rejected at compile time.

4.10.6 Interface Inheritance
Interfaces support inheritance. For example, we could extend our world-time 
server to support the concept of an alarm clock:

interface AlarmClock extends Clock { 
    nonmutating TimeOfDay getAlarmTime(); 
    idempotent void       setAlarmTime(TimeOfDay alarmTime) 
                                         throws BadTimeVal; 
};

The semantics of this are the same as for C++ or Java: AlarmClock is a subtype of 
Clock and an AlarmClock proxy can be substituted wherever a Clock proxy is 
expected. Obviously, an AlarmClock supports the same getTime and setTime 
operations as a Clock but also supports the getAlarmTime and setAlarmTime 
operations.

Multiple interface inheritance is also possible. For example, we can construct 
a radio alarm clock as follows:

interface Radio { 
    void setFrequency(long hertz) throws GenericError; 
    void setVolume(long dB) throws GenericError; 
}; 
 
enum AlarmMode { RadioAlarm, BeepAlarm }; 
 
interface RadioClock extends Radio, AlarmClock { 
    void      setMode(AlarmMode mode); 
    AlarmMode getMode(); 
};
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RadioClock extends both Radio and AlarmClock and can therefore be passed 
where a Radio, an AlarmClock, or a Clock is expected. The inheritance diagram 
for this definition looks as follows:

Figure 4.5. Inheritance diagram for RadioClock.

Interfaces that inherit from more than one base interface may share a common 
base interface. For example, the following definition is legal:

interface B { /* ... */ }; 
interface I1 extends B { /* ... */ }; 
interface I2 extends B { /* ... */ }; 
interface D extends I1, I2 { /* ... */ };

This definition results in the familiar diamond shape:

Figure 4.6. Diamond-shaped inheritance.
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Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation 
name from more than one base interface. For example, the following definition is 
illegal:

interface Clock { 
    void set(TimeOfDay time);                   // set time 
}; 
 
interface Radio { 
    void set(long hertz);                       // set frequency 
}; 
 
interface RadioClock extends Radio, Clock {     // Illegal! 
    // ... 
};

This definition is illegal because RadioClock inherits two set operations, 
Radio::set and Clock::set. The Slice compiler makes this illegal because 
(unlike C++) many programming languages do not have a built-in facility for 
disambiguating the different operations. In Slice, the simple rule is that all inher-
ited operations must have unique names. (In practice, this is rarely a problem 
because inheritance is rarely added to an interface hierarchy “after the fact”. To 
avoid accidental clashes, we suggest that you use descriptive operation names, 
such as setTime and setFrequency. This makes accidental name clashes less 
likely.)



114 The Slice Language

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Object. For example, the inherit-
ance hierarchy from Figure 4.5 would be shown more correctly as in Figure 4.7.

Figure 4.7. Implicit inheritance from Object.

Because all interfaces have a common base interface, we can pass any type of 
interface as that type. For example:

interface ProxyStore { 
    idempotent  void    putProxy(string name, Object* o); 
    nonmutating Object* getProxy(string name); 
};

Object is a Slice keyword (note the capitalization) that denotes the root type of 
the inheritance hierarchy. The ProxyStore interface is a generic proxy storage 
facility: the client can call putProxy to add a proxy of any type under a given 
name and later retrieve that proxy again by calling getProxy and supplying that 
name. The ability to generically store proxies in this fashion allows us to build 
general-purpose facilities, such as a naming service that can store proxies and 
deliver them to clients. Such a service, in turn, allows us to avoid hard-coding 
proxy details into clients and servers (see Chapter 36).

Inheritance from type Object is always implicit. For example, the following 
Slice definition is illegal:

interface MyInterface extends Object { /* ... */ }; // Error!

RadioClock
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Object
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It is understood that all interfaces inherit from type Object; you are not allowed to 
restate that.

Type Object is mapped to an abstract type by the various language mappings, 
so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the ProxyStore interface once more, we notice that getProxy does 
not have an exception specification. The question then is what should happen if a 
client calls getProxy with a name under which no proxy is stored? Obviously, we 
could add an exception to indicate this condition to getProxy. However, another 
option is to return a null proxy. Ice has the built-in notion of a null proxy, which is 
a proxy that “points nowhere”. When such a proxy is returned to the client, the 
client can test the value of the returned proxy to check whether it is null or denotes 
a valid object.

A more interesting question is: “which approach is more appropriate, throwing 
an exception or returning a null proxy?” The answer depends on the expected 
usage pattern of an interface. For example, if, in normal operation, you do not 
expect clients to call getProxy with a non-existent name, it is better to throw an 
exception. (This is probably the case for our ProxyStore interface: the fact that 
there is no list operation makes it clear that clients are expected to know which 
names are in use.)

On the other hand, if you expect that clients will occasionally try to look up 
something that is not there, it is better to return a null proxy. The reason is that 
throwing an exception breaks the normal flow of control in the client and requires 
special handling code. This means that you should throw exceptions only in 
exceptional circumstances. For example, throwing an exception if a database 
lookup returns an empty result set is wrong; it is expected and normal that a result 
set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that 
get these details right are easier to use and easier to understand. Not only do such 
interfaces make life easier for client developers, they also make it less likely that 
latent bugs cause problems later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For 
example:
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interface Link { 
    nonmutating SomeType getValue(); 
    nonmutating Link*    next(); 
};

The Link interface contains a next operation that returns a proxy to a Link inter-
face. Obviously, this can be used to create a chain of interfaces; the final link in 
the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting 
question is: “why would I need an empty interface?” In most cases, empty inter-
faces are an indication of design errors. Here is one example:

interface ThingBase {}; 
 
interface Thing1 extends ThingBase { 
    // Operations here... 
}; 
 
interface Thing2 extends ThingBase { 
    // Operations here... 
};

Looking at this definition, we can make two observations:

• Thing1 and Thing2 have a common base and are therefore related.

• Whatever is common to Thing1 and Thing2 can be found in interface Thing-
Base.

Of course, looking at ThingBase, we find that Thing1 and Thing2 do not share 
any operations at all because ThingBase is empty. Given that we are using an 
object-oriented paradigm, this is definitely strange: in the object-oriented model, 
the only way to communicate with an object is to send a message to the object. 
But, to send a message, we need an operation. Given that ThingBase has no oper-
ations, we cannot send a message to it, and it follows that Thing1 and Thing2 are 
not related because they have no common operations. But of course, seeing that 
Thing1 and Thing2 have a common base, we conclude that they are related, other-
wise the common base would not exist. At this point, most programmers begin to 
scratch their head and wonder what is going on here.
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One common use of the above design is a desire to treat Thing1 and Thing2 
polymorphically. For example, we might continue the previous definition as 
follows:

interface ThingUser { 
    void putThing(ThingBase* thing); 
};

Now the purpose of having the common base becomes clear: we want to be able to 
pass both Thing1 and Thing2 proxies to putThing. Does this justify the empty 
base interface? To answer this question, we need to think about what happens in 
the implementation of putThing. Obviously, putThing cannot possibly invoke an 
operation on a ThingBase because there are no operations. This means that 
putThing can do one of two things:

1. putThing can simply remember the value of thing.

2. putThing can try to down-cast to either Thing1 or Thing2 and then invoke an 
operation. The pseudo-code for the implementation of putThing would look 
something like this:

void putThing(ThingBase thing) 
{ 
    if (is_a(Thing1, thing)) { 
        // Do something with Thing1... 
    } else if (is_a(Thing2, thing)) { 
        // Do something with Thing2... 
    } else { 
        // Might be a ThingBase? 
        // ... 
    } 
}

The implementation tries to down-cast its argument to each possible type in 
turn until it has found the actual run-time type of the argument. Of course, any 
object-oriented text book worth its price will tell you that this is an abuse of 
inheritance and leads to maintenance problems.

If you find yourself writing operations such as putThing that rely on artificial 
base interfaces, ask yourself whether you really need to do things this way. For 
example, a more appropriate design might be:

interface Thing1 { 
    // Operations here... 
}; 
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interface Thing2 { 
    // Operations here... 
}; 
 
interface ThingUser { 
    void putThing1(Thing1* thing); 
    void putThing2(Thing2* thing); 
};

With this design, Thing1 and Thing2 are not related, and ThingUser offers a sepa-
rate operation for each type of proxy. The implementation of these operations does 
not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

interface PersistentObject {}; 
 
interface Thing1 extends PersistentObject { 
    // Operations here... 
}; 
 
interface Thing2 extends PersistentObject { 
    // Operations here... 
};

Clearly, the intent of this design is to place persistence functionality into the 
PersistentObject base implementation and require objects that want to have 
persistent state to inherit from PersistentObject. On the face of things, this is 
reasonable: after all, using inheritance in this way is a well-established design 
pattern, so what can possibly be wrong with it? As it turns out, there are a number 
of things that are wrong with this design:

• The above inheritance hierarchy is used to add behavior to Thing1 and 
Thing2. However, in a strict OO model, behavior can be invoked only by 
sending messages. But, because PersistentObject has no operations, no 
messages can be sent.

This raises the question of how the implementation of PersistentObject 
actually goes about doing its job; presumably, it knows something about the 
implementation (that is, the internal state) of Thing1 and Thing2, so it can 
write that state into a database. But, if so, PersistentObject, Thing1, and 
Thing2 can no longer be implemented in different address spaces because, in 
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that case, PersistentObject can no longer get at the state of Thing1 and 
Thing2.

Alternatively, Thing1 and Thing2 use some functionality provided by 
PersistentObject in order to make their internal state persistent. But 
PersistentObject does not have any operations, so how would Thing1 and 
Thing2 actually go about achieving this? Again, the only way that can work is 
if PersistentObject, Thing1, and Thing2 are implemented in a single 
address space and share implementation state behind the scenes, meaning that 
they cannot be implemented in different address spaces.

• The above inheritance hierarchy splits the world into two halves, one 
containing persistent objects and one containing non-persistent ones. This has 
far-reaching ramifications:

• Suppose you have an existing application with already implemented, non-
persistent objects. Requirements change over time and you find that you 
now would like to make some of your objects persistent. With the above 
design, you cannot do this unless you change the type of your objects 
because they now must inherit from PersistentObject. Of course, this is 
extremely bad news: not only do you have to change the implementation of 
your objects in the server, you also need to locate and update all the clients 
that are currently using your objects because they suddenly have a 
completely new type. What is worse, there is no way to keep things back-
ward compatible: either all clients change with the server, or none of them 
do. It is impossible for some clients to remain “unupgraded”.

• The design does not scale to multiple features. Imagine that we have a 
number of additional behaviors that objects can inherit, such as serializa-
tion, fault-tolerance, persistence, and the ability to be searched by a search 
engine. We quickly end up in a mess of multiple inheritance. What is worse, 
each possible combination of features creates a completely separate type 
hierarchy. This means that you can no longer write operations that generi-
cally operate on a number of object types. For example, you cannot pass a 
persistent object to something that expects a non-persistent object, even if 
the receiver of the object does not care about the persistence aspects of the 
object. This quickly leads to fragmented and hard-to-maintain type systems. 
Before long, you will either find yourself rewriting your application or end 
up with something that is both difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface 
definition language that has nothing to do with implementation (but empty inter-
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faces almost always indicate that implementation state is shared via mechanisms 
other than defined interfaces). If you find yourself writing an empty interface defi-
nition, at least step back and think about the problem at hand; there may be a more 
appropriate design that expresses your intent more cleanly. If you do decide to go 
ahead with an empty interface regardless, be aware that, almost certainly, you will 
lose the ability to later change the distribution of the object model over physical 
server process because you cannot place an address space boundary between 
interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In partic-
ular, if two interfaces are in an inheritance relationship, this in no way implies that 
the implementations of those interfaces must also inherit from each other. You can 
choose to use implementation inheritance when you implement your interfaces, 
but you can also make the implementations independent of each other. (To C++ 
programmers, this often comes as a surprise because C++ uses implementation 
inheritance by default, and interface inheritance requires extra effort to imple-
ment.)

In summary, Slice inheritance simply establishes type compatibility. It says 
nothing about how interfaces are implemented and, therefore, keeps implementa-
tion choices open to whatever is most appropriate for your application.

4.11 Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like 
interfaces in that they can have operations and are like structures in that they can 
have data members. This leads to hybrid objects that can be treated as interfaces 
and passed by reference, or can be treated as values and passed by value. Classes 
provide much architectural flexibility. For example, classes allow behavior to be 
implemented on the client side, whereas interfaces allow behavior to be imple-
mented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you 
can pass a class instance to an operation as long as the actual class type is derived 
from the formal parameter type in the operation’s signature. This also permits 
classes to be used as type-safe unions, similarly to Pascal’s discriminated variant 
records.
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4.11.1 Simple Classes
A Slice class definition is similar to a structure definition, but uses the class 
keyword. For example:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
};

Apart from the keyword class, this definition is identical to the structure defini-
tion we saw on page 89. You can use a Slice class wherever you can use a Slice 
structure (but, as we will see shortly, for performance reasons, you should not use 
a class where a structure is sufficient). Unlike structures, classes can be empty:

class EmptyClass {};    // OK 
struct EmptyStruct {};  // Error

Much the same design considerations as for empty interfaces (see page 116) apply 
to empty classes: you should at least stop and rethink your approach before 
committing yourself to an empty class.

4.11.2 Class Inheritance
Unlike structures, classes support inheritance. For example:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
class DateTime extends TimeOfDay { 
    short day;          // 1 - 31 
    short month;        // 1 - 12 
    short year;         // 1753 onwards 
};

This example illustrates one major reason for using a class: a class can be 
extended by inheritance, whereas a structure is not extensible. The previous 
example defines DateTime to extend the TimeOfDay class with a date.8

Classes only support single inheritance. The following is illegal:
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class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
class Date { 
    short day; 
    short month; 
    short year; 
}; 
 
class DateTime extends TimeOfDay, Date {   // Error! 
    // ... 
};

A derived class also cannot redefine a data member of its base class:

class Base { 
    int integer; 
}; 
 
class Derived extends Base { 
    int integer;                // Error, integer redefined 
};

4.11.3 Class Inheritance Semantics
Classes use the same pass-by-value semantics as structures. If you pass a class 
instance to an operation, the class and all its members are passed. The usual type 
compatibility rules apply: you can pass a derived instance where a base instance is 
expected. If the receiver has static type knowledge of the actual derived run-time 
type, it receives the derived instance; otherwise, if the receiver does not have static 
type knowledge of the derived type, the instance is sliced to the base type. For an 
example, suppose we have the following definitions:

8. If you are puzzled by the comment about the year 1753, search the Web for “1752 date change”. 
The intricacies of calendars for various countries prior to that year can keep you occupied for 
months…
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// In file Clock.ice: 
 
class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
interface Clock { 
    TimeOfDay getTime(); 
    void setTime(TimeOfDay time); 
}; 
 
 
// In file DateTime.ice: 
 
#include <Clock.ice> 
 
class DateTime extends TimeOfDay { 
    short day;          // 1 - 31 
    short month;        // 1 - 12 
    short year;         // 1753 onwards 
};

Because DateTime is a sub-class of TimeOfDay, the server can return a DateTime 
instance from getTime, and the client can pass a DateTime instance to setTime. 
In this case, if both client and server are linked to include the code generated for 
both Clock.ice and DateTime.ice, they each receive the actual derived 
DateTime instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code 
generated for both Clock.ice and DateTime.ice, but the client is linked 
only with the code generated for Clock.ice. In other words, the server under-
stands the type DateTime and can return a DateTime instance from getTime, but 
the client only understands TimeOfDay. In this case, the derived DateTime instance 
returned by the server is sliced to its TimeOfDay base type in the client. (The infor-
mation in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of poly-
morphic interfaces). For example:

class Shape { 
    // Definitions for shapes, such as size, center, etc. 
}; 
 
class Circle extends Shape { 
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    // Definitions for circles, such as radius... 
}; 
 
class Rectangle extends Shape { 
    // Definitions for rectangles, such as width and length... 
}; 
 
sequence<Shape> ShapeSeq; 
 
interface ShapeProcessor { 
    void processShapes(ShapeSeq ss); 
};

Note the definition of ShapeSeq and its use as a parameter to the processShapes 
operation: the class hierarchy allows us to pass a polymorphic sequence of shapes 
(instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and 
down-cast each element to its actual run-time type. (The receiver can also ask each 
element for its type ID to determine its type—see Section 6.14.1 and 
Section 10.11.2.)

4.11.4 Classes as Unions
Slice does not offer a dedicated union construct because it is redundant. By 
deriving classes from a common base class, you can create the same effect as with 
a union:

interface ShapeShifter { 
    Shape translate(Shape s, long xDistance, long yDistance); 
};

The parameter s of the translate operation can be viewed as a union of two 
members: a Circle and a Rectangle. The receiver of a Shape instance can use the 
type ID (see Section 4.13) of the instance to decide whether it received a Circle 
or a Rectangle. Alternatively, if you want something more along the lines of a 
conventional discriminated union, you can use the following approach:

class UnionDiscriminator { 
    int d; 
}; 
 
class Member1 extends UnionDiscriminator { 
    // d == 1 
    string s; 
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    float f; 
}; 
 
class Member2 extends UnionDiscriminator { 
    // d == 2 
    byte b; 
    int i; 
};

With this approach, the UnionDiscriminator class provides a discriminator 
value. The “members” of the union are the classes that are derived from Union-
Discriminator. For each derived class, the discriminator takes on a distinct 
value. The receiver of such a union uses the discriminator value in a switch 
statement to select the active union member.

4.11.5 Self-Referential Classes
Classes can be self-referential. For example:

class Link { 
    SomeType value; 
    Link next; 
};

This looks very similar to the self-referential interface example on page 116, but 
the semantics are very different. Note that value and next are data members, not 
operations, and that the type of next is Link (not Link*). As you would expect, 
this forms the same linked list arrangement as the Link interface on page 116: 
each instance of a Link class contains a next member that points at the next link 
in the chain; the final link’s next member contains a null value. So, what looks 
like a class including itself really expresses pointer semantics: the next data 
member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the 
Link interface on page 116 and the Link class on page 125. The difference is that 
classes have value semantics, whereas proxies have reference semantics. To illus-
trate this, consider the Link interface from page 116 once more:

interface Link { 
    nonmutating SomeType getValue(); 
    nonmutating Link*    next(); 
};
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Here, getValue and next are both operations and the return value of next is 
Link*, that is, next returns a proxy. A proxy has reference semantics, that is, it 
denotes an object somewhere. If you invoke the getValue operation on a Link 
proxy, a message is sent to the (possibly remote) servant for that proxy. In other 
words, for proxies, the object stays put in its server process and we access the state 
of the object via remote procedure calls. Compare this with the definition of our 
Link class:

class Link { 
    SomeType value; 
    Link next; 
};

Here, value and next are data members and the type of next is Link, which has 
value semantics. In particular, while next looks and feels like a pointer, it cannot 
denote an instance in a different address space. This means that if we have a chain 
of Link instances, all of the instances are in our local address space and, when we 
read or write a value data member, we are performing local address space opera-
tions. This means that an operation that returns a Link instance, such as getHead, 
does not just return the head of the chain, but the entire chain, as shown in 
Figure 4.8.

Figure 4.8. Class version of Link before and after calling getHead.

On the other hand, for the interface version of Link, we do not know where all the 
links are physically implemented. For example, a chain of four links could have 
each object instance in its own physical server process; those server processes 
could be each in a different continent. If you have a proxy to the head of this four-
link chain and traverse the chain by invoking the next operation on each link, you 
will be sending four remote procedure calls, one to each object

Self-referential classes are particularly useful to model graphs. For example, 
we can create a simple expression tree along the following lines:

Client Client ServerServer

getHead
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enum UnaryOp { UnaryPlus, UnaryMinus, Not }; 
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or }; 
 
class Node {}; 
 
class UnaryOperator extends Node { 
    UnaryOp operator; 
    Node operand; 
}; 
 
class BinaryOperator extends Node { 
    BinaryOp op; 
    Node operand1; 
    Node operand2; 
}; 
 
class Operand extends Node { 
    long val; 
};

The expression tree consists of leaf nodes of type Operand, and interior nodes of 
type UnaryOperator and BinaryOperator, with one or two descendants, respec-
tively. All three of these classes are derived from a common base class Node. Note 
that Node is an empty class. This is one of the few cases where an empty base class 
is justified. (See the discussion on page 116; once we add operations to this class 
hierarchy (see Section 4.11.7), the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing 
that parameter results in transmission of the entire tree to the server:

interface Evaluator { 
    long eval(Node expression); // Send entire tree for evaluation 
};

Self-referential classes are not limited to acyclic graphs; the Ice run time permits 
loops: it ensures that no resources are leaked and that infinite loops are avoided 
during marshaling.

4.11.6 Classes Versus Structures
One obvious question to ask is: why does Ice provide structures as well as classes, 
when classes obviously can be used to model structures? The answer has to do 
with the cost of implementation: classes provide a number of features that are 
absent for structures:
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• Classes support inheritance.

• Classes can be self-referential.

• Classes can have operations (see Section 4.11.7).

• Classes can implement interfaces (see Section 4.11.9).

Obviously, an implementation cost is associated with the additional features of 
classes, both in terms of the size of the generated code and the amount of memory 
and CPU cycles consumed at run time. On the other hand, structures are simple 
collections of values (“plain old structs”) and are implemented using very efficient 
mechanisms. This means that, if you use structures, you can expect better perfor-
mance and smaller memory footprint than if you would use classes (especially for 
languages with direct support for “plain old structures”, such as C++ and C#). Use 
a class only if you need at least one of its more powerful features.

4.11.7 Classes with Operations
Classes, in addition to data members, can have operations. The syntax for opera-
tion definitions in classes is identical to the syntax for operations in interfaces. For 
example, we can modify the expression tree from Section 4.11.5 as follows:

enum UnaryOp { UnaryPlus, UnaryMinus, Not }; 
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or }; 
 
class Node { 
    idempotent long eval(); 
}; 
 
class UnaryOperator extends Node { 
    UnaryOp operator; 
    Node operand; 
}; 
 
class BinaryOperator extends Node { 
    BinaryOp op; 
    Node operand1; 
    Node operand2; 
}; 
 
class Operand { 
    long val; 
};
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The only change compared to the version in Section 4.11.5 is that the Node class 
now has an eval operation. The semantics of this are as for a virtual member 
function in C++: each derived class inherits the operation from its base class and 
can choose to override the operation’s definition. For our expression tree, the 
Operand class provides an implementation that simply returns the value of its val 
member, and the UnaryOperator and BinaryOperator classes provide imple-
mentations that compute the value of their respective subtrees. If we call eval on 
the root node of an expression tree, it returns the value of that tree, regardless of 
whether we have a complex expression or a tree that consists of only a single 
Operand node.

Operations on classes are always executed in the caller’s address space, that is, 
operations on classes are local operations. Therefore, calling an operation on a 
class does not ever result in a remote procedure call. Of course, this immediately 
raises an interesting question: what happens if a client receives a class instance 
with operations from a server, but client and server are implemented in different 
languages? Classes with operations require the receiver to supply a factory for 
instances of the class. The Ice run time only marshals the data members of the 
class. If a class has operations, the receiver of the class must provide a class 
factory that can instantiate the class in the receiver’s address space, and the 
receiver is responsible for providing an implementation of the class’s operations.

Therefore, if you use classes with operations, it is understood that client and 
server each have access to an implementation of the class’s operations. No code is 
shipped over wire (which, in an environment of heterogeneous nodes using 
different operating systems and languages is infeasible).

4.11.8 Architectural Implications of Classes
Classes have a number of architectural implications that are worth exploring in 
some detail.

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-
referential or not) pose no architectural problems: they simply are values that are 
marshaled like any other value, such as a sequence, structure, or dictionary. 
Classes using derivation also pose no problems: if the receiver of a derived 
instance has knowledge of the derived type, it simply receives the derived type; 
otherwise, the instance is sliced to the most-derived type that is understood by the 
receiver. This makes class inheritance useful as a system is extended over time: 
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you can create derived class without having to upgrade all parts of the system at 
once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose 
that you are creating an Ice application. Also assume that the Slice definitions use 
quite a few classes with operations. You sell your clients and servers (both written 
in Java) and end up with thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients 
written in C++. For commercial reasons, you would like to leave the development 
of C++ clients to customers or a third party but, at this point, you discover a glitch: 
your application has lots of classes with operations along the following lines:

class ComplexThingForExpertsOnly { 
    // Lots of arcane data members here... 
    MysteriousThing mysteriousOperation(/* parameters */); 
    ArcaneThing arcaneOperation(/* parameters */); 
    ComplexThing complexOperation(/* parameters */); 
    // etc... 
};

It does not matter what exactly these operations do. (Presumably, you decided to 
off-load some of the processing for your application onto the client side for 
performance reasons.) Now that you would like other developers to write C++ 
clients, it turns out that your application will work only if these developers 
provide implementations of all the client-side operations and, moreover, if the 
semantics of these operations exactly match the semantics of your Java implemen-
tations. Depending on what these operations do, providing exact semantic equiva-
lents in a different language may not be trivial, so you decide to supply the C++ 
implementations yourself. But now, you discover another problem: the C++ 
clients need to be supported for a variety of operating systems that use a variety of 
different C++ compilers. Suddenly, your task has become quite daunting: you 
really need to supply implementations for all the combinations of operating 
systems and compiler versions that are used by clients. Given the different state of 
compliance with the ISO C++ standard of the various compilers, and the idiosyn-
crasies of different operating systems, you may find yourself facing a develop-
ment task that is much larger than anticipated. And, of course, the same scenario 
will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; 
they can provide significant performance gains and are not necessarily bad. But, 
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keep in mind that, once you use classes with operations, you are, in effect, using 
client-side native code and, therefore, you can no longer enjoy the implementation 
transparencies that are provided by interfaces. This means that classes with opera-
tions should be used only if you can tightly control the deployment environment 
of clients. If not, you are better off using interfaces and classes without operations. 
That way, all the processing stays on the server and the contract between client 
and server is provided solely by the Slice definitions, not by the semantics of the 
additional client-side code that is required for classes with operations.

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the 
state of a class in a database with very little implementation effort. To get access 
to these persistence features, you must define a Slice class whose members store 
the state of the class. We discuss the persistence features of Slice in detail in 
Chapter 37.

4.11.9 Classes Implementing Interfaces
A Slice class can also be used as a servant in a server, that is, an instance of a class 
can be used to provide the behavior for an interface, for example:

interface Time { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time); 
}; 
 
class Clock implements Time { 
    TimeOfDay time; 
};

The implements keyword indicates that the class Clock provides an implementa-
tion of the Time interface. The class can provide data members and operations of 
its own; in the preceding example, the Clock class stores the current time that is 
accessed via the Time interface. A class can implement several interfaces, for 
example:

interface Time { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time); 
}; 
 
interface Radio { 
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    idempotent void setFrequency(long hertz); 
    idempotent void setVolume(long dB); 
}; 
 
class RadioClock implements Time, Radio { 
    TimeOfDay time; 
    long hertz; 
};

The class RadioClock implements both Time and Radio interfaces.
A class, in addition to implementing an interface, can also extend another 

class:

interface Time { 
    nonmutating TimeOfDay getTime(); 
    idempotent void setTime(TimeOfDay time); 
}; 
 
class Clock implements Time { 
    TimeOfDay time; 
}; 
 
interface AlarmClock extends Time { 
    nonmutating TimeOfDay getAlarmTime(); 
    idempotent void setAlarmTime(TimeOfDay alarmTime); 
}; 
 
interface Radio { 
    idempotent void setFrequency(long hertz); 
    idempotent void setVolume(long dB); 
}; 
 
class RadioAlarmClock extends Clock 
                      implements AlarmClock, Radio { 
    TimeOfDay alarmTime; 
    long hertz; 
};
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These definitions result in the inheritance graph shown in Figure 4.9:

Figure 4.9. A Class using implementation and interface inheritance.

For this definition, Radio and AlarmClock are abstract interfaces, and Clock and 
RadioAlarmClock are concrete classes. As for Java, a class can implement 
multiple interfaces, but can extend at most one class.

4.11.10 Class Inheritance Limitations
As for interface inheritance, a class cannot redefine an operation or data member 
that it inherits from a base interface or class. For example:

interface BaseInterface { 
    void op(); 
}; 
 
class BaseClass { 
    int member; 
}; 
 
class DerivedClass extends BaseClass implements BaseInterface { 
    void someOperation();       // OK 
    int op();                   // Error! 
    int  someMember;            // OK 
    long member;                // Error! 
};

Radio
«interface»

AlarmClock
«interface»

Time
«interface»

Clock

RadioAlarmClock
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4.11.11 Pass-by-Value Versus Pass-by-Reference
As we saw in Section 4.11.5, classes naturally support pass-by-value semantics: 
passing a class transmits the data members of the class to the receiver. Any 
changes made to these data members by the receiver affect only the receiver’s 
copy of the class; the data members of the sender’s class are not affected by the 
changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For 
example:

class TimeOfDay { 
    short hour; 
    short minute; 
    short second; 
    string format(); 
}; 
 
interface Example { 
     TimeOfDay* get();  // Note: returns a proxy! 
};

Note that the get operation returns a proxy to a TimeOfDay class and not a 
TimeOfDay instance itself. The semantics of this are as follows:

• When the client receives a TimeOfDay proxy from the get call, it holds a 
proxy that differs in no way from an ordinary proxy for an interface.

• The client can invoke operations via the proxy, but cannot access the data 
members. This is because proxies do not have the concept of data members, 
but represent interfaces: even though the TimeOfDay class has data members, 
only its operations can be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the 
TimeOfDay class. A proxy for that instance was passed to the client. The only 
thing the client can do with this proxy is to invoke the format operation. The 
implementation of that operation is provided by the server and, when the client 
invokes format, it sends an RPC message to the server just as it does when it 
invokes an operation on an interface. The implementation of the format operation 
is entirely up to the server. (Presumably, the server will use the data members of 
the TimeOfDay instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, 
it makes perfect sense if classes implement interfaces: parts of your application 
can exchange class instances (and, therefore, state) by value, whereas other parts 
of the system can treat these instances as remote interfaces. For example:
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interface Time { 
    string format(); 
    // ... 
}; 
 
class TimeOfDay implements Time { 
    short hour; 
    short minute; 
    short second; 
}; 
 
interface I1 { 
     TimeOfDay get();           // Pass by value 
     void put(TimeOfDay time);  // Pass by value 
}; 
 
interface I2 { 
    Time* get();                // Pass by reference 
};

In this example, clients dealing with interface I1 are aware of the TimeOfDay class 
and pass it by value whereas clients dealing with interface I2 deal only with the 
Time interface. However, the actual implementation of the Time interface in the 
server uses TimeOfDay instances.

Be careful when designing systems that use such mixed pass-by-value and 
pass-by-reference semantics. Unless you are clear about what parts of the system 
deal with the interface (pass by reference) aspects and the class (pass by value) 
aspects, you can end up with something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze (see 
Chapter 37), which allows you to add classes to an existing interface to implement 
persistence.

4.12 Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit 
the creation of mutually dependent objects, for example:

module Family { 
    interface Child;            // Forward declaration 
 
    sequence<Child*> Children;  // OK 
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    interface Parent { 
        Children getChildren(); // OK 
    }; 
 
    interface Child {           // Definition 
        Parent* getMother(); 
        Parent* getFather(); 
    }; 
};

Without the forward declaration of Child, the definition obviously could not 
compile because Child and Parent are mutually dependent interfaces. You can 
use forward-declared interfaces and classes to define types (such as the Children 
sequence in the previous example). Forward-declared interfaces and classes are 
also legal as the type of a structure, exception, or class member, as the value type 
of a dictionary, and as the parameter and return type of an operation. However, 
you cannot inherit from a forward-declared interface or class until after its defini-
tion has been seen by the compiler:

interface Base;                         // Forward declaration 
 
interface Derived1 extends Base {};     // Error! 
 
interface Base {};                      // Definition 
 
interface Derived2 extends Base {};     // OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is 
seen is necessary because, otherwise, the compiler could not enforce that derived 
interfaces must not redefine operations that appear in base interfaces.9

4.13 Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID. 
The type ID is simply the fully-qualified name of each type. For example, the type 
ID of the Child interface in the preceding example is ::Family::Chil-
dren::Child. All type IDs for user-defined types start with a leading ::, so the 
type ID of the Family module is ::Family (not Family). In general, a type ID is 

9. A multi-pass compiler could be used, but the added complexity is not worth it.
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formed by starting with the global scope (::) and forming the fully-qualified 
name of a type by appending each module name in which the type is nested, and 
ending with the name of the type itself; the components of the type ID are sepa-
rated by ::.

The type ID of a proxy is formed by appending a * to the type ID of an inter-
face or class. For example, the type ID of a Child proxy is ::Family::Chil-
dren::Child*.

The type ID of the Slice Object type is ::Ice::Object and the type ID of an 
Object proxy is ::Ice::Object*.

The type IDs for the remaining built-in types, such as int, bool, and so on, are 
the same as the corresponding keyword. For example, the type ID of int is int, 
and the type ID of string is string.

Type IDs are used internally by the Ice run time as a unique identifier for each 
type. For example, when an exception is raised, the marshaled form of the excep-
tion that is returned to the client is preceded by its Type ID on the wire. The client-
side run time first reads the Type ID and, based on that, unmarshals the remainder 
of the data as appropriate for the type of the exception.

Type IDs are also used by the ice_isA operation (see page 138).

4.14 Operations on Object

The Object interface has a number of operations. We cannot define type Object 
in Slice because Object is a keyword; regardless, here is what (part of) the defini-
tion of Object would look like if it were legal:

sequence<string> StrSeq; 
 
interface Object {                      // "Pseudo" Slice! 
    void   ice_ping(); 
    bool   ice_isA(string typeID); 
    string ice_id(); 
    StrSeq ice_ids(); 
    // ... 
};

Note that, apart from the illegal use of the keyword Object as the interface name, 
the operation names all contain an underscore. This is deliberate: by putting an 
underscore into these operation names, it becomes impossible for these built-in 
operations to ever clash with a user-defined operation. This means that all Slice 
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interfaces can inherit from Object without name clashes. There are three built-in 
operations that are commonly used:

• ice_ping

All interfaces support the ice_ping operation. That operation is useful for 
debugging because it provides a basic reachability test for an object: if the 
object exists and a message can successfully be dispatched to the object, 
ice_ping simply returns without error. If the object cannot be reached or does 
not exist, ice_ping throws a run-time exception that provides the reason for 
the failure.

• ice_isA

The ice_isA operation accepts a type identifier (such as the identifier returned 
by ice_id) and tests whether the target object supports the specified type, 
returning true if it does. You can use this operation to check whether a target 
object supports a particular type. For example, referring to Figure 4.7 once 
more, assume that you are holding a proxy to a target object of type Alarm-
Clock. Table 4.2 illustrates the result of calling ice_isA on that proxy with 
various arguments. (We assume that all type in Figure 4.7 are defined in a 
module Times):

As expected, ice_isA returns true for ::Times::Clock and 
::Times::AlarmClock and also returns true for ::Ice::Object (because all 
interfaces support that type). Obviously, an AlarmClock supports neither the 
Radio nor the RadioClock interfaces, so ice_isA returns false for these types.

Table 4.2. Calling ice_isA on a proxy denoting an object of type AlarmClock.

Argument Result

::Ice::Object true

::Times::Clock true

::Times::AlarmClock true

::Times::Radio false

::Times::RadioClock false
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• ice_id

The ice_id operation returns the type ID (see Section 4.13) of the most-
derived type of an interface.

• ice_ids

The ice_ids operation returns a sequence of type IDs that contains all of the 
type IDs supported by an interface. For example, for the RadioClock interface 
in Figure 4.7, ice_ids returns a sequence containing the type IDs 
::Ice::Object, ::Times::Clock, ::Times::AlarmClock, ::Times::Radio, 
and ::Times::RadioClock.

4.15 Local Types

In order to access certain features of the Ice run time, you must use APIs that are 
provided by libraries. However, instead of defining an API that is specific to each 
implementation language, Ice defines its APIs in Slice using the local keyword. 
The advantage of defining APIs in Slice is that a single definition suffices to 
define the API for all possible implementation languages. The actual language-
specific API is then generated by the Slice compiler for each implementation 
language. Types that are provided by Ice libraries are defined using the Slice 
local keyword. For example:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
    }; 
};

Any Slice definition (not just interfaces) can have a local modifier. If the local 
modifier is present, the Slice compiler does not generate marshaling code for the 
corresponding type. This means that a local type can never be accessed remotely 
because it cannot be transmitted between client and server. (The Slice compiler 
prevents use of local types in non-local contexts.)

In addition, local interfaces and local classes do not inherit from 
Ice::Object. Instead, local interfaces and classes have their own, completely 
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separate inheritance hierarchy. At the root of this hierarchy is the type 
Ice::LocalObject, as shown in Figure 4.10.

Figure 4.10. Inheritance from LocalObject

Because local interfaces form a completely separate inheritance hierarchy, you 
cannot pass a local interface where a non-local interface is expected and vice-
versa.

You rarely need to define local types for your own applications—the local 
keyword exists mainly to allow definition of APIs for the Ice run time. (Because 
local objects cannot be invoked remotely, there is little point for an application to 
define local objects; it might as well define ordinary programming-language 
objects instead.) However, there is one exception to this rule: servant locators 
must be implemented as local objects (see Section 30.7).

4.16 Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to 
concern yourself with these. However, occasionally, it is good to know how Slice 
uses naming scopes and resolves identifiers.

4.16.1 Naming Scopes
The following Slice constructs establish a naming scope:

• the global (file) scope

• modules

• interfaces

• classes

• structures

LocalObject
«interface»

Other local 
interfaces...

ObjectAdapter
«interface»
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• exceptions

• enumerations

• parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the 
same identifier for different purposes. For example:

interface Bad { 
    void op(int p, string p);   // Error! 
};

Because a parameter list forms a naming scope, it is illegal to use the same 
identifier p for different parameters. Similarly, data members, operation names, 
interface and class names, etc. must be unique within their enclosing scope.

4.16.2 Case Sensitivity
Identifiers that differ only in case are considered identical, so you must use identi-
fiers that differ not only in capitalization within a naming scope. For example:

struct Bad { 
    int    m; 
    string M;   // Error! 
};

The Slice compiler also enforces consistent capitalization for identifiers. Once 
you have defined an identifier, you must use the same capitalization for that iden-
tifier thereafter. For example, the following is in error:

sequence<string> StringSeq; 
 
interface Bad { 
    stringSeq op();     // Error! 
};

Note that identifiers must not differ from a Slice keyword in case only. For 
example, the following is in error:

interface Module {      // Error, "module" is a keyword 
    // ... 
};
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4.16.3 Qualified Names
The scope-qualification operator :: allows you to refer to a type in a non-local 
scope. For example:

module Types { 
    sequence<long> LongSeq; 
}; 
 
module MyApp { 
    sequence<Types::LongSeq> NumberTree; 
};

Here, the qualified name Types::LongSeq refers to LongSeq defined in module 
Types. The global scope is denoted by a leading ::, so we could also refer to 
LongSeq as ::Types::LongSeq.

The scope-qualification operator also allows you to create mutually dependent 
interfaces that are defined in different modules. The obvious attempt to do this 
fails:

module Parents { 
    interface Children::Child;  // Syntax error! 
    interface Mother { 
        Children::Child* getChild(); 
    }; 
    interface Father { 
        Children::Child* getChild(); 
    }; 
}; 
 
module Children { 
    interface Child { 
        Parents::Mother* getMother(); 
        Parents::Father* getFather(); 
    }; 
};

This fails because it is syntactically illegal to forward-declare an interface in a 
different module. To make it work, we must use a reopened module:

module Children { 
    interface Child;                    // Forward declaration 
}; 
 
module Parents { 
    interface Mother { 
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        Children::Child* getChild();    // OK 
    }; 
    interface Father { 
        Children::Child* getChild();    // OK 
    }; 
}; 
 
module Children {                       // Reopen module 
    interface Child {                   // Define Child 
        Parents::Mother* getMother(); 
        Parents::Father* getFather(); 
    }; 
};

While this technique works, it is probably of dubious value: mutually dependent 
interfaces are, by definition, tightly coupled. On the other hand, modules are 
meant to be used to place related definitions into the same module, and unrelated 
definitions into different modules. Of course, this begs the question: if the inter-
faces are so closely related that they depend on each other, why are they defined in 
different modules? In the interest of clarity, you probably should avoid this 
construct, even though it is legal.

4.16.4 Names in Nested Scopes
Names defined in an enclosing scope can be redefined in an inner scope. For 
example, the following is legal:

module Outer { 
    sequence<string> Seq; 
 
    module Inner { 
        sequence<short> Seq; 
    }; 
};

Within module Inner, the name Seq refers to a sequence of short values and 
hides the definition of Outer::Seq. You can still refer to the other definition by 
using explicit scope qualification, for example:

module Outer { 
    sequence<string> Seq; 
 
    module Inner { 
        sequence<short> Seq; 
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        struct Confusing { 
            Seq          a;     // Sequence of short 
            ::Outer::Seq b;     // Sequence of string 
        }; 
    }; 
};

Needless to say, you should try to avoid such redefinitions—they make it harder 
for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a 
module named M cannot (recursively) contain any construct also named M. The 
same is true for interfaces, classes, structures, exceptions, and operations. For 
example, the following examples are all in error:

module M { 
    interface M { /* ... */ };  // Error! 
 
    interface I { 
        void I();               // Error! 
        void op(string op);     // Error! 
    }; 
 
    struct S { 
        long s;                 // Error, even if case differs! 
    }; 
 
}; 
 
module Outer { 
    module Inner { 
        interface Outer {       // Error! 
            // ... 
        }; 
    }; 
};

The reason for this restriction is that nested types that have the same name are 
difficult to map into some languages. For example, C++ and Java reserve the name 
of a class as the name of the constructor, so an interface I could not contain an 
operation named I without artificial rules to avoid the name clash.

Similarly, some languages (such as C# and Visual Basic) do not permit a qual-
ified name to be anchored at the global scope. If a nested module or type is 
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permitted to have the same name as the name of an enclosing module, it can 
become impossible to generate legal code in some cases.

In the interest of simplicity, Slice simply prohibits the name of a nested 
module or type to be the same as the name of one its enclosing modules.

4.16.5 Introduced Identifiers
Within a naming scope, an identifier is introduced at the point of first use; there-
after, within that naming scope, the identifier cannot change meaning. For 
example:

module M { 
    sequence<string> Seq; 
 
    interface Bad { 
        Seq op1();      // Seq and op1 introduced here 
        int Seq();      // Error, Seq has changed meaning 
    }; 
};

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the 
scope of interface Bad. Thereafter, Seq can only be used as a type name that 
denotes a sequence of strings, so the compiler flags the declaration of the second 
operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

module M { 
    sequence<string> Seq; 
 
    interface Bad { 
        ::M::Seq op1(); // Only op1 introduced here 
        int Seq();      // OK 
    }; 
};

In general, a fully-qualified name (one that is anchored at the global scope and, 
therefore, begins with a :: scope resolution operator) does not introduce any 
name into the current scope. On the other hand, qualified name that is not 
anchored at the global scope introduces only the first component of the name:

module M { 
    sequence<string> Seq; 
 
    interface Bad { 
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        M::Seq op1();   // M and op1 introduced here, but not Seq 
        int Seq();      // OK 
    }; 
};

4.16.6 Name Lookup Rules
When searching for the definition of a name that is not anchored at the global 
scope, the compiler first searches backward in the current scope of a definition of 
the name. If it can find the name in the current scope, it uses that definition. Other-
wise, the compiler successively searches enclosing scopes for the name until it 
reaches the global scope. Here is an example to illustrate this:

module M1 { 
    sequence<double> Seq; 
 
    module M2 { 
        sequence<string> Seq;   // OK, hides ::M1::Seq 
 
        interface Base { 
            Seq op1();          // Returns sequence of string 
        }; 
    }; 
 
    module M3 { 
        interface Derived extends M2::Base { 
            Seq op2();          // Returns sequence of double 
        }; 
 
        sequence<bool> Seq;     // OK, hides ::M1::Seq 
 
        interface I { 
            Seq op();           // Returns sequence of bool 
        }; 
    }; 
 
    interface I { 
        Seq op();               // Returns sequence of double 
    }; 
};

Note that M2::Derived::op2 returns a sequence of double, even though 
M1::Base::op1 returns a sequence of string. That is, the meaning of a type in a 
base interface is irrelevant to determining its meaning in a derived interface—the 
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compiler always searches for a definition only in the current scope and enclosing 
scopes, and never takes the meaning of a name from a base interface or class.

4.17 Metadata

Slice has the concept of a metadata directive. For example:

["java:type:java.util.LinkedList"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata 
directives appear in a pair of square brackets and contain one or more string 
literals separated by commas. For example, the following is a syntactically valid 
metadata directives containing two strings:

["a", "b"] interface Example {};

Metadata directives are not part of the Slice language per se: the presence of a 
metadata directive has no effect on the client–server contract, that is, metadata 
directives do not change the Slice type system in any way. Instead, metadata direc-
tives are targeted at specific back-ends, such as the code generator for a particular 
language mapping. In the preceding example, the java: prefix indicates that the 
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that 
does not change the Slice types being defined, but somehow influences how the 
compiler will generate code for these definitions. For example, a metadata direc-
tive java:type:java.util.LinkedList instructs the Java code generator to map 
a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create proxies and skeletons that support 
Asynchronous Method Invocation (AMI) and Asynchronous Method Dispatch 
(AMD) (see Chapter 31).

Apart from metadata directives that are attached to a specific definition, there 
are also global metadata directives. For example:

[["java:package:com.acme"]]

Note that a global metadata directive is enclosed by double square brackets, 
whereas a local metadata directive (one that is attached to a specific definition) is 
enclosed by single square brackets. Global metadata directives are used to pass 
instructions that affect the entire compilation unit. For example, the preceding 
metadata directive instructs the Java code generator to generate the contents of the 
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source file into the Java package com.acme. Global metadata directives must 
precede any definitions in a file (but can appear following any #include direc-
tives).

We discuss specific metadata directives in the relevant chapters to which they 
apply.

4.18 Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a 
Slice definition. For example:

interface Example { 
    ["deprecated:someOperation() has been deprecated, \ 
    use alternativeOperation() instead."] 
    void someOperation(); 
 
    void alternativeOperation(); 
};

The [“deprecated”] metadata directive causes the compiler to emit code that 
generates a warning if you compile application code that uses a deprecated 
feature. This is useful if you want to remove a feature from a Slice definition but 
do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and 
use [“deprecated”], the Slice compilers insert a default message into the gener-
ated code.

You can apply the [“deprecated”] metadata directive to Slice constructs 
other than operations (for example, a structure or sequence definition).

4.19 Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping. For the C++ 
mapping, the executable is slice2cpp; for the Java mapping, it is 
slice2java; for the C# mapping, it is slice2cs; for the Visual Basic 
mapping, it is slice2vb; for the Python mapping, it is slice2py. The 
compilers share a similar command-line syntax:

<compiler-name> [options] file…
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Regardless of which compiler you use, a number of command-line options are 
common to the compilers for any language mapping. (See the appropriate 
language mapping chapter for options that are specific to a particular language 
mapping.) The common command-line options are:

• -h, --help

Displays a help message.

• -v, --version

Displays the compiler version.

• -DNAME10

Defines the preprocessor symbol NAME.

• -DNAME=DEF10

Defines the preprocessor symbol NAME with the value DEF.

• -UNAME10

Undefines the preprocessor symbol NAME.

• -IDIR

Add the directory DIR to the search path for #include directives.

• -E

Print the preprocessor output on stdout.

• --output-dir DIR

Place the generated files into directory DIR.

• -d, --debug

Print debug information showing the operation of the Slice parser.

• --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option 
only when compiling the source code for the Ice run time.

The Slice compilers permit you to compile more than a single source file, so you 
can compile several Slice definitions at once, for example:

slice2cpp -I. file1.ice file2.ice file3.ice

10.Note that the preprocessor may not be supported in future versions of Slice, so use these options 
with caution.
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4.20 Slice Checksums

As distributed applications evolve, developers and system administrators must be 
careful to ensure that deployed components are using the same client–server 
contract. Unfortunately, mistakes do happen, and it is not always readily apparent 
when they do.

To minimize the chances of this situation, the Slice compilers support an 
option that generates checksums for Slice definitions, thereby enabling two peers 
to verify that they share an identical client–server contract. The checksum for a 
Slice definition includes details such as parameter and member names and the 
order in which operations are defined, but ignores information that is not relevant 
to the client–server contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice 
type identifiers to checksums. A server typically supplies an operation that returns 
its checksum dictionary for the client to compare with its local version, at which 
point the client can take action if it discovers a mismatch.

The dictionary type is defined in the file Ice/SliceChecksumDict.ice 
as follows:

module Ice { 
    dictionary<string, string> SliceChecksumDict; 
};

This type can be incorporated into an application’s Slice definitions like this:

#include <Ice/SliceChecksumDict.ice> 
 
interface MyServer { 
    nonmutating Ice::SliceChecksumDict getSliceChecksums(); 
    ... 
};

The key of each element in the dictionary is a Slice type ID (see Section 4.13), and 
the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appro-
priate language mapping chapter.
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4.21 A Comparison of Slice and CORBA IDL

It is instructive to compare Slice and CORBA IDL because the different feature 
sets of the two languages illustrate a number of design principles. In this section, 
we briefly compare the two languages and explain the motivation for the presence 
or absence of each feature.

Slice is neither a subset nor a superset of CORBA IDL. Instead, Slice both 
removes and adds features. The overall result is a specification language that is 
both simpler and more powerful than CORBA IDL, as we will see in the following 
sections.

4.21.1 Slice Features that are Missing in CORBA IDL
Slice adds a number of features over CORBA IDL. The main additions are:

• Exception inheritance

Lack of inheritance for exceptions in CORBA IDL has long been a thorn in 
the side of CORBA programmers. The absence of exception inheritance in 
CORBA IDL prevents natural mappings to languages with equivalent native 
exception support, such as C++ and Java. In turn, this makes it difficult to 
implement structured error handling.

As a result, CORBA applications typically use a plethora of exception 
handlers following each call or block of calls or, at the other extreme, use only 
generic exception handling at too high a level to still yield useful diagnostics. 
The trade-off imposed by this is rather draconian: either you have good error 
handling and diagnostics, but convoluted and difficult-to-maintain code, or 
you sacrifice error handling in order to keep the code clean.

• Dictionaries

“How do I send a Java hash table to a server?” is one of the most frequently 
asked questions for CORBA. The standard answer is to model the hash table 
as a sequence of structures, with each structure containing the key and value, 
copy the hash table into the sequence, send the sequence, and reconstruct the 
hash table at the other end.

Doing this is not only wasteful in CPU cycles and memory, but also pollutes 
the IDL with data types whose presence is motivated by limitations of the 
CORBA platform (instead of requirements of the application). Slice dictio-
naries provide support for sending efficient lookup tables as a first-class 
concept and eliminate the waste and obfuscation of the CORBA approach.



152 The Slice Language

• Nonmutating and idempotent operations

Knowing that an operation will not modify the state of its object permits the 
Ice run time to transparently recover from transient errors that otherwise 
would have to be handled by the application. This makes for a more reliable 
and convenient platform. In addition, nonmutating operations can be mapped 
to a corresponding construct (if available) in the target language, such as C++ 
const member functions. This improves the static type safety of the system.

• Classes

Slice provides classes that support both pass-by-value and pass-by-proxy 
semantics. In contrast, CORBA value types (which are somewhat similar) 
only support pass-by-value semantics: you cannot create a CORBA reference 
to a value type instance and invoke on that instance remotely.

Slice also uses classes for its automatic persistence mechanism (see 
Chapter 37). No equivalent feature is provided by CORBA.

• Metadata

Metadata directives permit the language to be extended in a controlled way 
without affecting the client–server contract. Asynchronous method invocation 
(AMI) and asynchronous method dispatch (AMD) are examples of the use of 
metadata directives.

4.21.2 CORBA IDL Features that are Missing in Slice
Slice deliberately drops quite a number of features of CORBA IDL. These can 
broadly be categorized as follows:

• Redundancies

Some CORBA IDL features are redundant in that they provide more than one 
way to achieve a single thing. This is undesirable for two reasons:

1.Providing more than one way of achieving the same thing carries a penalty 
in terms of code and data size. The resulting code bloat also causes perfor-
mance penalties and so should be avoided.

2.Redundant features are unergonomic and confusing. A single feature is both 
easier to learn (for programmers) and easier to implement (for vendors) than 
two features that do the same thing. Moreover, there is always a niggling 
feeling of unease, especially for newcomers: “How come I can do this in 
two different ways? When is one style preferable over the other style? Are 
the two features really identical, or is there some subtle difference I am 
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missing?” Not providing more than one way to do the same thing avoids 
these questions entirely.

• Non-features

A number of features of CORBA IDL are unnecessary, in the sense that they 
are hardly ever used. If there is a reasonable way of achieving something 
without a special-purpose feature, the feature should be absent. This results in 
a system that easier to learn and use, and a system that is smaller and performs 
better than it would otherwise.

• Mis-features

Some features of CORBA IDL are mis-features in the sense that they do 
something that, if not outright wrong, is at least of questionable value. If the 
potential for abuse through ignorance of a feature is greater than its benefit, 
the feature should be omitted, again resulting in a simpler, more reliable, and 
better performing system.

Redundancies

1. IDL attributes

IDL attributes are a syntactic short-hand for an accessor operation (for read-
only attributes) or a pair of accessor and a modifier operations (for writable 
attributes). The same thing can be achieved by simply defining an accessor 
and modifier operation directly.11

Attributes introduce considerable complexity into the CORBA run time and 
APIs. (For example, programmers using the Dynamic Invocation Interface 
must remember that, to set or get an attribute, they have to use 
_get_<attribute-name> and _set_<attribute-name> whereas, for opera-
tions, the unadorned name must be used.)

2. Unsigned integers

Unsigned integers add very little to the type system but make it considerably 
more complex. In addition, if the target programming language does not 
support unsigned integers (Java does not), it becomes almost impossibly diffi-
cult to deal with out-of-range conditions. Currently, Java CORBA program-

11.IDL attributes are also second-class citizens because, prior to CORBA 3.x, it was impossible to 
throw user exceptions from attribute accesses.
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mers deal with the problem by ignoring it. (See  [9] for a very cogent 
discussion of the disadvantages of unsigned types.)

3. Underscores in identifiers

Whether or not identifiers should contain underscores is largely a matter of 
personal taste. However, it is important to have some range of identifiers 
reserved for the language mapping in order to avoid name clashes. For 
example, a CORBA IDL specification that contains the identifiers 
T and T_var in the same scope cannot be compiled into valid C++. (There are 
numerous other such conflicts, for C++ as well as other languages.)

Disallowing underscores in Slice identifiers guarantees that all valid Slice 
specifications can be mapped into valid programming language source code 
because, at the programming language level, underscores can reliably be used 
to avoid clashes.

4. Arrays

CORBA IDL offers both arrays and sequences (with sequences further 
divided into bounded and unbounded sequences). Given that a sequence can 
easily be used to model an array, there is no need for arrays. Arrays are some-
what more precise than sequences in that they allow you to state that 
precisely n elements are required instead of at most n. However, the minute 
gain in expressiveness is dearly paid for in complexity: not only do arrays 
contribute to code bloat, they also open a number of holes in the type system. 
(The CORBA C++ mapping suffers more from the weak type safety of arrays 
than from any other feature.)

5. Bounded sequences

Much the same arguments that apply to arrays also apply to bounded 
sequences. The gain in expressiveness of bounded sequences is not worth the 
complexity that is introduced into language mappings by the feature.

6. Self-referential structures via sequences

CORBA IDL permits structures to have a member that is of the type of its 
enclosing structure. While the feature is useful, it requires a curiously artificial 
sequence construct to express. With the introduction of CORBA valuetypes, 
the feature became redundant because valuetypes support the same thing more 
clearly and elegantly.

7. Repository ID versioning with #pragma version

#pragma version directives in CORBA IDL have no purpose whatsoever. 
The original intent was to allow versioning of interfaces. However, different 
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minor and major version numbers do not actually define any notion of back-
ward (non-)compatibility. Instead, they simply define a new type, which can 
also be achieved via other means.

Non-Features

1. Arrays

We previously classified arrays as a redundant feature. Experience has shown 
that arrays are a non-feature as well: after more than ten years of published 
IDL specifications, you can count the number of places where an array is used 
on the fingers of one hand.

2. Constant expressions

CORBA IDL allows you to initialize a constant with a constant expression, 
such as X * Y. While this seems attractive, it is unnecessary for a specification 
language. Given that all values involved are compile-time constants, it is 
entirely possibly to work out the values once and write them into the specifica-
tion directly. (Again, the number of constant expressions in published IDL 
specifications can be counted on the fingers of one hand.)12

3. Types char and wchar

There simply is no need for a character type in a specification language such 
as slice. In the rare case where a character is required, type string can be 
used.13

4. Fixed-point types

Fixed-point types were introduced into CORBA to support financial applica-
tions that need to calculate monetary values. (Floating-point types are ill-
suited to this because they cannot store a sufficient number of decimal digits 
and are subject to a number of undesirable rounding and representational 
errors.)

The cost of adding fixed-point types to CORBA in terms of code size and API 
complexity is considerable. Especially for languages without a native fixed-
point type, a lot of supporting machinery must be provided to emulate the 

12.As of version 2.6.x of CORBA, the semantics of IDL constant expressions are still largely unde-
fined: there are no rules for type coercion or how to deal with overflow, and there is no defined 
binary representation; the result of constant expressions is therefore implementation-dependent.

13.We cannot recall ever having seen a (non-didactic) IDL specification that uses type char or 
wchar.
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type. This penalty is paid over and over again, even for languages that are not 
normally chosen for financial calculations. Moreover, no-one actually does 
calculations with these types in IDL—instead, IDL simply acts as the vehicle 
to enable transmission of these types. It is entirely feasible (and simple to 
implement) to use strings to represent fixed-point values and to convert them 
into a native fixed-point type in the client and server.

5. Extended floating-point types

While there is a genuine need for extended floating-point types for some 
applications, the feature is difficult to provide without native support in the 
underlying hardware. As a result, support for extended floating-point types is 
widely unimplemented in CORBA. On platforms without extended floating-
point support, the type is silently remapped to an ordinary double.

Mis-Features

1. typedef

IDL typedef has probably contributed more to complexity, semantic prob-
lems, and bugs in applications than any other IDL feature. The problem with 
typedef is that it does not create a new type. Instead, it creates an alias for an 
existing type. Judiciously used, type definitions can improve readability of a 
specification. However, under the hood, the fact that a type can be aliased 
causes all sorts of problems. For many years, the entire notion of type equiva-
lence was completely undefined in CORBA and it took many pages of specifi-
cation with complex explanations to nail down the semantic complexities 
caused by aliased types.14

The complexity (both in the run time and in the APIs) disappears in absence of 
the feature: Slice does not permit a type to be aliased, so there can never be 
any doubt as to the name of a type and, hence, type equivalence.

2. Nested types

IDL allows you define types inside the scope of, for example, an interface or 
an exception, similar to C++. The amount of complexity created by this deci-
sion is staggering: the CORBA specification contains numerous and complex 
rules for dealing with the order of name lookup, exactly how to decide when a 
type is introduced into a scope, and how types may (or may not) hide other 
types of the same name. The complexity carries through into language 

14.CORBA 2.6.x still has some unresolved issues with respect to type equivalence.
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mappings: nested type definitions result in more complex (and more bulky) 
source code and are difficult to deal with in languages that do not permit the 
same nesting of definitions as IDL.15

Slice allows types to be defined only at module scope. Experience shows that 
this is all that is needed and it avoids all the complexity.

3. Unions

As most OO textbooks will tell you, unions are not required; instead, you can 
use derivation from a base class to implement the same thing (and enjoy the 
benefit of type-safe access to the members of the class). IDL unions are yet 
another source of complexity that is entirely out of proportion to the utility of 
the feature. Language mappings suffer badly from this. For example, the C++ 
mapping for IDL unions is something of a challenge even for experts. And, as 
with any other feature, unions extract a price in terms of code size and run-
time performance.

4. #pragma

IDL allows the use of #pragma directives to control the contents of type IDs. 
This was a most unfortunate choice: because #pragma is a preprocessing 
directive, it is completely outside the normal scoping rules of the language. 
The resulting complexity is sufficient to take up several pages of explanations 
in the specification. (And, even with all those explanations, it is still possible 
to use #pragma directives that make no sense, yet cannot be diagnosed as erro-
neous.)

Slice does not permit control of type IDs because it simply is not necessary.

5. oneway operations

IDL permits an operation to be tagged with a oneway keyword. Adding this 
keyword causes the ORB to dispatch the operation invocation with “best-
effort” semantics. In theory, the run time simply fires off the request and then 
forgets all about it, not caring whether the request is lost or not. In practice, 
there are a number of problems with this idea:

• oneway invocations are delivered via TCP/IP just as normal invocations are. 
Even though the server may not reply to a oneway request, the underlying 
TCP/IP implementation still attempts to guarantee delivery of the request. 

15.Again, the number of published specifications that actually use nested type definitions can be 
counted on the fingers of one hand; yet, every CORBA platform must bear the resulting 
complexity.



158 The Slice Language

This means that, despite the oneway keyword, the sending ORB is still 
subject to flow control (meaning that the client application may block). In 
addition, at the TCP/IP level, there is return traffic from the server to the 
client even for a oneway request (in the form of acknowledgement and 
flow-control packets).

• The semantics of oneway invocations were poorly defined in earlier versions 
of CORBA and refined later, to allow the client to have some control over 
the delivery guarantees. Unfortunately, this resulted in yet more complexity 
in the application APIs and the ORB implementation.

• Architecturally, the use of oneway in IDL is dubious: IDL is an interface 
definition language, but oneway has nothing to do with interface. Instead, it 
controls an aspect of call dispatch that is quite independent of a specific 
interface. This begs the question of why oneway is a first-class language 
concept when it has nothing to do with the contract between client and 
server.

Slice does not have a oneway keyword (even though Ice supports oneway 
invocations). This avoids contaminating Slice definitions with non-type 
related directives. For asynchronous method invocations, Slice uses metadata 
directives. The use of such metadata does in no way affect the client–server 
contract: if you delete all metadata definitions from a specification and then 
recompile only one of client or server, the interface contract between client 
and server remains unchanged and valid.

6. IDL contexts

IDL contexts are a general escape hatch that, in essence, permit a sequence of 
name–string pairs to be sent with every invocation of an operation; the server 
can examine the name–string pairs and use their contents to change its 
behavior. Unfortunately, IDL contexts are completely outside the type system 
and provide no guarantees whatsoever to either client or server: even if an 
operation has a context clause, there is no guarantee that the client will send 
any of the named contexts or send well-formed values for those contexts. 
CORBA has no idea of the meaning or type of these pairs and, therefore, 
cannot provide any assistance in assuring that their contents are correct (either 
at compile or run time). The net effect is that IDL contexts shoot a big hole 
through the IDL type system and result in systems that are hard to understand, 
code, and debug.
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7. Wide strings

CORBA has the notion of supporting multiple codesets and character sets for 
wide strings, with a complex negotiation mechanism that is meant to permit 
client and server to agree on a particular codeset for transmission of wide 
strings. A large amount of complexity arises from this choice; as of 
CORBA 3.0, many ORB implementations still suffer interoperability prob-
lems for the exchange of wide string data. The specification still contains a 
number of unresolved problems that make it unlikely that interoperability will 
become a reality any time soon.

Slice uses Unicode for its wide strings, that is, there is a single character set 
and a single defined codeset for the transmission of wide strings. This greatly 
simplifies the implementation of the run time and avoids interoperability prob-
lems.

8. Type Any

The IDL Any type is a universal container type that can contain a value of any 
IDL type. The feature is somewhat similar to exchanging untyped data as a 
void * in C, but improved with introspection, so the type of the contents of 
an Any can be determined at run time. Unfortunately, type Any adds much 
complexity for little gain:

• The API to deal with type Any and its associated type description is arcane 
and complex. Code that uses type Any is extremely error-prone (particularly 
in C++). In addition, the language-mapping requires the generation of a 
large number of helper functions and operators that slow down compilations 
and take up considerable code and data space at run time.

• Despite the fact that type Any is self-describing and that each instance that is 
sent over the wire contains a complete (and bulky) description of the value’s 
type, it is impossible for a process to receive and re-transmit a value of type 
Any without completely unmarshaling and remarshaling the value. This 
affects programs such as the CORBA Event Service: the extra marshaling 
cost dominates the overall execution time and limits performance unaccept-
ably for many applications.

Slice uses classes to replace both IDL unions and type Any. This approach is 
simpler and more type safe than using type Any. In addition, the Slice protocol 
permits receipt and retransmission of values without forcing the data to be 
unmarshaled and remarshaled; this leads to smaller and better performing 
systems than what could be built with CORBA.
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9. Anonymous types

Earlier versions of the CORBA specification permitted the use of anonymous 
IDL types (types that are defined in-line without assigning a separate name to 
them). Anonymous types caused major problems for language mappings and 
have since been deprecated in CORBA. However, the complexity of anony-
mous types is still visible due to backward compatibility concerns. Slice 
ensures that every type has a name and so prevents any of the problems that 
are caused by anonymous types.

4.22 Generating Slice Documentation

If you look at Appendix B, you will find reference documentation for all the Slice 
definitions used by Ice and its services. In the binary distributions of Ice, you will 
also find HTML documentation that contains the same information. Both the PDF 
and the HTML documentation are generated from special comments in the Slice 
definitions by slice2docbook, a tool that scans Slice definitions for special 
comments and generates SGML in DocBook [25] format. The SGML then is post-
processed by other tools to generate the final published documentation.

As an example of documentation comments, here is the definition of 
Ice::Current:

/** 
 * 
 * Information about the current method invocation for servers. 
 * Each operation on the server has a [Current] as its implicit 
 * final parameter. [Current] is mostly used for &Ice; services. 
 * Most applications ignore this parameter. 
 * 
 **/ 
local struct Current { 
    /** 
     * The object adapter. 
     **/ 
    ObjectAdapter adapter; 
     
    /** 
     * Information about the connection over which the current 
     * method invocation was received. If the invocation is direct 
     * due to collocation optimization, this value is set to null. 
     **/ 
    Connection con; 
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    /** 
     * The &Ice; object identity. 
     **/ 
    Identity id; 
 
    /** 
     * The facet. 
     ***/ 
    string facet; 
 
    /** 
     * The operation name. 
     **/ 
    string operation; 
 
    /** 
     * The mode of the operation. 
     **/ 
    OperationMode mode; 
 
    /** 
     * The request context, as received from the client. 
     **/ 
    Context ctx; 
 
    /** 
     * The request id unless oneway (0) or collocated (-1). 
     **/ 
    int requestId; 
};

If you look at the comments, you will see these reflected in the documentation for 
Ice::Current in Appendix B.

4.22.1 Documentation Comments
Any comment that starts with /** and ends with **/ is a documentation 
comment. Such a comment can precede any Slice construct, such as a module, 
interface, structure, operation, and so on. Within a documentation comment, you 
can either start each line with a *, or you can leave the beginning of the line 
blank—slice2docbook can handle either convention:
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/** 
 * 
 * This is a documentation comment for which every line 
 * starts with a '*' character. 
 **/ 
 
/** 
 
 This is a documentation comment without a leading '*' 
 for each line. Either style of comment is fine. 
 
 **/

The first sentence of the documentation comment for a Slice construct should be a 
summary sentence. slice2docbook generates an index of all Slice constructs 
and the first sentence of the comments for each Slice construct as a summary in 
that index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code 
font. For example:

/** 
 * An empty [name] denotes a null object. 
 **/

This generates a hyperlink for the name markup that points at the definition of the 
corresponding Slice symbol. (The symbol can denote any Slice construct, such as 
a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive @see is recognized by slice2docbook. Where it appears, the 
generated SGML contains a separate section titled “See Also”, followed by a list 
of Slice identifiers. For example:

/** 
 * The object adapter, which is responsible for receiving requests 
 * from endpoints, and for mapping between servants, identities, 
 * and proxies. 
 * 
 * @see Communicator 
 * @see ServantLocator 
 **/



4.22 Generating Slice Documentation 163

The Slice identifiers are listed in the corresponding “See Also” section as comma-
separated hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @param, 
@return, and @throws. For example:

/** 
 * Look for an item with the specified 
 * primary and secondary key. 
 * 
 * @param p The primary search key. 
 * 
 * @param s The secondary search key. 
 * 
 * @return The item that matches the specified keys. 
 * 
 * @throws NotFound Raised if no item matches the specified keys. 
 **/ 
 
Item findItem(Key p, Key s) throws NotFound;

slice2docbook generates separate “Parameters”, “Return Value”, and 
“Exceptions” sections for these directives. Parameters are listed in the same order 
as they appears in the comments. (For clarity, that order should match the order of 
declaration of parameters for the corresponding operation.)

General DocBook Markup

A documentation comment can contain any markup that is permitted by DocBook 
in that place. For example, you can create separate paragraphs with <para> and 
</para> elements:

/** 
 * This is a comment for some Slice construct. 
 * 
 * <para>This comment appears in a separate paragraph.</para> 
 **/

There are various other ways to create markup—for example, you can use 
<literal> and <note> elements. Please see the DocBook documentation for 
details.
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4.22.2 Using slice2docbook
slice2docbook uses the following syntax:

slice2docbook [options] sgml_file slice_file…

sgml_file specifies the output file name for the generated SGML documenta-
tion. (The file name must end in .sgml.) If you have cross-references that span 
Slice files, you must compile all of the Slice files with a single invocation of 
slice2docbook.

The command supports the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays the compiler version.

• -DNAME16

Defines the preprocessor symbol NAME.

• -DNAME=DEF10

Defines the preprocessor symbol NAME with the value DEF.

• -UNAME10

Undefines the preprocessor symbol NAME.

• -IDIR

Add the directory DIR to the search path for #include directives.

• -E

Print the preprocessor output on stdout.

• -s, --stand-alone

With this option, the top-level element of the generated SGML is an 
<article> element that contains all of the documentation as child elements. 
Without this option, the top-level elements are <section> elements (or 
<chapter> elements, if you use the --chapter option).

16.Note that the preprocessor may not be supported in future versions of Slice, so use these options 
with caution.
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• --chapter

By default, the command generates separate <section> elements. With this 
option, the compiler emits a separate <chapter> element for each module, 
interface, class, exception, structure, and enumeration.

• --noindex

By default, the compiler generates an index that lists Slice types. The index 
contains a separate sections for modules, classes, interfaces, and so on. 
--noindex suppresses the generation of the index.

• --sort-fields

By default, the fields of structures, classes, and exceptions are presented in the 
order in which they are defined in the Slice definition. --sort-fields 
changes the fields to be presented in ascending alphabetical order.

• -d, --debug

Print debug information showing the operation of the Slice parser.

• --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option 
only when compiling the source code for the Ice run time.

4.23 Summary

Slice is the fundamental mechanism for defining the client–server contract. By 
defining data types and interfaces in Slice, you create a language-independent API 
definition that are translated by a compiler into an API specific for a particular 
programming language.

Slice provides the usual built-in types and allows you to create user-defined 
types of arbitrary complexity, such as sequences, enumerations, structures, dictio-
naries, and classes. Polymorphism is catered for via inheritance of interfaces, 
classes, and exceptions. In turn, exceptions provide you with facilities that permit 
sophisticated error reporting and handling. Modules permit you to group related 
parts of a specification and prevent pollution of the global namespace, and meta-
data can be used to augment Slice definitions with directives for specific compiler 
backends.

slice2docbook permits you to integrate Slice documentation with existing 
documentation tools.
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Chapter 5
Slice for a Simple File System

5.1 Chapter Overview

The remainder of this book uses a file system application to illustrate various 
aspects of Ice. Throughout the book, we progressively improve and modify the 
application such that it evolves into an application that is realistic and illustrates 
the architectural and coding aspects of Ice. This allows us to explore the capabili-
ties of the platform to a realistic degree of complexity without overwhelming you 
with an inordinate amount of detail early on. Section 5.2 outlines the file system 
functionality, Section 5.3 develops the data types and interfaces that are required 
for the file system, and Section 5.4 presents the complete Slice definition for the 
application.

5.2 The File System Application

Our file system application implements a simple hierarchical file system, similar 
to the file systems we find in Windows or UNIX. To keep code examples to 
manageable size, we ignore many aspects of a real file system, such as ownership, 
permissions, symbolic links, and a number of other features. However, we build 
enough functionality to illustrate how you could implement a fully-featured file 
system, and we pay attention to things such as performance and scalability. In this 
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way, we can create an application that presents us with real-world complexity 
without getting buried in large amounts of code.

To begin with, the file system is non-distributed: although we implement the 
application in a server that is accessed by clients (so we can access the file system 
remotely), the initial version requires all files in the file system to be provided by a 
single server. This means that all directories and files below the root of the file 
system are implemented in a single server. (We discuss how to remove this limita-
tion and create a truly distributed file system in XREF.)

Our file system consists of directories and files. Directories are containers that 
can contain either directories or files, meaning that the file system is hierarchical. 
A dedicated directory is at the root of the file system. Each directory and file has a 
name. Files and directories with a common parent directory must have different 
names (but files and directories with different parent directories can have the same 
name). In other words, directories form a naming scope, and entries with a single 
directory must have unique names. Directories allow you to list their contents.

For now, we do not have a concept of pathnames, or the creation and destruc-
tion of files and directories. Instead, the server provides a fixed number of directo-
ries and files. (We will address the creation and destruction of files and directories 
in XREF.)

Files can be read and written but, for now, reading and writing always replace 
the entire contents of a file; it is impossible to read or write only parts of a file.

5.3 Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing inter-
faces for the system. Files and directories have something in common: they have a 
name and both files and directories can be contained in directories. This suggests a 
design that uses a base type that provides the common functionality, and derived 
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types that provide the functionality specific to directories and files, as shown in 
Figure 5.1.

Figure 5.1. Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

interface Node {  
    // ... 
};  
 
interface File extends Node {  
    // ... 
};  
 
interface Directory extends Node {  
    // ... 
}; 

Next, we need to think about what operations should be provided by each inter-
face. Seeing that directories and files have names, we can add an operation to 
obtain the name of a directory or file to the Node base interface:

interface Node {  
    nonmutating string name(); 
}; 

The File interface provides operations to read and write a file. For the time being, 
we limit ourselves to text files (see XREF for a discussion of dealing with binary 
files). For simplicity, we assume that read operations never fail and that only 
write operations can encounter error conditions. This leads to the following defi-
nitions:

exception GenericError { 
    string reason; 
}; 
 
sequence<string> Lines; 

File
«interface»

Directory
«interface»

Node
«interface»
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interface File extends Node {  
    nonmutating Lines read(); 
    idempotent void write (Lines text) throws GenericError; 
}; 

Note that read is marked as nonmutating because the operation does not modify 
the state of a file. The write operation is marked as idempotent because it 
replaces the entire contents of a file with what is passed in the text parameter. 
This means that it is safe to call the operation with the same parameter value twice 
in a row: the net result of doing so is the same has having (successfully) called the 
operation only once.

The write operation can raise an exception of type GenericError. The excep-
tion contains a single reason data member, of type string. If a write operation 
fails for some reason (such as running out of file system space), the operation 
throws a GenericError exception, with an explanation of the cause of the failure 
provided in the reason data member.

Directories provide an operation to list their contents. Because directories can 
contain both directories and files, we take advantage of the polymorphism 
provided by the Node base interface:

sequence<Node*> NodeSeq;  
 
interface Directory extends Node {  
    nonmutating NodeSeq list();  
}; 

The NodeSeq sequence contains elements of type Node*. Because Node is a base 
interface of both Directory and File, the NodeSeq sequence can contain proxies 
of either type. (Obviously, the receiver of a NodeSeq must down-cast each element 
to either File or Directory in order to get at the operations provided by the 
derived interfaces; only the name operation in the Node base interface can be 
invoked directly, without doing a down-cast first. Note that, because the elements 
of NodeSeq are of type Node* (not Node), we are using pass-by-reference seman-
tics: the values returned by the list operation are proxies that each point to a 
remote node on the server.

These definitions are sufficient to build a simple (but functional) file system. 
Obviously, there are still some unanswered questions, such as how a client obtains 
the proxy for the root directory. We will address these questions in XREF.
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5.4 The Complete Definition

To avoid polluting the global namespace, we wrap our definitions in a module, 
resulting in the final definition as follows:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 
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Chapter 6
Client-Side Slice-to-C++ Mapping

6.1 Chapter Overview

In this chapter, we present the client-side Slice-to-C++ mapping (see Chapter 8 
for the server-side mapping). One part of the client-side C++ mapping concerns 
itself with rules for representing each Slice data type as a corresponding C++ 
type; we cover these rules in Section 6.3 to Section 6.10. Another part of the 
mapping deals with how clients can invoke operations, pass and receive parame-
ters, and handle exceptions. These topics are covered in Section 6.11 to 
Section 6.13. Slice classes have the characteristics of both data types and inter-
faces and are covered in Section 6.14. Finally, we conclude the chapter with a 
brief comparison of the Slice-to-C++ mapping with the CORBA C++ mapping.

6.2 Introduction

The client-side Slice-to-C++ mapping defines how Slice data types are translated 
to C++ types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the C++ mapping is intuitive. For example, Slice sequences map 
to STL vectors, so there is essentially nothing new you have learn in order to use 
Slice sequences in C++.
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The rules that make up the C++ mapping are simple and regular. In particular, 
the mapping is free from the potential pitfalls of memory management: all types 
are self-managed and automatically clean up when instances go out of scope. This 
means that you cannot accidentally introduce a memory leak by, for example, 
ignoring the return value of an operation invocation or forgetting to deallocate 
memory that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting 
mechanism for classes (see Section 6.14.6) is interlocked against parallel access, 
so reference counts cannot be corrupted if a class instance is shared among a 
number of threads. Obviously, you must still synchronize access to data from 
different threads. For example, if you have two threads sharing a sequence, you 
cannot safely have one thread insert into the sequence while another thread is iter-
ating over the sequence. However, you only need to concern yourself with concur-
rent access to your own data—the Ice run time itself is fully thread safe, and none 
of the Ice API calls require you to acquire or release a lock before you safely can 
make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 6.9 to 
Section 6.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C++ mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the C++ mapping rules. In particular, looking through the generated header files 
in order to discern how to use the C++ mapping is likely to be confusing because 
the header files are not necessarily meant for human consumption and, occasion-
ally, contain various cryptic constructs to deal with operating system and compiler 
idiosyncrasies. Of course, occasionally, you may want to refer to a header file to 
confirm a detail of the mapping, but we recommend that you otherwise use the 
material presented here to see how to write your client-side code.

6.3 Mapping for Identifiers

Slice identifiers map to an identical C++ identifier. For example, the Slice identi-
fier Clock becomes the C++ identifier Clock. There is one exception to this rule: 
if a Slice identifier is the same as a C++ keyword, the corresponding C++ identi-
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fier is prefixed with _cpp_. For example, the Slice identifier while is mapped as 
_cpp_while.1

A single Slice identifier often results in several C++ identifiers. For example, 
for a Slice interface named Foo, the generated C++ code uses the identifiers Foo 
and FooPrx (among others). If the interface has the name while, the generated 
identifiers are _cpp_while and whilePrx (not _cpp_whilePrx), that is, 
the prefix is applied only to those generated identifiers that actually require it.

6.4 Mapping for Modules

Slice modules map to C++ namespaces. The mapping preserves the nesting of the 
Slice definitions. For example:

module M1 { 
    module M2 { 
        // ... 
    }; 
    // ... 
}; 
 
// ... 
 
module M1 {     // Reopen M1 
    // ... 
};

This definition maps to the corresponding C++ definition:

namespace M1 { 
    namespace M2 { 
        // ... 
    } 
    // ... 
} 
 
// ... 

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such identifiers as much as 
possible.
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namespace M1 {  // Reopen M1 
    // ... 
}

If a Slice module is reopened, the corresponding C++ namespace is reopened as 
well.

6.5 The Ice Namespace

All of the APIs for the Ice run time are nested in the Ice namespace, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice namespace are generated from Slice definitions; other parts of the Ice 
namespace provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice namespace 
throughout the remainder of the book.

6.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to C++ types as shown in Table 6.1.

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++

bool bool

byte Ice::Byte

short Ice::Short

int Ice::Int

long Ice::Long

float Ice::Float

double Ice::Double
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Slice bool and string map to C++ bool and std::string. The remaining 
built-in Slice types map to C++ type definitions instead of C++ native types. This 
allows the Ice run time to provide a definition as appropriate for each target archi-
tecture. (For example, Ice::Int might be defined as long on one architecture 
and as int on another.)

Note that Ice::Byte is a typedef for unsigned char. This guarantees 
that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can 
safely overload functions that differ in only the types in Table 6.1.

6.6.1 Alternate String Mapping
You can use a metadata directive, ["cpp:type:wstring"], to map strings to C++ 
std::wstring. This is useful for applications that use languages with alpha-
bets that cannot be represented in 8-bit characters. The metadata directive can be 
applied to any Slice construct. For containers (such as modules, interfaces, or 
structures), the metadata directive applies to all strings within the container. A 
corresponding metadata directive, ["cpp:type:string"] can be used to selec-
tively override the mapping defined by the enclosing container. For example:

["cpp:type:wstring"] 
struct S1 { 
    string x;             // Maps to std::wstring 
    ["cpp:type:wstring"] 
    string y;             // Maps to std::wstring 
    ["cpp:type:string"] 
    string z;             // Maps to std::string 
}; 
 
struct S2 { 
    string x;             // Maps to std::string 
    ["cpp:type:string"] 

string std::string

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++
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    string y;             // Maps to std::string 
    ["cpp:type:wstring"] 
    string z;             // Maps to std::wstring 
};

With these metadata directives, the strings are mapped as indicated by the 
comments. By default, narrow strings are encoded as UTF-8, and wide strings use 
Unicode in an encoding that is appropriate for the platform on which the applica-
tion executes. You can override the encoding for narrow and wide strings by 
registerting a string converter with the Ice run time. (See Section 30.21 for 
details.)

6.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

6.7.1 Mapping for Enumerations
Enumerations map to the corresponding enumeration in C++. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C++ definition is identical:

enum Fruit { Apple, Pear, Orange };

6.7.2 Mapping for Structures
Slice structures map to C++ structures with the same name. For each Slice data 
member, the C++ structure contains a public data member. For example, here is 
our Employee structure from Section 4.9.4 once more:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};

The Slice-to-C++ compiler generates the following definition for this structure:
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struct Employee { 
    Ice::Long   number; 
    std::string firstName; 
    std::string lastName; 
    bool operator==(const Employee&) const; 
    bool operator!=(const Employee&) const; 
    bool operator<(const Employee&) const; 
    bool operator<=(const Employee&) const; 
    bool operator>(const Employee&) const; 
    bool operator>=(const Employee&) const; 
};

For each data member in the Slice definition, the C++ structure contains a corre-
sponding public data member of the same name.

Note that the structure also contains comparison operators. These operators 
have the following behavior:

• operator==

Two structures are equal if (recursively), all its members are equal.

• operator!=

Two structures are not equal if (recursively), one or more of its members are 
not equal.

• operator< 
operator<= 
operator> 
operator>=

The comparison operators treat the members of a structure as sort order 
criteria: the first member is considered the first criterion, the second member 
the second criterion, and so on. Assuming that we have two Employee struc-
tures, s1 and s2, this means that the generated code uses the following algo-
rithm to compare s1 and s2:

bool Employee::operator<(const Employee& rhs) const 
{ 
    if (this == &rhs)   // Short-cut self-comparison 
        return false; 
 
    // Compare first members 
    // 
    if (number < rhs.number) 
        return true; 
    else if (rhs.number < number) 
        return false; 
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    // First members are equal, compare second members 
    // 
    if (firstName < rhs.firstName) 
        return true; 
    else if (rhs.firstName < firstName) 
        return false; 
     
    // Second members are equal, compare third members 
    // 
    if (lastName < rhs.lastName) 
        return true; 
    else if (rhs.lastName < lastName) 
        return false; 
 
    // All members are equal, so return false 
    return false; 
}

The comparison operators are provided to allow the use of structures as the key 
type of Slice dictionaries, which are mapped to std::map in C++ (see 
Section 6.7.5).

Note that copy construction and assignment always have deep-copy semantics. 
You can freely assign structures or structure members to each other without 
having to worry about memory management. The following code fragment illus-
trates both comparison and deep-copy semantics:

Employee e1, e2; 
e1.firstName = "Bjarne"; 
e1.lastName = "Stroustrup"; 
e2 = e1;                        // Deep copy 
assert(e1 == e2); 
e2.firstName = "Andrew";        // Deep copy 
e2.lastName = "Koenig";         // Deep copy 
assert(e2 < e1);

Because strings are mapped to std::string, there are no memory manage-
ment issues in this code and structure assignment and copying work as expected. 
(The default member-wise copy constructor and assignment operator generated by 
the C++ compiler do the right thing.)



6.7 Mapping for User-Defined Types 185

6.7.3 Mapping for Sequences
Here is the definition of our FruitPlatter sequence from Section 4.9.3 once 
more:

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following C++ definition for the FruitPlatter 
sequence:

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector. As a result, you can 
use the sequence like any other STL vector, for example:

// Make a small platter with one Apple and one Orange 
// 
FruitPlatter p; 
p.push_back(Apple); 
p.push_back(Orange);

As you would expect, you can use all the usual STL iterators and algorithms with 
this vector.

6.7.4 Custom Sequence Mapping
In addition to the default mapping of sequences to vectors, Ice supports three addi-
tional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a 
metadata directive, for example:

[["cpp:include:list"]] 
 
module Food { 
 
    enum Fruit { Apple, Pear, Orange }; 
 
    ["cpp:type:std::list< ::Food::Fruit>"] 
    sequence<Fruit> FruitPlatter; 
 
};

With this metadata directive, the sequence now maps to a C++ std::list:
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#include <list> 
 
namespace Food { 
 
    typedef std::list< Food::Fruit> FruitPlatter; 
 
    // ... 
}

The cpp:type metadata directive must be applied to a sequence definition; 
anything following the cpp:type: prefix is taken to be the name of the type. For 
example, we could use ["cpp:type:::std::list< ::Food::Fruit>"]. In that 
case, the compiler would use a fully-qualified name to define the type:

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the 
cpp:type: prefix literally into the generated code. This means that, to avoid C++ 
compilation failures due to unknown symbols, you should use a qualified name 
for the type.

Also note that, to avoid compilation errors in the generated code, you must 
instruct the compiler to generate an appropriate include directive with the 
cpp:include global metadata directive. This causes the compiler to add the line

#include <list>

to the generated header file.
Instead of std::list, you can specify a type of your own as the sequence 

type, for example:

[["cpp:include:FruitBowl.h"]] 
 
module Food { 
 
    enum Fruit { Apple, Pear, Orange }; 
 
    ["cpp:type:FruitBowl"] 
    sequence<Fruit> FruitPlatter; 
 
};

With these metadata directives, the compiler will use a C++ type FruitBowl as 
the sequence type, and add an include directive for the header file FruitBowl.h 
to the generated code.
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You can use any class of your choice as a sequence type, but the class must 
meet certain requirements. (vector, list, and deque happen to meet these 
requirements.)

• The class must have a default constructor and a single-argument constructor 
that takes the size of the sequence as an argument of unsigned integral type.

• The class must have a copy constructor.

• The class must provide a member function size that returns the number 
elements in the sequence as an unsigned integral type.

• The class must provide a member function swap that swaps the contents of 
the sequence with another sequence of the same type.

• The class must define iterator and const_iterator types and must 
provide begin and end member functions with the usual semantics; the iter-
ators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vector, list, or deque 
with respect to these points, you can use it as a custom sequence implementation.

In addition to modifying the type of a sequence itself, you can also modify the 
mapping for particular return values or parameters (see Section 6.12). For 
example:

[["cpp:include:list"]] 
[["cpp:include:deque"]] 
 
module Food { 
 
    enum Fruit { Apple, Pear, Orange }; 
 
    sequence<Fruit> FruitPlatter; 
 
    interface Market { 
        ["cpp:type:list< ::Food::Fruit>"] 
        FruitPlatter 
        barter( 
            ["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer 
        ); 
    }; 
 
};

With this definition, the default mapping of FruitPlatter to a C++ vector still 
applies but the return value of barter is mapped as a list, and the offer param-
eter is mapped as a deque.
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Array Mapping for Sequences

The array mapping for sequences applies to input parameters (see Section 6.12) 
and to out parameters of AMI and AMD operations (see Chapter 31). For 
example:

interface File { 
    void write(["cpp:array"] Ice::ByteSeq contents); 
};

The cpp:array metadata directive instructs the compiler to map the offer param-
eter to a pair of pointers:

virtual void write(const ::std::pair<const ::Ice::Byte*, 
                                     const ::Ice::Byte*>&, 
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range 
[first, last) (that is, they use the usual STL semantics for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The 
pointers point directly into the server-side transport buffer; this allows the server-
side run time to avoid creating a vector to pass to the operation implementation, 
thereby avoiding both allocating memory for the sequence and copying its 
contents into that memory.

Note that you can use the array mapping for any sequence type. However, it 
provides a performance advantage only for byte sequences (on all platforms) and 
for sequences of integral type (x86 platforms only).

Also note that the called operation in the server must not store a pointer into 
the passed sequence because the transport buffer into which the pointer points is 
deallocated as soon as the operation completes.

Range Mapping for Sequences

The range mapping for sequences is similar to the array mapping and exists for the 
same purpose, namely, to enable zero-copy of sequence parameters:

interface File { 
    void write(["cpp:range"] Ice::ByteSeq contents); 
};

The cpp::range metadata directive instructs the compiler to map the offer 
parameter to a pair of const_iterator:
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virtual void write(const ::std::pair< 
                        ::Ice::ByteSeq::const_iterator 
                        ::Ice::ByteSeq::const_iterator>&, 
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range 
[first, last) (that is, they use the usual STL semantics for iterators).

The motivation for the range mapping is the same as for the array mapping: 
the passed iterators point directly into the server-side transport buffer and so avoid 
the need to create a temporary vector to pass to the operation.

As for the array mapping, the range mapping can be used with any sequence 
type, but offers a performance advantage only for byte sequences (on all plat-
forms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the 
transport buffer into which the iterator points is deallocated as soon as the opera-
tion completes.

You can optionally add a type name to the cpp:range metadata directive, for 
example:

interface File { 
    void write( 
        ["cpp:range:std::deque<Ice::Byte>"] 
        Ice::ByteSeq contents); 
};

This instructs the compiler to generate a pair of const_iterator for the spec-
ified type:

virtual void write(const ::std::pair< 
                        std::deque<Ice::Byte>::const_iterator 
                        std::deque<Ice::Byte>::const_iterator>&, 
                   const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence 
type that behaves like an STL container.

6.7.5 Mapping for Dictionaries
Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

typedef std::map<Ice::Long, Employee> EmployeeMap;
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Again, there are no surprises here: a Slice dictionary simply maps to an STL map. 
As a result, you can use the dictionary like any other STL map, for example:

EmployeeMap em; 
Employee e; 
 
e.number = 42; 
e.firstName = "Stan"; 
e.lastName = "Lippman"; 
em[e.number] = e; 
 
e.number = 77; 
e.firstName = "Herb"; 
e.lastName = "Sutter"; 
em[e.number] = e;

Obviously, all the usual STL iterators and algorithms work with this map just as 
well as with any other STL container.

6.8 Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. Here 
are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

const bool          AppendByDefault = true; 
const Ice::Byte     LowerNibble =     15; 
const std::string   Advice =          "Don't Panic!"; 
const Ice::Short    TheAnswer =       42; 
const Ice::Double   PI =              3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit         FavoriteFruit =   Pear;
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All constants are initialized directly in the header file, so they are compile-time 
constants and can be used in contexts where a compile-time constant expression is 
required, such as to dimension an array or as the case label of a switch state-
ment.

6.9 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 109 once more:

exception GenericError { 
    string reason; 
}; 
exception BadTimeVal extends GenericError {}; 
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError: public Ice::UserException { 
public: 
    std::string reason; 
 
    GenericError() {} 
    explicit GenericError(const string&); 
 
    virtual const std::string&  ice_name() const; 
    virtual Ice::Exception*     ice_clone() const; 
    virtual void                ice_throw() const; 
    // Other member functions here... 
}; 
 
class BadTimeVal: public GenericError { 
public: 
    BadTimeVal() {} 
    explicit BadTimeVal(const string&); 
 
    virtual const std::string&  ice_name() const; 
    virtual Ice::Exception*     ice_clone() const; 
    virtual void                ice_throw() const; 
    // Other member functions here... 
}; 
 
class BadZoneName: public GenericError { 
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public: 
    BadZoneName() {} 
    explicit BadZoneName(const string&); 
 
    virtual const std::string&  ice_name() const; 
    virtual Ice::Exception*     ice_clone() const; 
    virtual void                ice_throw() const; 
};

Each Slice exception is mapped to a C++ class with the same name. For each 
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Each exception has three additional member functions:

• ice_name

As the name suggests, this member function returns the name of the exception. 
For example, if you call the ice_name member function of a BadZone-
Name exception, it (not surprisingly) returns the string "BadZoneName". 
The ice_name member function is useful if you catch exceptions generi-
cally and want to produce a more meaningful diagnostic, for example:

try { 
    // ... 
} catch (const Ice::GenericError& e) { 
    cerr << "Caught an exception: " << e.ice_name() << endl; 
}

If an exception is raised, this code prints the name of the actual exception 
(BadTimeVal or BadZoneName) because the exception is being caught by 
reference (to avoid slicing).

• ice_clone

This member function allows you to polymorphically clone an exception. For 
example:

try { 
    // ... 
} catch (const Ice::UserException& e) { 
   Ice::UserException* copy = e.clone(); 
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} 

ice_clone is useful if you need to make a copy of an exception without 
knowing its precise run-time type. This allows you to remember the exception 
and throw it later by calling ice_throw.

• ice_throw

ice_throw allows you to throw an exception without knowing its precise 
run-time type. It is implemented as:

void 
GenericError::ice_throw() const 
{ 
    throw *this; 
}

You can call ice_throw to throw an exception that you previously cloned 
with ice_clone.

Each exception has a default constructor. This constructor performs memberwise 
initialization; for simple built-in types, such as integers, the constructor performs 
no initialization, whereas complex types, such as strings, sequences, and dictio-
naries are initialized by their respective default constructors.

An exception also has a second construct that accepts one argument for each 
exception member. This constructor allows you to instantiate and initialize an 
exception in a single statement, instead of having to first instantiate the exception 
and then assign to its members. (For derived exceptions, the constructor accepts 
one argument for each base exception member, plus one argument for each 
derived exception member, in base-to-derived order.)

Note that the generated exception classes contain other member functions that 
are not shown on page 191. However, those member functions are internal to the 
C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from Ice::UserException. In 
turn, Ice::UserException inherits from Ice::Exception (which is an 
alias for IceUtil::Exception):

namespace IceUtil { 
    class Exception { 
        virtual const std::string& ice_name() const; 
        Exception*                 ice_clone() const; 
        void                       ice_throw() const; 
        virtual void               ice_print(std::ostream&) const; 
        // ... 
    }; 
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    std::ostream& operator<<(std::ostream&, const Exception&); 
    // ... 
} 
 
namespace Ice { 
    typedef IceUtil::Exception Exception; 
 
    class UserException: public Exception { 
    public: 
        virtual const std::string& ice_name() const = 0; 
        // ... 
    }; 
}

Ice::Exception forms the root of the exception inheritance tree. Apart from 
the usual ice_name, ice_clone, and ice_throw member functions, it 
contains the ice_print member functions. ice_print prints the name of the 
exception. For example, calling ice_print on a BadTimeVal exception 
prints:

BadTimeVal

To make printing more convenient, operator<< is overloaded for 
Ice::Exception, so you can also write:

try { 
    // ... 
} catch (const Ice::Exception& e) { 
    cerr << e << endl; 
}

This produces the same output because operator<< calls ice_print inter-
nally. 

For Ice run time exceptions, ice_print also shows the file name and line 
number at which the exception was thrown.

6.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice::LocalException (which, in turn, derives from Ice::Exception). 
Ice::LocalException has the usual member functions (ice_name, 
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ice_clone, ice_throw, and (inherited from Ice::Exception), 
ice_print, ice_file, and ice_line).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 106. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate. For 
example, a ConnectTimeoutException can be handled as any one of the 
following exception types:

• Ice::Exception

This is the root of the complete inheritance tree. Catching Ice::Excep-
tion catches both user and run-time exceptions.

• Ice::UserException

This is the root exception for all user exceptions. Catching Ice::UserEx-
ception catches all user exceptions (but not run-time exceptions).

• Ice::LocalException

This is the root exception for all run-time exceptions. Catching 
Ice::LocalException catches all run-time exceptions (but not user 
exceptions).

• Ice::TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice::ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch exceptions by category; the fine-
grained error handling offered by the remainder of the hierarchy is of interest 
mainly in the implementation of the Ice run time.

6.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a member function on a local class instance that represents the 
remote object. This makes the mapping easy and intuitive to use because, for all 
intents and purposes (apart from error semantics), making a remote procedure call 
is no different from making a local procedure call.
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6.11.1 Proxy Classes and Proxy Handles
On the client side, interfaces map to classes with member functions that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

module M { 
    interface Simple { 
        void op(); 
    } 
};

The Slice compiler generates the following definitions for use by the client:

namespace IceProxy { 
    namespace M { 
        class Simple; 
    } 
} 
 
namespace M { 
    class Simple; 
    typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple> 
                                                   SimplePrx; 
    typedef IceInternal::Handle< ::M::Simple> SimplePtr; 
} 
 
namespace IceProxy { 
    namespace M { 
        class Simple : public virtual IceProxy::Ice::Object { 
        public: 
            typedef ::M::SimplePrx ProxyType; 
            typedef ::M::SimplePtr PointerType; 
 
            void op(); 
            void op(const Ice::Context&); 
            // ... 
        }; 
    }; 
} 

As you can see, the compiler generates a proxy class Simple in the 
IceProxy::M namespace, as well as a proxy handle M::SimplePrx. In 
general, for a module M, the generated names are 
::IceProxy::M::<intf-name> and ::M::<intf-name>Prx.
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In the client’s address space, an instance of IceProxy::M::Simple is the 
local ambassador for a remote instance of the Simple interface in a server and is 
known as a proxy class instance. All the details about the server-side object, such 
as its address, what protocol to use, and its object identity are encapsulated in that 
instance.

Note that Simple inherits from IceProxy::Ice::Object. This reflects 
the fact that all Ice interfaces implicitly inherit from Ice::Object. For each oper-
ation in the interface, the proxy class has two overloaded member function of the 
same name. For the preceding example, we find that the operation op has been 
mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type 
Ice::Context. This parameter is for use by the Ice run time to store informa-
tion about how to deliver a request; normally, you do not need to supply a value 
here and can pretend that the trailing parameter does not exist. (We examine the 
Ice::Context parameter in detail in Chapter 30. The parameter is also used by 
IceStorm—see Chapter 42.)

Client-side application code never manipulates proxy class instances directly. 
In fact, you are not allowed to instantiate a proxy class directly. The following 
code will not compile because Ice::Object is an abstract base class with a 
protected constructor and destructor:

IceProxy::M::Simple s;  // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly. When the client 
receives a proxy from the run time, it is given a proxy handle to the proxy, of type 
<interface-name>Prx (SimplePrx for the preceding example). The 
client accesses the proxy via its proxy handle; the handle takes care of forwarding 
operation invocations to its underlying proxy, as well as reference-counting the 
proxy. This means that no memory-management issues can arise: deallocation of a 
proxy is automatic and happens once the last handle to the proxy disappears (goes 
out of scope).

Because the application code always uses proxy handles and never touches the 
proxy class directly, we usually use the term proxy to denote both proxy handle 
and proxy class. This reflects the fact that, in actual use, the proxy handle looks 
and feels like the underlying proxy class instance. If the distinction is important, 
we use the terms proxy class, proxy class instance, and proxy handle.

Also note that the generated proxy class contains type definitions for Proxy-
Type and PointerType. These are provided so you can refer to the proxy type 



198 Client-Side Slice-to-C++ Mapping

and smart pointer type (see Section 6.14.6) in template definitions without having 
to resort to preprocessor trickery, for example:

template<typename T> 
class ProxyWrapper { 
public: 
    T::ProxyType proxy() const; 
    // ... 
};

6.11.2 Methods on Proxy Handles
As we saw for the preceding example, the handle is actually a template of type 
IceInternal::ProxyHandle that takes the proxy class as the template 
parameter. This template has the usual constructor, copy constructor, and assign-
ment operator:

• Default constructor

You can default-construct a proxy handle. The default constructor creates a 
proxy that points nowhere (that is, points at no object at all.) If you invoke an 
operation on such a null proxy, you get an 
IceUtil::NullHandleException:

try { 
    SimplePrx s;        // Default-constructed proxy 
    s->op();            // Call via nil proxy 
    assert(0);          // Can't get here 
} catch (const IceUtil::NullHandleException&) { 
    cout << "As expected, got a NullHandleException" << endl; 
}

• Copy constructor

The copy constructor ensures that you can construct a proxy handle from 
another proxy handle. Internally, this increments a reference count on the 
proxy; the destructor decrements the reference count again and, once the count 
drops to zero, deallocates the underlying proxy class instance. That way, 
memory leaks are avoided:

{                               // Enter new scope 
    SimplePrx s1 = ...;         // Get a proxy from somewhere 
    SimplePrx s2(s1);           // Copy-construct s2 
    assert(s1 == s2);           // Assertion passes 
}                               // Leave scope; s1, s2, and the 
                                // underlying proxy instance 



6.11 Mapping for Interfaces 199

                                // are deallocated

Note the assertion in this example: proxy handles support comparison (see 
Section 6.11.3).

• Assignment operator

You can freely assign proxy handles to each other. The handle implementation 
ensures that the appropriate memory-management activities take place. Self-
assignment is safe and you do not have to guard against it:

SimplePrx s1 = ...;     // Get a proxy from somewhere 
SimplePrx s2;           // s2 is nil 
s2 = s1;                // both point at the same object 
s1 = 0;                 // s1 is nil 
s2 = 0;                 // s2 is nil

Widening assignments work implicitly. For example, if we have two inter-
faces, Base and Derived, we can widen a DerivedPrx to a BasePrx 
implicitly:

BasePrx base; 
DerivedPrx derived; 
base = derived;         // Fine, no problem 
derived = base;         // Compile-time error

Implicit narrowing conversions result in a compile error, so the usual C++ 
semantics are preserved: you can always assign a derived type to a base type, 
but not vice versa.

• Checked cast

Proxy handles provide a checkedCast method:

namespace IceInternal { 
  template<typename T> 
  class ProxyHandle : public IceUtil::HandleBase<T> { 
  public: 
    template<class Y> 
    static ProxyHandle checkedCast(const ProxyHandle<Y>& r); 
 
    template<class Y> 
    static ProxyHandle checkedCast(const ProxyHandle<Y>& r, 
                                   const ::Ice::Context& c); 
 
    // ... 
  }; 
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}

A checked cast has the same function for proxies as a C++ dynamic_cast 
has for pointers: it allows you to assign a base proxy to a derived proxy. If the 
base proxy’s actual run-time type is compatible with the derived proxy’s static 
type, the assignment succeeds and, after the assignment, the derived proxy 
denotes the same object as the base proxy. Otherwise, if the base proxy’s run-
time type is incompatible with the derived proxy’s static type, the derived 
proxy is set to null. Here is an example to illustrate this:

BasePrx base = ...;     // Initialize base proxy 
DerivedPrx derived; 
derived = DerivedPrx::checkedCast(base); 
if (derived) { 
        // Base has run-time type Derived, 
        // use derived... 
} else { 
        // Base has some other, unrelated type 
}

The expression DerivedPrx::checkedCast(base) tests whether 
base points at an object of type Derived (or an object with a type that is 
derived from Derived). If so, the cast succeeds and derived is set to point at 
the same object as base. Otherwise, the cast fails and derived is set to the 
null proxy.

Note that checkedCast is a static member function so, to do a down-cast, 
you always use the syntax <interface-name>Prx::checkedCast.

Also note that you can use proxies in boolean contexts. For example, 
if (proxy) returns true if the proxy is not null (see Section 6.11.3).

A checkedCast typically results in a remote message to the server.2 The 
message effectively asks the server “is the object denoted by this reference of 
type Derived?” The reply from the server is communicated to the application 
code in form of a successful (non-null) or unsuccessful (null) result. Sending a 
remote message is necessary because, as a rule, there is no way for the client 
to find out what the actual run-time type of a proxy is without confirmation 
from the server. (For example, the server may replace the implementation of 

2. In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the 
optimization applies only in narrowly-defined circumstances, so you cannot rely on a 
checkedCast not sending a message.
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the object for an existing proxy with a more derived one.) This means that you 
have to be prepared for a checkedCast to fail. For example, if the server is 
not running, you will receive a ConnectFailedException; if the server 
is running, but the object denoted by the proxy no longer exists, you will 
receive an ObjectNotExistException.

• Unchecked cast

In some cases, it is known that an object supports a more derived interface than 
the static type of its proxy. For such cases, you can use an unchecked down-
cast:

namespace IceInternal { 
  template<typename T> 
  class ProxyHandle : public IceUtil::HandleBase<T> { 
  public: 
    template<class Y> 
    static ProxyHandle uncheckedCast(const ProxyHandle<Y>& r); 
    // ... 
  }; 
}

An uncheckedCast provides a down-cast without consulting the server as 
to the actual run-time type of the object, for example:

BasePrx base = ...;     // Initialize to point at a Derived 
DerivedPrx derived; 
derived = DerivedPrx::uncheckedCast(base); 
// Use derived...

You should use an uncheckedCast only if you are certain that the proxy 
indeed supports the more derived type: an uncheckedCast, as the name 
implies, is not checked in any way; it does not contact the object in the server 
and, if it fails, it does not return null. (An unchecked cast is implemented 
internally like a C++ static_cast, no checks of any kind are made). If you 
use the proxy resulting from an incorrect uncheckedCast to invoke an 
operation, the behavior is undefined. Most likely, you will receive an 
ObjectNotExistException or OperationNotExistException, 
but, depending on the circumstances, the Ice run time may also report an 
exception indicating that unmarshaling has failed, or even silently return 
garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the 
cost of sending a message to the server. And, particularly during initialization 
(see Chapter 7), it is common to receive a proxy of static type 
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Ice::Object, but with a known run-time type. In such cases, an 
uncheckedCast saves the overhead of sending a remote message.

For convenience, proxy handles also support insertion of a proxy into a stream, for 
example:

Ice::ObjectPrx p = ...; 
cout << p << endl;

This code is equivalent to writing:

Ice::ObjectPrx p = ...; 
cout << p->ice_toString() << endl;

Either code prints the stringified proxy (see Appendix D). You could also achieve 
the same thing by writing:

Ice::ObjectPrx p = ...; 
cout << communicator->proxyToString(p) << endl;

The advantage of using the ice_toString member function instead of prox-
yToString is that you do not need to have the communicator available at the 
point of call.

6.11.3 Object Identity and Proxy Comparison
Apart from the methods discussed in Section 6.11.2, proxy handles also support 
comparison. Specifically, the following operators are supported:

• operator== 
operator!=

These operators permit you to compare proxies for equality and inequality. To 
test whether a proxy is null, use a comparison with the literal 0, for example:

if (proxy == 0) 
    // It's a nil proxy 
else 
    // It's a non-nil proxy

• operator< 
operator<= 
operator> 
operator>=

Proxies support comparison. This allows you to place proxies into STL 
containers such as maps or sorted lists.
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• Boolean comparison

Proxies have a conversion operator to bool. The operator returns true if a 
proxy is not null, and false otherwise. This allows you to write:

BasePrx base = ...; 
if (base) 
        // It's a non-nil proxy 
else 
        // It's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the compar-
ison. This means that not only the object identity must match for a comparison to 
succeed, but other details inside the proxy, such as the protocol and endpoint 
information, must be the same. In other words, comparison with == and != tests 
for proxy identity, not object identity. A common mistake is to write code along 
the following lines:

Ice::ObjectPrx p1 = ...;        // Get a proxy... 
Ice::ObjectPrx p2 = ...;        // Get another proxy... 
 
if (p1 != p2) { 
    // p1 and p2 denote different objects       // WRONG! 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with ==, we know that the two proxies denote the same 
object (because they are identical in all respects); however, if two proxies compare 
unequal with ==, we know absolutely nothing: the proxies may or may not denote 
the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice namespace:

namespace Ice { 
 
    bool proxyIdentityLess(const ObjectPrx&, 
                           const ObjectPrx&); 
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    bool proxyIdentityEqual(const ObjectPrx&, 
                            const ObjectPrx&); 
 
}

The proxyIdentityEqual function returns true if the object identities 
embedded in two proxies are the same and ignores other information in the 
proxies, such as facet and transport information. The proxyIdentityLess 
function establishes a total ordering on proxies. It is provided mainly so you can 
use object identity comparison with STL sorted containers. (The function uses 
name as the major ordering criterion, and category as the minor ordering crite-
rion.)

proxyIdentityEqual allows you to correctly compare proxies for object 
identity:

Ice::ObjectPrx p1 = ...;        // Get a proxy... 
Ice::ObjectPrx p2 = ...;        // Get another proxy... 
 
if (!Ice::proxyIdentityEqual(p1, p2) { 
    // p1 and p2 denote different objects       // Correct 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

6.12 Mapping for Operations

As we saw in Section 6.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy handle. For example, here is part of the defini-
tions for our file system from Section 5.4:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
    // ... 
}; 

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as 
follows:
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namespace IceProxy { 
    namespace Filesystem { 
        class Node : virtual public IceProxy::Ice::Object { 
        public: 
            std::string name(); 
            // ... 
        }; 
        typedef IceInternal::ProxyHandle<Node> NodePrx; 
        // ... 
    } 
    // ... 
}

The name operation returns a value of type string. Given a proxy to an object 
of type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy 
string name = node->name();     // Get name via RPC

The proxy handle overloads operator-> to forward method calls to the under-
lying proxy class instance which, in turn, sends the operation invocation to the 
server, waits until the operation is complete, and then unmarshals the return value 
and returns it to the caller.

Because the return value is of type string, it is safe to ignore the return 
value. For example, the following code contains no memory leak:

NodePrx node = ...;             // Initialize proxy 
node->name();                   // Useless, but no leak

This is true for all mapped Slice types: you can safely ignore the return value of an 
operation, no matter what its type—return values are always returned by value. If 
you ignore the return value, no memory leak occurs because the destructor of the 
returned value takes care of deallocating memory as needed.

6.12.1 Normal, idempotent, and nonmutating Operations
You can add an idempotent or nonmutating qualifier to a Slice operation. As far as 
the signature for the corresponding proxy methods is concerned, neither idempo-
tent nor nonmutating have any effect. For example, consider the following inter-
face:
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interface Example { 
                string op1(); 
    idempotent  string op2(); 
    nonmutating string op3(); 
};

The proxy class for this interface looks like this:

namespace IceProxy { 
    class Example : virtual public IceProxy::Ice::Object { 
    public: 
        std::string op1(); 
        std::string op2();      // idempotent 
        std::string op3();      // nonmutating 
        // ... 
    }; 
}

Because idempotent and nonmutating affect an aspect of call dispatch, not inter-
face, it makes sense for the three methods to look the same.

6.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the C++ mapping are very simple: parameters are 
passed either by value (for small values) or by const reference (for values that 
are larger than a machine word). Semantically, the two ways of passing parame-
ters are identical: it is guaranteed that the value of a parameter will not be changed 
by the invocation (with some caveats—see page 209).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
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    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServer* proxy); 
};

The Slice compiler generates the following code for this definition:

struct NumberAndString { 
    Ice::Int x; 
    std::string str; 
    // ... 
}; 
 
typedef std::vector<std::string> StringSeq; 
 
typedef std::map<Ice::Long, StringSeq> StringTable; 
 
namespace IceProxy { 
    class ClientToServer : virtual public IceProxy::Ice::Object { 
    public: 
        void op1(Ice::Int, Ice::Float, bool, const std::string&); 
        void op2(const NumberAndString&, 
                 const StringSeq&, 
                 const StringTable&); 
        void op3(const ClientToServerPrx&); 
        // ... 
    }; 
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy... 
 
p->op1(42, 3.14, true, "Hello world!"); // Pass simple literals 
 
int i = 42; 
float f = 3.14; 
bool b = true; 
string s = "Hello world!"; 
p->op1(i, f, b, s);                     // Pass simple variables 
 
NumberAndString ns = { 42, "The Answer" }; 
StringSeq ss; 
ss.push_back("Hello world!"); 
StringTable st; 
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st[0] = ss; 
p->op2(ns, ss, st);                     // Pass complex variables 
 
p->op3(p);                              // Pass proxy

You can pass either literals or variables to the various operations. Because every-
thing is passed by value or const reference, there are no memory-management 
issues to consider.

out-Parameters

The C++ mapping passes out-parameters by reference. Here is the Slice definition 
from page 206 once more, modified to pass all parameters in the out direction:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ServerToClient { 
    void op1(out int i, out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 
             out StringSeq ss, 
             out StringTable st); 
    void op3(out ServerToClient* proxy); 
};

The Slice compiler generates the following code for this definition:

namespace IceProxy { 
    class ServerToClient : virtual public IceProxy::Ice::Object { 
    public: 
       void op1(Ice::Int&, Ice::Float&, bool&, std::string&); 
       void op2(NumberAndString&, StringSeq&, StringTable&); 
       void op3(ServerToClientPrx&); 
       // ... 
    }; 
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:
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ServerToClientPrx p = ...;      // Get proxy... 
 
int i; 
float f; 
bool b; 
string s; 
 
p->op1(i, f, b, s); 
// i, f, b, and s contain updated values now 
 
NumberAndString ns; 
StringSeq ss; 
StringTable st; 
 
p->op2(ns, ss, st); 
// ns, ss, and st contain updated values now 
 
p->op3(p); 
// p has changed now!

Again, there are no surprises in this code: the caller simply passes variables to an 
operation; once the operation completes, the values of those variables will be set 
by the server.

It is worth having another look at the final call:

p->op3(p);      // Weird, but well-defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also 
passed as an out-parameter to the call, meaning that the server will set its value. In 
general, passing the same parameter as both an input and output parameter is safe: 
the Ice run time will correctly handle all locking and memory-management activi-
ties.

Another, somewhat pathological example is the following:

sequence<int> Row; 
sequence<Row> Matrix; 
 
interface MatrixArithmetic { 
    void multiply(Matrix m1, 
                  Matrix m2, 
                  out Matrix result); 
};

Given a proxy to a MatrixArithmetic interface, the client code could do the 
following:
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MatrixArithmeticPrx ma = ...;      // Get proxy... 
Matrix m1 = ...;                   // Initialize one matrix 
Matrix m2 = ...;                   // Initialize second matrix 
ma->squareAndCubeRoot(m1, m2, m1); // !!!

This code is technically legal, in the sense that no memory corruption or locking 
issues will arise, but it has surprising behavior: because the same variable m1 is 
passed as an input parameter as well as an output parameter, the final value of m1 
is indeterminate—in particular, if client and server are collocated in the same 
address space, the implementation of the operation will overwrite parts of the 
input matrix m1 in the process of computing the result because the result is written 
to the same physical memory location as one of the inputs. In general, you should 
take care when passing the same variable as both an input and output parameter 
and only do so if the called operation guarantees to be well-behaved in this case.

Chained Invocations

Consider the following simple interface containing two operations, one to set a 
value and one to get it:

interface Name { 
    string getName(); 
    void setName(string name); 
};

Suppose we have two proxies to interfaces of type Name, p1 and p2, and chain 
invocations as follows:

p2->setName(p1->getName());

This works exactly as intended: the value returned by p1 is transferred to p2. 
There are no memory-management or exception safety issues with this code.3

6.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 6.10 on 
page 194) and, if the operation has an exception specification, may also throw 

3. This is worth pointing out because, in CORBA, the equivalent code leaks memory (as does 
ignoring the return value in many cases).
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user exceptions (see Section 6.9 on page 191). Suppose we have the following 
simple interface:

exception Tantrum { 
    string reason; 
}; 
 
interface Child { 
    void askToCleanUp() throws Tantrum; 
};

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:

ChildPrx child = ...;           // Get proxy... 
try { 
    child->askToCleanUp();      // Give it a try... 
} catch (const Tantrum& t) { 
    cout << "The child says: " << t.reason << endl; 
}

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be dealt with by exception handlers higher in the hierarchy. For example:

void run() 
{ 
    ChildPrx child = ...;       // Get proxy... 
    try { 
        child->askToCleanUp();  // Give it a try... 
    } catch (const Tantrum& t) { 
        cout << "The child says: " << t.reason << endl; 
 
        child->scold();         // Recover from error... 
    } 
    child->praise();            // Give positive feedback... 
} 
 
int 
main(int argc, char* argv[]) 
{ 
    int status = 1; 
    try { 
        // ... 
        run(); 
        // ... 
        status = 0; 
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    } catch (const Ice::Exception& e) { 
        cerr << "Unexpected run-time error: " << e << endl; 
    } 
    // ... 
    return status; 
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

For efficiency reasons, you should always catch exceptions by const refer-
ence. This permits the compiler to avoid calling the exception’s copy constructor 
(and, of course, prevents the exception from being sliced to a base type).

Exceptions and out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may have still have its original value 
or may have been changed by the operation’s implementation in the target object. 
In other words, for out-parameters, Ice provides the weak exception 
guarantee [21] but does not provide the strong exception guarantee.4

Exceptions and Return Values

For return values, C++ provides the guarantee that a variable receiving the return 
value of an operation will not be overwritten if an exception is thrown. (Of course, 
this guarantee holds only if you do not use the same variable as both an out-
parameter and to receive the return value of an invocation (see page 209).)

6.14 Mapping for Classes

Slice classes are mapped to C++ classes with the same name. The generated class 
contains a public data member for each Slice data member, and a virtual member 
function for each operation. Consider the following class definition:

4. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.



6.14 Mapping for Classes 213

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 -59 
    string format();    // Return time as hh:mm:ss 
};

The Slice compiler generates the following code for this definition:5

class TimeOfDay; 
 
typedef IceInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx
; 
typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr; 
 
class TimeOfDay : virtual public Ice::Object { 
public: 
    Ice::Short hour; 
    Ice::Short minute; 
    Ice::Short second; 
 
    virtual std::string format() = 0; 
 
    TimeOfDay() {}; 
    TimeOfDay(Ice::Short, Ice::Short, Ice::Short); 
 
    virtual bool ice_isA(const std::string&); 
    virtual const std::string& ice_id(); 
    static const std::string& ice_staticId(); 
 
    typedef TimeOfDayPrx ProxyType; 
    typedef TimeOfDayPtr PointerType; 
 
    // ... 
};

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice::Object. This means 
that all classes implicitly inherit from Ice::Object, which is the ultimate 
ancestor of all classes. Note that Ice::Object is not the same as 
IceProxy::Ice::Object. In other words, you cannot pass a class where 

5. The ProxyType and PointerType definitions are for template programming (see 
page 197).
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a proxy is expected and vice versa. (However, you can pass a proxy for the 
class—see Section 6.14.6.)

2. The generated class contains a public member for each Slice data member.

3. The generated class has a constructor that takes one argument for each data 
member, as well as a default constructor.

4. The generated class contains a pure virtual member function for each Slice 
operation.

5. The generated class contains additional member functions: ice_isA, 
ice_id, ice_staticId, and ice_factory.

6. The compiler generates a type definition TimeOfDayPtr. This type imple-
ments a smart pointer that wraps dynamically-allocated instances of the class. 
In general, the name of this type is <class-name>Ptr. Do not confuse this 
with <class-name>Prx—that type exists as well, but is the proxy handle 
for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.

6.14.1 Inheritance from Ice::Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice::Object. However, as shown in Figure 6.1, classes inherit from 
Ice::Object instead of Ice::ObjectPrx (which is at the base of the inher-
itance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 6.1. Inheritance from Ice::ObjectPrx and Ice::Object.

Ice::Object contains a number of member functions:

Ice::ObjectPrx

Proxies... Classes...

Ice::Object



6.14 Mapping for Classes 215

namespace Ice { 
    class Object : public IceUtil::GCShared { 
    public: 
        virtual bool ice_isA(const std::string&, 
                             const Current& = Current()) const; 
        virtual void ice_ping(const Current&  = Current()) const; 
        virtual std::vector<std::string> ice_ids( 
                             const Current& = Current()) const; 
        virtual const std::string& ice_id( 
                             const Current& = Current()) const; 
        static const std::string& ice_staticId(); 
        virtual Ice::Int ice_getHash() const; 
        virtual ObjectPtr ice_clone() const; 
 
        virtual void ice_preMarshal(); 
        virtual void ice_postUnmarshal(); 
 
        virtual bool operator==(const Object&) const; 
        virtual bool operator!=(const Object&) const; 
        virtual bool operator<(const Object&) const; 
        virtual bool operator<=(const Object&) const; 
        virtual bool operator>(const Object&) const; 
        virtual bool operator>=(const Object&) const; 
    }; 
}

The member functions of Ice::Object behave as follows:

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a smart pointer to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_staticId

This function returns the static type ID of a class.
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• ice_getHash

This method returns a hash value for the class, allowing you to easily place 
classes into hash tables.

• ice_clone

This function makes a polymorphic shallow copy of a class (see page 226).

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

• operator== 
operator!= 
operator< 
operator<= 
operator> 
operator>=

The comparison operators permit you to use classes as elements of STL sorted 
containers. Note that sort order is based on the data members of the class, as 
for structures (see Section 6.12).

6.14.2 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for 
each data member in the Slice definition, the generated class contains a corre-
sponding public data member.

6.14.3 Class Constructors
Classes have a default constructor. This constructor default-constructs each data 
member. This means that, for members of simple built-in type, such as integers, 
the default constructor performs no initialization, whereas members of complex 
type, such as strings, sequences, and dictionaries, are initialized by their own 
default constructor.
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In addition, classes have a second constructor that has one parameter for each 
data member. This allows you to construct and initialize a class instance in a 
single statement (instead of first having to construct the instance and then 
assigning to its members).

For derived classes, the constructor has one parameter for each of the base 
class’s data members, plus one parameter for each of the derived class’s data 
members, in base-to-derived order. For example:

class Base { 
    int i; 
}; 
 
class Derived extends Base { 
    string s; 
};

This generates:

class Base : virtual public ::Ice::Object 
{ 
public: 
    ::Ice::Int i; 
 
    Base() {}; 
    explicit Base(::Ice::Int); 
 
    // ... 
}; 
 
class Derived : virtual public Base 
{ 
public: 
    ::std::string s; 
 
    Derived() {}; 
    Derived(::Ice::Int, const ::std::string&); 
 
    // ... 
};

Note that single-parameter constructors are defined as explicit, to prevent 
implicit argument conversions.
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6.14.4 Operations of Classes
Operations of classes are mapped to pure virtual member functions in the gener-
ated class. This means that, if a class contains operations (such as the format 
operation of our TimeOfDay class), you must provide an implementation of the 
operation in a class that is derived from the generated class. For example:6

class TimeOfDayI : virtual public TimeOfDay { 
public: 
    virtual std::string format() { 
        std::ostringstream s; 
        s << setw(2) << setfill('0') << hour << ":"; 
        s << setw(2) << setfill('0') << minute << ":"; 
        s << setw(2) << setfill('0') << second; 
        return s.c_str(); 
    } 
 
protected: 
    virtual ~TimeOfDayI {}  // Optional 
};

6.14.5 Class Factories
Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time { 
    TimeOfDay get(); 
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

6. We discuss the motivation for the protected destructor on page 228.
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module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
 
    local interface Communicator { 
        void addObjectFactory(ObjectFactory factory, string id); 
        ObjectFactory findObjectFactory(string id); 
        // ... 
    }; 
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
};

The object factory’s create operation is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy operation is called by the 
Ice run time when its communicator is destroyed. A possible implementation of 
our object factory is:

class ObjectFactory : public Ice::ObjectFactory { 
public: 
    virtual Ice::ObjectPtr create(const std::string& type) { 
        assert(type == "::M::TimeOfDay"); 
        return new TimeOfDayI; 
    } 
    virtual void destroy() {} 
};

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it is "::M::TimeOfDay", it 
instantiates and returns a TimeOfDayI object. For other type IDs, it asserts 
because it does not know how to instantiate other types of objects.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:
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Ice::CommunicatorPtr ic = ...; 
ic->addObjectFactory(new ObjectFactory, "::M::TimeOfDay");

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

6.14.6 Smart Pointers for Classes
A recurring theme for C++ programmers is the need to deal with memory alloca-
tions and deallocations in their programs. The difficulty of doing so is well 
known: in the face of exceptions, multiple return paths from functions, and callee-
allocated memory that must be deallocated by the caller, it can be extremely diffi-
cult to ensure that a program does not leak resources. This is particularly impor-
tant in multi-threaded programs: if you do not rigorously track ownership of 
dynamic memory, a thread may delete memory that is still used by another thread, 
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart 
pointers use reference counting to keep track of each class instance and, when the 
last reference to a class instance disappears, automatically delete the instance.7 
Smart pointers are generated by the Slice compiler for each class type. For a Slice 
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class <class-name>, the compiler generates a C++ smart pointer called 
<class-name>Ptr. Rather than showing all the details of the generated class, 
here is the basic usage pattern: whenever you allocate a class instance on the heap, 
you simply assign the pointer returned from new to a smart pointer for the class. 
Thereafter, memory management is automatic and the class instance is deleted 
once the last smart pointer for it goes out of scope:

{                                       // Open scope 
    TimeOfDayPtr tod = new TimeOfDayI;  // Allocate instance 
    // Initialize... 
    tod->hour = 18; 
    tod->minute = 11; 
    tod->second = 15; 
    // ... 
}                                       // No memory leak here!

As you can see, you use operator-> to access the members of the class via its 
smart pointer. When the tod smart pointer goes out of scope, its destructor runs 
and, in turn, the destructor takes care of calling delete on the underlying class 
instance, so no memory is leaked.

The smart pointers perform reference counting of their underlying class 
instance:

• The constructor of a class sets its reference count to zero.

• Initializing a smart pointer with a dynamically-allocated class instance causes 
the smart pointer to increment the reference count for the class by one.

• Copy constructing a smart pointer increments the reference count for the class 
by one.

• Assigning one smart pointer to another increments the target’s reference count 
and decrements the source’s reference count. (Self-assignment is safe.)

• The destructor of a smart pointer decrements the reference count by one and 
calls delete on its class instance if the reference count drops to zero.

Figure 6.2 shows the situation after default-constructing a smart pointer as 
follows:

TimeOfDayPtr tod;

7. Smart pointer classes are an example of the RAII (Resource Acquisition Is Initialization) 
idiom [20].
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This creates a smart pointer with an internal null pointer.

Figure 6.2. Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; 
the assignment to the class pointer causes the smart pointer to increment the 
class’s reference count:

tod = new TimeOfDayI;   // Refcount == 1

The resulting situation is shown in Figure 6.3.

Figure 6.3. Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the 
smart pointer (not the underlying instance) and increments the reference count of 
the instance:

TimeOfDayPtr tod2(tod); // Copy-construct tod2 
TimeOfDayPtr tod3; 
tod3 = tod;             // Assign to tod3

The situation after executing these statements is shown in Figure 6.4:

Figure 6.4. Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to 
one of the original smart pointers, tod2:

tod

tod
1

tod
3

tod2

tod3
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tod2 = new TimeOfDayI;

This decrements the reference count of the class originally denoted by tod2 
and increments the reference count of the class that is assigned to tod2. The 
resulting situation is shown in Figure 6.5.

Figure 6.5. Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

tod = 0;        // Clear handle

As you would expect, this decrements the reference count of the instance, as 
shown in Figure 6.6.

Figure 6.6. Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to 
it, the smart pointer decrements the reference count of its instance; if the reference 
count drops to zero, the smart pointer calls delete to deallocate the instance. 
The following code snippet deallocates the instance on the right by assigning 
tod2 to tod3:

tod3 = tod2;

tod
2

tod2

tod3

1

tod
1

tod2

tod3

1
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This results in the situation shown in Figure 6.7.

Figure 6.7. Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so 
you can copy and assign class instances:

TimeOfDayPtr tod = new TimeOfDayI(2, 3, 4); // Create instance 
TimeOfDayPtr tod2 = new TimeOfDayI(*tod);   // Copy instance 
 
TimeOfDayPtr tod3 = new TimeOfDayI; 
*tod3 = *tod;                               // Assign instance

Copying and assignment in this manner performs a memberwise shallow copy 
or assignment, that is, the source members are copied into the target members; if a 
class contains class members (which are mapped as smart pointers), what is 
copied or assigned is the smart pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

class Node { 
    int i; 
    Node next; 
};

Assume that we initialize two instances of type Node as follows:

NodePtr p1 = new Node(99, new Node(48, 0)); 
NodePtr p2 = new Node(23, 0); 
 
// ... 
 
*p2 = *p1; // Assignment

tod
0

tod2

tod3

2
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After executing the first two statements, we have the situation shown in 
Figure 6.8.

Figure 6.8. Class instances prior to assignment.

After executing the assignment statement, we end up with the result shown in 
Figure 6.9.

Figure 6.9. Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract 
classes, such as our TimeOfDayI class, for example:

class TimeOfDayI; 
 
typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr; 
 
class TimeOfDayI : virtual public TimeOfDay { 
    // As before... 
};

p1
1 1

i: 48 
next:

i: 99 
next:
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next:
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The default copy constructor and assignment operator will perform a memberwise 
copy or assignment of your implementation class:

TimeOfDayIPtr tod1 = new TimeOfDayI; 
TimeOfDayIPtr tod2 = new TimeOfDayI(*tod1);     // Make copy

Of course, if your implementation class contains raw pointers (for which a 
memberwise copy would almost certainly be inappropriate), you must implement 
your own copy constructor and assignment operator that take the appropriate 
action (and probably call the base copy constructor or assignment operator to take 
care of the base part).

Note that the preceding code uses TimeOfDayIPtr as a typedef for 
IceUtil::Handle<TimeOfDayI>. This class is a template that contains the 
smart pointer implementation. If you want smart pointers for the implementation 
of an abstract class, you must define a smart pointer type as illustrated by this type 
definition.

Copying and assignment of classes also works correctly for derived classes: 
you can assign a derived class to a base class, but not vice-versa; during such an 
assignment, the derived part of the source class is sliced, as per the usual C++ 
assignment semantics.

Polymorphic Copying of Classes

As shown in Section 6.14.1 on page 214, the C++ mapping generates an 
ice_clone member function for every class:

class TimeOfDay : virtual public Ice::Object { 
public: 
    // ... 
 
    virtual Ice::ObjectPtr ice_clone() const; 
};

This member function makes a polymorphic shallow copy of a class: members 
that are not class members are deep copied; all members that are class members 
are shallow copied. To illustrate, consider the following class definition:

class Node { 
    Node n1; 
    Node n2; 
};
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Assume that we have an instance of this class, with the n1 and n2 members 
initialized to point at separate instances, as shown in Figure 6.10.

Figure 6.10. A class instance pointing at two other instances.

If we call ice_clone on the instance on the left, we end up with the situation 
shown in Figure 6.11.

Figure 6.11. Resulting graph after calling ice_clone on the left-most instance of Figure 6.10.

As you can see, class members are shallow copied, that is, ice_clone makes a 
copy of the class instance on which it is invoked, but does not copy any class 
instances that are pointed at by the copied instance.

Note that ice_clone returns a value of type Ice::ObjectPtr, to avoid 
problems with compilers that do not support covariant return types. The generated 
Ptr classes contain a dynamicCast member that allows you to safely down-
cast the return value of ice_clone. For example, the code to achieve the situa-
tion shown in Figure 6.11 looks as follows:

NodePtr p1 = new Node(new Node, new Node); 
NodePtr p2 = NodePtr::dynamicCast(p1->ice_clone());

ice_clone is generated by the Slice compiler for concrete classes (that is, 
classes that do not have operations). However, because classes with operations are 
abstract, for abstract classes, the generated ice_clone cannot know how to 
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p1

n1

n2

n1

n2

p1
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instantiate an instance of the derived concrete class (because the name of the 
derived class is not known). This means that, for abstract classes, the generated 
ice_clone throws a CloneNotImplementedException.

If you want to clone the implementation of an abstract class, you must over-
ride the virtual ice_clone member in your concrete implementation class. For 
example:

class TimeOfDayI : public TimeOfDay { 
public: 
    virtual Ice::ObjectPtr ice_clone() const 
    { 
        return new TimeOfDayI(*this); 
    } 
};

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This 
means that if you attempt to dereference a null smart pointer, you get an 
IceUtil::NullHandleException:

TimeOfDayPtr tod;               // Construct null handle 
 
try { 
    tod->minute = 0;            // Dereference null handle 
    assert(false);              // Cannot get here 
} catch (const IceUtil::NullHandleException&) { 
    ; // OK, expected 
} catch (...) { 
    assert(false);              // Must get NullHandleException 
}

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allo-
cating class instances on the stack or in static variables is pragmatically useless 
because all the Ice APIs expect parameters that are smart pointers, not class 
instances. This means that, to do anything with a stack-allocated class instance, 
you must initialize a smart pointer for the instance. However, doing so does not 
work because it inevitably leads to a crash:
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{                               // Enter scope 
    TimeOfDayI t;               // Stack-allocated class instance 
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance 
 
    todp = &t;                  // Legal, but dangerous 
    // ... 
}                               // Leave scope, looming crash!

This goes badly wrong because, when todp goes out of scope, it decrements the 
reference count of the class to zero, which then calls delete on itself. However, 
the instance is stack-allocated and cannot be deleted, and we end up with unde-
fined behavior (typically, a core dump).

The following attempt to fix this is also doomed to failure:

{                               // Enter scope 
    TimeOfDayI t;               // Stack-allocated class instance 
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance 
 
    todp = &t;                  // Legal, but dangerous 
    // ... 
    todp = 0;                   // Crash imminent! 
}

This code attempts to circumvent the problem by clearing the smart pointer 
explicitly. However, doing so also causes the smart pointer to drop the reference 
count on the class to zero, so this code ends up with the same call to delete on 
the stack-allocated instance as the previous example.

The upshot of all this is: never allocate a class instance on the stack or in a 
static variable. The C++ mapping assumes that all class instances are allocated on 
the heap and no amount of coding trickery will change this.8

You can prevent allocation of class instances on the stack or in static variables 
by adding a protected destructor to your implementation of the class: if a class has 
a protected destructor, allocation must be made with new, and static or stack allo-
cation causes a compile time error. In addition, explicit calls to delete on a 
heap-allocated instance also are flagged at compile time. You may want to habitu-
ally add a protected destructor to your implementation of abstract Slice classes to 
protect yourself from accidental heap allocation, as shown on page 218. (For Slice 

8. You could abuse the __setNoDelete member (described on page 232) to disable dealloca-
tion, but we strongly discourage you from doing this.
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classes that do not have operation, the Slice compiler automatically adds a 
protected destructor.)

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to 
leave a scope containing a stack-allocated smart pointer, the C++ run time ensures 
that the smart pointer’s destructor is called, so no resource leaks can occur:

{ // Enter scope... 
 
    TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance 
 
    someFuncThatMightThrow();          // Might throw... 
 
    // ... 
 
} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of tod runs and ensures that it deallo-
cates the underlying class instance.

There is one potential pitfall you must be aware of though: if a constructor of a 
base class throws an exception, and another class instance holds a smart pointer to 
the instance being constructed, you can end up with a double deallocation. 
Consider the following example, which reduces the problem to its bare-bones 
minimum:

class Base; 
typedef IceUtil::Handle<Base> BasePtr; 
 
class Listener : public virtual IceUtil::Shared { 
public: 
    Listener(BasePtr p) { 
        _parent = p; 
    } 
 
    virtual ~Listener() { 
        _parent = 0; 
    } 
 
private: 
    BasePtr _parent; 
}; 
 
typedef IceUtil::Handle<Listener> ListenerPtr; 
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class Base : public virtual IceUtil::Shared { 
public: 
    Base() { 
        _listener = new Listener(this); 
    } 
 
    virtual ~Base() { 
        _listener = 0; 
    } 
 
private: 
    ListenerPtr _listener; 
}; 
 
class Derived : public virtual Base { 
public: 
    Derived() { 
        if (errorCondition) 
            throw "Some error"; 
    } 
}; 
 
typedef IceUtil::Handle<Derived> DerivedPtr; 
 
int main() 
{ 
    try { 
        DerivedPtr d = new Derived; 
    } catch (...) { 
        // ... 
    } 
    return 0; 
}

This type of code is used, for example, for the listener pattern [2]. Consider what 
happens when the statement

DerivedPtr d = new Derived;

is executed in main and errorCondition is true:

1. The Base constructor is called (because Base is a base class of Derived).

2. The constructor of Base allocates an instance of Listener, which results in 
a call to the Listener constructor.
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3. The Listener constructor assigns its argument to the _parent member, 
which leaves the reference count of the Derived object being instantiated at 
one.

4. The Listener constructor completes and returns control to the Base 
constructor, which assigns the newly-constructed Listener object to its 
_listener member, of type ListenerPtr. At this point, the reference 
count of the Listener object changes from zero to one.

5. The Base constructor completes, so the C++ run time continues to construct 
the Derived object being instantiated by calling the Derived constructor.

6. The Derived constructor throws an exception. As a result, the C++ run time 
calls the Base destructor.

7. The Base destructor assigns null to its _listener member, which drops 
the reference count of its Listener object to zero. As a result, the 
Listener object calls delete this;.

8. The Listener destructor runs and assigns null to its _listener member. 
The _listener smart pointer drops the reference count of its Base object 
to zero. As a result, the Base object calls delete this;.

9. The C++ run time calls the Base destructor.

At this point, the program shows undefined behavior (usually, dumps core) 
because the Base destructor is called a second time on the same object.

We can solve the problem by telling the Derived instance that it should not 
deallocate itself while the Derived constructor may still throw an exception. 
The IceUtil::Shared class provides a __setNoDelete member function 
that allows us to do this:

class Derived : public virtual Base { 
public: 
    Derived() { 
        __setNoDelete(true); 
        if (errorCondition) 
            throw "Some error"; 
        __setNoDelete(false); 
    } 
};

Here, we have changed the Derived constructor to disable deallocation of its 
object until we know that no more exceptions can be thrown. Once the constructor 
is certain to complete successfully, it enables deallocation again, so the object will 
be deallocated once its reference count drops to zero.
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Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal 
with cyclic dependencies. For example, consider the following simple self-refer-
ential class:

class Node { 
    int val; 
    Node next; 
};

Intuitively, this class implements a linked list of nodes. As long as there are no 
cycles in the list of nodes, everything is fine, and our smart pointers will correctly 
deallocate the class instances. However, if we introduce a cycle, we have a 
problem:

{                          // Open scope... 
 
    NodePtr n1 = new Node; // N1 refcount == 1 
    NodePtr n2 = new Node; // N2 refcount == 1 
    n1->next = n2;         // N2 refcount == 2 
    n2->next = n1;         // N1 refcount == 2 
 
} // Destructors run:      // N2 refcount == 1, 
                           // N1 refcount == 1, memory leak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustra-
tion, let us assume that n1’s node is called N1, and n2’s node is called N2. When 
we allocate the N1 instance and assign it to n1, the smart pointer n1 increments 
N1’s reference count to 1. Similarly, N2’s reference count is 1 after allocating the 
node and assigning it to n2. The next two statements set up a cyclic dependency 
between n1 and n2 by making their next pointers point at each other. This sets 
the reference count of both N1 and N2 to 2. When the enclosing scope closes, the 
destructor of n2 is called first and decrements N2’s reference count to 1, followed 
by the destructor of n1, which decrements N1’s reference count to 1. The net 
effect is that neither reference count ever drops to zero, so both N1 and N2 are 
leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference 
counts for deallocation: if a cyclic dependency exists anywhere in a graph 
(possibly via many intermediate nodes), all nodes in the cycle are leaked.
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To avoid memory leaks due to such cycles, Ice for C++ contains a garbage 
collector. The collector identifies class instances that are part of one or more 
cycles but are no longer reachable from the program and deletes such instances:

• By default, garbage is collected whenever you destroy a communicator. This 
means that no memory is leaked when your program exits. (Of course, this 
assumes that you correctly destroy your communicators as described in 
Section 8.3.)

• You can also explicitly call the garbage collector by calling 
Ice::collectGarbage. For example, the leak caused by the preceding 
example can be avoided as follows:

{                          // Open scope... 
 
    NodePtr n1 = new Node; // N1 refcount == 1 
    NodePtr n2 = new Node; // N2 refcount == 1 
    n1->next = n2;         // N1 refcount == 2 
    n2->next = n1;         // N2 refcount == 2 
 
} // Destructors run:      // N2 refcount == 1, 
                           // N1 refcount == 1 
 
Ice::collectGarbage();     // Deletes N1 and N2

The call to Ice::collectGarbage deletes the no longer reachable 
instances N1 and N2 (as well as any other non-reachable instances that may 
have accumulated earlier).

• Deleting leaked memory with explicit calls to the garbage collector can be 
inconvenient because it requires polluting the code with calls to the collector. 
You can ask the Ice run time to run a garbage collection thread that periodi-
cally cleans up leaked memory by setting the property Ice.GC.Interval 
to a non-zero value.9 For example, setting Ice.GC.Interval to 5 causes 
the collector thread to run the garbage collector once every five seconds. You 
can trace the execution of the collector by setting Ice.Trace.GC to a non-
zero value (Appendix C).

Note that the garbage collector is useful only if your program actually creates 
cyclic class graphs. There is no point in running the garbage collector in programs 
that do not create such cycles. (For this reason, the collector thread is disabled by 

9. See Chapter 28 for how to set properties.
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default and runs only if you explicitly set Ice.GC.Interval to a non-zero 
value.)

Smart Pointer Comparison

As for proxy handles (see Section 6.11.3 on page 202), class handles support the 
comparison operators ==, !=, and <. This allows you to use class handles in STL 
sorted containers. Be aware that, for smart pointers, object identity is not used for 
the comparison, because class instances do not have identity. Instead, these opera-
tors simply compare the memory address of the classes they point to. This means 
that operator== returns true only if two smart pointers point at the same phys-
ical class instance:

// Create a class instance and initialize 
// 
TimeOfDayIPtr p1 = new TimeOfDayI; 
p1->hour = 23; 
p1->minute = 10; 
p1->second = 18; 
 
// Create another class instance with 
// the same member values 
// 
TimeOfDayIPtr p2 = new TimeOfDayI; 
p2->hour = 23; 
p2->minute = 10; 
p2->second = 18; 
 
assert(p1 != p2);       // The two do not compare equal 
 
TimeOfDayIPtr p3 = p1;  // Point at first class again 
 
assert(p1 == p3);       // Now they compare equal

6.15 slice2cpp Command-Line Options

The Slice-to-C++ compiler, slice2cpp, offers the following command-line 
options in addition to the standard options described in Section 4.19:

• --header-ext EXT

Changes the file extension for the generated header files from the default h to 
the extension specified by EXT.
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• --source-ext EXT

Changes the file extension for the generated source files from the default cpp 
to the extension specified by EXT.

• --add-header HDR[,GUARD]

This option adds an include directive for the specified header at the beginning 
of the generated source file (preceding any other include directives). If GUARD 
is specified, the include directive is protected by the specified guard. For 
example, --add-header precompiled.h,__PRECOMPILED_H__ 
results in the following directives at the beginning of the generated source file:

#ifndef __PRECOMPILED_H__ 
#define __PRECOMPILED_H__ 
#include <precompiled.h> 
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to inte-
grate the generated code with a compiler’s precompiled header mechanism.

• --include-dir DIR

Modifies #include directives in source files to prepend the pathname of 
each header file with the directory DIR. See Section 6.15.1 for more informa-
tion.

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --depend

Prints makefile dependency information to standard output. No code is gener-
ated when this option is specified. The output generally needs to be filtered 
before it can be included in a makefile; the Ice build system uses the script 
config/makedepend.py for this purpose.

• --dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to 
selectively export or import global symbols in the generated code. As an 
example, compiling a Slice definition with

$ slice2cpp --dll-export ENABLE_DLL x.ice

results in the following additional code being generated into x.h:

#ifndef ENABLE_DLL 
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#   ifdef ENABLE_DLL_EXPORTS 
#       define ENABLE_DLL ICE_DECLSPEC_EXPORT 
#   else 
#       define ENABLE_DLL ICE_DECLSPEC_IMPORT 
#   endif 
#endif

ICE_DECLSPEC_EXPORT and ICE_DECLSPEC_IMPORT are platform-
specific macros. For example, for Windows, they are defined as 
__declspec(dllexport) and __declspec(dllimport), respec-
tively; for Solaris using CC version 5.5 or later, ICE_DECLSPEC_EXPORT is 
defined as __global, and ICE_DECLSPEC_IMPORT is empty.10

The symbol name you specify on the command line (ENABLE_DLL in this 
example) is used by the generated code to export or import any symbols that 
must be visible to code outside the generated compilation unit. The net effect 
is that, if you want to create a DLL that includes x.cpp, but also want to use 
the generated types in compilation units outside the DLL, you can arrange for 
the relevant symbols to be exported by compiling x.cpp with 
-DENABLE_DLL_EXPORTS.

• --checksum

Generate checksums for Slice definitions.

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

6.15.1 Include Directives
The #include directives generated by the Slice-to-C++ compiler can be a 
source of confusion if the semantics governing their generation are not well-
understood. The generation of #include directives is influenced by the 
command-line options -I and --include-dir; these options are discussed in 
more detail below. The --output-dir option directs the translator to place all 
generated files in a particular directory, but has no impact on the contents of the 
generated code.

Given that the #include directives in header files and source files are gener-
ated using different semantics, we describe them in separate sections.

10.Similar definitions exist for other platforms. For platforms that do not have any concept of 
explicit export or import of shared library symbols, both macros are empty.
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Header Files

In most cases, the compiler generates the appropriate #include directives by 
default. As an example, suppose file A.ice includes B.ice using the following 
statement:

// A.ice 
#include <B.ice>

Assuming both files are in the current working directory, we run the compiler as 
shown below:

$ slice2cpp -I. A.ice

The generated file A.h contains this #include directive:

// A.h 
#include <B.h>

If the proper include paths are specified to the C++ compiler, everything should 
compile correctly.

Similarly, consider the common case where A.ice includes B.ice from a 
subdirectory:

// A.ice 
#include <inc/B.ice>

Assuming both files are in the inc subdirectory, we run the compiler as shown 
below:

$ slice2cpp -I. inc/A.ice

The default output of the compiler produces this #include directive in A.h:

// A.h 
#include <inc/B.h>

Again, it is the user’s responsibility to ensure that the C++ compiler is configured 
to find inc/B.h during compilation.

Now let us consider a more complex example, in which we do not want the 
#include directive in the header file to match that of the Slice file. This can be 
necessary when the organizational structure of the Slice files does not match the 
application’s C++ code. In such a case, the user may need to relocate the gener-
ated files from the directory in which they were created, and the #include 
directives must be aligned with the new structure.

For example, let us assume that B.ice is located in the subdirectory 
slice/inc:
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// A.ice 
#include <slice/inc/B.ice>

However, we do not want the slice subdirectory to appear in the #include 
directive generated in the header file, therefore we specify the additional compiler 
option -Islice:

$ slice2cpp -I. -Islice slice/inc/A.ice

The generated code demonstrates the impact of this extra option:

// A.h 
#include <inc/B.h>

As you can see, the #include directives generated in header files are affected by 
the include paths that you specify when running the compiler. Specifically, the 
include paths are used to abbreviate the pathname in generated #include direc-
tives.

When translating an #include directive from a Slice file to a header file, the 
compiler compares each of the include paths against the path of the included file. 
If an include path matches the leading portion of the included file, the compiler 
removes that leading portion when generating the #include directive in the 
header file. If more than one include path matches, the compiler selects the one 
that results in the shortest path for the included file.

For example, suppose we had used the following options when compiling 
A.ice:

$ slice2cpp -I. -Islice -Islice/inc slice/inc/A.ice

In this case, the compiler compares all of the include paths against the included 
file slice/inc/B.ice and generates the following directive:

// A.h 
#include <B.h>

The option -Islice/inc produces the shortest result, therefore the default path 
for the included file (slice/inc/B.h) is replaced with B.h.

In general, the -I option plays two roles: it enables the preprocessor to locate 
included Slice files, and it provides you with a certain amount of control over the 
generated #include directives. In the last example above, the preprocessor 
locates slice/inc/B.ice using the include path specified by the -I. option. 
The remaining -I options do not help the preprocessor locate included files; they 
are simply hints to the compiler.

Finally, we recommend using caution when specifying include paths. If the 
preprocessor is able to locate an included file via multiple include paths, it always 
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uses the first include path that successfully locates the file. If you intend to modify 
the generated #include directives by specifying extra -I options, you must 
ensure that your include path hints match the include path selected by the prepro-
cessor to locate the included file. As a general rule, you should avoid specifying 
include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #include directives in source files using 
only the base name of the included file. This behavior is usually appropriate when 
the source file and header file reside in the same directory.

For example, suppose A.ice includes B.ice from a subdirectory, as shown 
in the following snippet of A.ice:

// A.ice 
#include <inc/B.ice>

We generate the source file using this command:

$ slice2cpp -I. inc/A.ice

Upon examination, we see that the source file contains the following #include 
directive:

// A.cpp 
#include <B.h>

However, suppose that we wish to enforce a particular standard for generated 
#include directives so that they are compatible with our C++ compiler’s 
existing include path settings. In this case, we use the --include-dir option 
to modify the generated code. For example, consider the compiler command 
shown below:

$ slice2cpp --include-dir src -I. inc/A.ice

The source file now contains the following #include directive:

// A.cpp 
#include <src/B.h>

Any leading path in the included file is discarded as usual, and the value of the --
include-dir option is prepended.
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6.16 Using Slice Checksums

As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cpp, the --checksum option causes the 
compiler to generate code in each C++ source file that accumulates checksums in 
a global map. A copy of this map can be obtained by calling a function defined in 
the header file Ice/SliceChecksums.h:

namespace Ice { 
    Ice::SliceChecksumDict sliceChecksums(); 
}

In order to verify a server’s checksums, a client could simply compare the dictio-
naries using the equality operator. However, this is not feasible if it is possible that 
the server might be linked with more Slice definitions than the client. A more 
general solution is to iterate over the local checksums as demonstrated below:

Ice::SliceChecksumDict serverChecksums = ... 
Ice::SliceChecksumDict localChecksums = Ice::sliceChecksums(); 
 
for (Ice::SliceChecksumDict::const_iterator 
     p = localChecksums.begin(); 
     p != localChecksums.end(); ++p) { 
 
    Ice::SliceChecksumDict::const_iterator q 
        = serverChecksums.find(p->first); 
    if(q == serverChecksums.end()) { 
        // No match found for type id! 
    } else if(p->second != q->second) { 
        // Checksum mismatch! 
    } 
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.

6.17 A Comparison with the CORBA C++ Mapping

Comparing the Slice and the CORBA C++ mappings is somewhat difficult 
because they are so different. As any CORBA C++ developer will know, the 
CORBA C++ mapping is large and complex and, in places, arcane. For example, 
the developer is burdened with a large number of error-prone memory manage-
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ment responsibilities, and the rules for what must be deallocated by the developer 
and what is deallocated by the ORB are inconsistent.

Overall, the Ice C++ mapping is much easier to use, integrates with STL and, 
due to the smaller amount of generated code, is much more efficient.
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Chapter 7
Developing a File System Client in 
C++

7.1 Chapter Overview

In this chapter, we present the source code for a C++ client that accesses the file 
system we developed in Chapter 5 (see Chapter 9 for the corresponding server).

7.2 The C++ Client

We now have seen enough of the client-side C++ mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
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        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

#include <Ice/Ice.h> 
#include <Filesystem.h> 
#include <iostream> 
#include <iterator> 
 
using namespace std; 
using namespace Filesystem; 
 
static void 
listRecursive(const DirectoryPrx& dir, int depth = 0) 
{ 
    // ... 
} 
 
int 
main(int argc, char* argv[]) 
{ 
    int status = 0; 
    Ice::CommunicatorPtr ic; 
    try { 
        // Create a communicator 
        // 
        ic = Ice::initialize(argc, argv); 
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        // Create a proxy for the root directory 
        // 
        Ice::ObjectPrx base 
            = ic->stringToProxy("RootDir:default -p 10000"); 
        if (!base) 
            throw "Could not create proxy"; 
 
        // Down-cast the proxy to a Directory proxy 
        // 
        DirectoryPrx rootDir = DirectoryPrx::checkedCast(base); 
        if (!rootDir) 
            throw "Invalid proxy"; 
 
        // Recursively list the contents of the root directory 
        // 
        cout << "Contents of root directory:" << endl; 
        listRecursive(rootDir); 
    } catch (const Ice::Exception& ex) { 
        cerr << ex << endl; 
        status = 1; 
    } catch (const char* msg) { 
        cerr << msg << endl; 
        status = 1; 
    } 
 
    // Clean up 
    // 
    if (ic) 
        ic->destroy(); 
 
    return status; 
}

1. The code includes a few header files:

1.Ice/Ice.h

This file is always included in both client and server source files. It provides 
definitions that are necessary for accessing the Ice run time.

2.Filesystem.h

This is the header that is generated by the Slice compiler from the Slide defi-
nitions in Filesystem.ice.

3.iostream

The client uses the iostream library to produce its output.
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4.iterator

The implementation of listRecursive uses an STL iterator.

2. The code adds using declarations for the std and Filesystem 
namespaces.

3. The structure of the code in main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

4. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive:

// Recursively print the contents of directory "dir" in 
// tree fashion. For files, show the contents of each file. 
// The "depth" parameter is the current nesting level 
// (for indentation). 
 
static void 
listRecursive(const DirectoryPrx& dir, int depth = 0) 
{ 
    string indent(++depth, '\t'); 
 
    NodeSeq contents = dir->list(); 
 
    for (NodeSeq::const_iterator i = contents.begin(); 
         i != contents.end(); 
         ++i) { 
        DirectoryPrx dir = DirectoryPrx::checkedCast(*i); 
        FilePrx file = FilePrx::uncheckedCast(*i); 
        cout << indent << (*i)->name() 
             << (dir ? " (directory):" : " (file):") << endl; 
        if (dir) { 
            listRecursive(dir, depth); 
        } else { 
            Lines text = file->read(); 
            for (Lines::const_iterator j = text.begin(); 
                 j != text.end(); 
                 ++j) { 
                cout << indent << "\t" << *j << endl; 
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            } 
        } 
    } 
}

The function is passed a proxy to a directory to list, and an indent level. (The 
indent level increments with each recursive call and allows the code to print the 
name of each node at an indent level that corresponds to the depth of the tree at 
that node.) listRecursive calls the list operation on the directory and iter-
ates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 7.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 
                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in XREF and XREF.

7.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the C++ code hardly 
differs from the code you would write for an ordinary C++ program. This is one of 
the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local C++ object. This allows you to put your effort where 
you should, namely, into developing your application logic instead of having to 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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struggle with arcane networking APIs. As we will see in Chapter 9, this is true for 
the server side as well, meaning that you can develop distributed applications 
easily and efficiently.
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Chapter 8
Server-Side Slice-to-C++ Mapping

8.1 Chapter Overview

In this chapter, we present the server-side Slice-to-C++ mapping (see Chapter 6 
for the client-side mapping). Section 8.3 discusses how to initialize and finalize 
the server-side run time, sections 8.4 to 8.6 show how to implement interfaces and 
operations, and Section 8.7 discusses how to register objects with the server-side 
Ice run time.

8.2 Introduction

The mapping for Slice data types to C++ is identical on the client side and server 
side. This means that everything in Chapter 6 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.
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8.3 The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice::initialize before you can do anything else in your server. 
Ice::initialize returns a smart pointer to an instance of an Ice::Communi-
cator:

int 
main(int argc, char* argv[]) 
{ 
    Ice::CommunicatorPtr ic 
        = Ice::initialize(argc, argv); 
    // ... 
}

Ice::initialize accepts a C++ reference to argc and argv. The function 
scans the argument vector for any command-line options that are relevant to the 
Ice run time; any such options are removed from the argument vector so, when 
Ice::initialize returns, the only options and arguments remaining are 
those that concern your application. If anything goes wrong during initialization, 
initialize throws an exception.

Before leaving your main function, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation invocations that may still be running to 
complete. In addition, destroy ensures that any outstanding threads are joined 
with and reclaims a number of operating system resources, such as file descriptors 
and memory. Never allow your main function to terminate without calling 
destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

#include <Ice/Ice.h> 
 
int 
main(int argc, char* argv[]) 
{ 
    int status = 0; 
    Ice::CommunicatorPtr ic; 
    try { 
        ic = Ice::initialize(argc, argv); 
 
        // Server code here... 
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    } catch (const Ice::Exception& e) { 
        cerr << e << endl; 
        status = 1; 
    } catch (const std::string& msg) { 
        cerr << msg << endl; 
        status = 1; 
    } catch (const char* msg) { 
        cerr << msg << endl; 
        status = 1; 
    } 
    if (ic) { 
        try { 
            ic->destroy(); 
        } catch (const std::string& msg) { 
            cerr << msg << endl; 
            status = 1; 
        } 
    } 
    return status; 
}

Note that the code places the call to Ice::initialize in to a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

The catch handlers for const std::string & and const char * 
are in place as a convenience feature: if we encounter a fatal error condition 
anywhere in the server code, we can simply throw a string or a string literal 
containing an error message; this causes the stack to be unwound back to main, at 
which point the error message is printed and, after destroying the communicator, 
main terminates with non-zero exit status.

8.3.1 The Ice::Application Class
The preceding structure for the main function is so common that Ice offers a 
class, Ice::Application, that encapsulates all the correct initialization and 
finalization activities. The definition of the class is as follows (with some detail 
omitted for now):

namespace Ice { 
    class Application /* ... */ { 
    public: 
                Application(); 
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        virtual ~Application(); 
 
                int main(int argc, char*[] argv); 
                int main(int, char*[], const char* config); 
                int main(int argc, char*[] argv, 
                         const Ice::InitializationData& id); 
        virtual int run(int, char*[]) = 0; 
 
        static  const char* appName(); 
        static  CommunicatorPtr communicator(); 
        // ... 
    }; 
}

The intent of this class is that you specialize Ice::Application and imple-
ment the pure virtual run method in your derived class. Whatever code you 
would normally place in main goes into the run method instead. Using 
Ice::Application, our program looks as follows:

#include <Ice/Ice.h> 
 
class MyApplication : virtual public Ice::Application { 
public: 
    virtual int run(int, char*[]) { 
 
        // Server code here... 
 
        return 0; 
    } 
}; 
 
int 
main(int argc, char* argv[]) 
{ 
    MyApplication app; 
    return app.main(argc, argv); 
}

Note that Application::main is overload and can optionally be called with either a 
configuration file name or an InitializationData structure (see 
Section 30.3 and Section 28.8). If you pass a configuration file name, settings on 
the command line override settings in the configuration file. The Applica-
tion::main function does the following:
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1. It installs an exception handler for Ice::Exception. If your code fails to 
handle an Ice exception, Application::main prints the exception details 
on stderr before returning with a non-zero return value.

2. It installs exception handlers for const std::string & and 
const char *. This allows you to terminate your server in response to a 
fatal error condition by throwing a std::string or a string literal. 
Application::main prints the string on stderr before returning a non-
zero return value.

3. It initializes (by calling Ice::initialize) and finalizes (by calling 
Communicator::destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator() 
member.

4. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

5. It provides the name of your application via the static appName member 
function. The return value from this call is argv[0], so you can get at 
argv[0] from anywhere in your code by calling Ice::Applica-
tion::appName (which is usually required for error messages).

6. It creates an IceUtil::CtrlCHandler that properly destroys the 
communicator.

Using Ice::Application ensures that your program properly finalizes the 
Ice run time, whether your server terminates normally or in response to an excep-
tion or signal. We recommend that all your programs use this class; doing so 
makes your life easier. In addition, Ice::Application also provides features 
for signal handling and configuration that you do not have to implement yourself 
when you use this class.

Using Ice::Application on the Client Side

You can use Ice::Application for your clients as well: simply implement a 
class that derives from Ice::Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice::Application ensures that the communicator is destroyed correctly 
even in the presence of exceptions.
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Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice::Application encapsulates 
the platform-independent signal handling capabilities provided by the class 
IceUtil::CtrlCHandler (see Section 29.11). This allows you to cleanly 
shut down on receipt of a signal and to use the same source code regardless of the 
underlying operating system and threading package:

namespace Ice { 
    class Application : /* ... */ { 
    public: 
        // ... 
        static void destroyOnInterrupt(); 
        static void shutdownOnInterrupt(); 
        static void ignoreInterrupt(); 
        static void holdInterrupt(); 
        static void releaseInterrupt(); 
        static bool interrupted(); 
    }; 
}

You can use Ice::Application under both Windows and UNIX: for UNIX, 
the member functions control the behavior of your application for SIGINT, 
SIGHUP, and SIGTERM; for Windows, the member functions control the 
behavior of your application for CTRL_C_EVENT, CTRL_BREAK_EVENT, 
CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and 
CTRL_SHUTDOWN_EVENT.

The member functions behave as follows:

• destroyOnInterrupt

This function creates an IceUtil::CtrlCHandler that destroys the 
communicator when one of the monitored signals is raised. This is the default 
behavior.
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• shutdownOnInterrupt

This function creates an IceUtil::CtrlCHandler that shuts down the 
communicator when one of the monitored signals is raised.

• ignoreInterrupt

This function causes signals to be ignored.

• holdInterrupt

This function temporarily blocks signal delivery.

• releaseInterrupt

This function restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This function returns true if a signal caused the communicator to shut down, 
false otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

By default, Ice::Application behaves as if destroyOnInterrupt was 
invoked, therefore our server main function requires no change to ensure that the 
program terminates cleanly on receipt of a signal. However, we add a diagnostic to 
report the occurrence of a signal, so our main function now looks like:

#include <Ice/Ice.h> 
 
class MyApplication : virtual public Ice::Application { 
public: 
    virtual int run(int, char*[]) { 
 
        // Server code here... 
 
        if (interrupted()) 
            cerr << appName() << ": terminating" << endl; 
 
        return 0; 
    } 
}; 
 
int 
main(int argc, char* argv[]) 
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{ 
    MyApplication app; 
    return app.main(argc, argv); 
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all 
currently executing operations to finish. This means that an operation that updates 
persistent state cannot be interrupted in the middle of what it was doing and cause 
partial update problems.

Ice::Application and Properties

Apart from the functionality shown in this section, Ice::Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. We 
discuss Ice properties in more detail in Chapter 28.

Limitations of Ice::Application

Ice::Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice::Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicators).

8.3.2 The Ice::Service Class
The Ice::Application class described in Section 8.3.1 is very convenient 
for general use by Ice client and server applications. In some cases, however, an 
application may need to run at the system level as a Unix daemon or Win32 
service. For these situations, Ice includes Ice::Service, a singleton class that 
is comparable to Ice::Application but also encapsulates the low-level, plat-
form-specific initialization and shutdown procedures common to system services. 
The Ice::Service class is defined as follows:

namespace Ice { 
    class Service { 
    public: 
        Service(); 
 
        virtual bool shutdown(); 
        virtual void interrupt(); 
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        int main(int&, char*[], 
                 const Ice::InitializationData& = 
                 Ice::InitializationData()); 
        Ice::CommunicatorPtr communicator() const; 
 
        static Service* instance(); 
 
        bool service() const; 
        std::string name() const; 
        bool checkSystem() const; 
 
        int run(int&, char*[], const Ice::InitializationData&); 
 
        void configureService(const std::string&); 
 
        int installService(const std::string&, 
                           const std::string&, 
                           const std::string&, 
                           const std::vector<std::string>&); 
        int uninstallService(const std::string&); 
        int startService(const std::string&, 
                         const std::vector<std::string>&); 
        int stopService(const std::string&); 
 
        void configureDaemon(bool, bool); 
 
        virtual void handleInterrupt(int); 
 
    protected: 
        virtual bool start(int, char*[]) = 0; 
        virtual void waitForShutdown(); 
        virtual bool stop(); 
        virtual Ice::CommunicatorPtr initializeCommunicator( 
            int&, char*[], const Ice::InitializationData&); 
 
        virtual void syserror(const std::string&); 
        virtual void error(const std::string&); 
        virtual void warning(const std::string&); 
        virtual void trace(const std::string&); 
 
        void enableInterrupt(); 
        void disableInterrupt(); 
 
        // ... 
    }; 
}
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At a minimum, an Ice application that uses the Ice::Service class must 
define a subclass and override the start member function, which is where the 
service must perform its startup activities, such as processing command-line argu-
ments, creating an object adapter, and registering servants. The application’s 
main function must instantiate the subclass and typically invokes its main 
member function, passing the program’s argument vector as parameters. The 
example below illustrates a minimal Ice::Service subclass:

#include <Ice/Service.h> 
 
class MyService : public Ice::Service { 
protected: 
    virtual bool start(int, char*[]); 
private: 
    Ice::ObjectAdapterPtr _adapter; 
}; 
 
bool 
MyService::start(int argc, char* argv[]) 
{ 
    _adapter = communicator()->createObjectAdapter("MyAdapter"); 
    _adapter->addWithUUID(new MyServantI); 
    _adapter->activate(); 
    return true; 
} 
 
int 
main(int argc, char* argv[]) 
{ 
    MyService svc; 
    return svc.main(argc, argv); 
}

The Service::main member function performs the following sequence of 
tasks:

1. Scans the argument vector for reserved options that indicate whether the 
program should run as a system service and removes these options from the 
argument vector (argc is adjusted accordingly). Additional reserved options 
are supported for administrative tasks.

2. Configures the program for running as a system service (if necessary) by 
invoking configureService or configureDaemon, as appropriate for 
the platform.

3. Invokes the run member function and returns its result.
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The Service::run member function executes the service in the steps shown 
below:

1. Installs an IceUtil::CtrlCHandler (see Section 29.11) for proper 
signal handling.

2. Invokes the initializeCommunicator member function to obtain a 
communicator. The communicator instance can be accessed using the 
communicator member function.

3. Invokes the start member function. If start returns false to indicate 
failure, run destroys the communicator and returns immediately.

4. Invokes the waitForShutdown member function, which should block until 
shutdown is invoked.

5. Invokes the stop member function. If stop returns true, run considers 
the application to have terminated successfully.

6. Destroys the communicator.

7. Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Service::run, a descriptive message is 
logged, the communicator is destroyed and the service is terminated.

Ice::Service Member Functions

The virtual member functions in Ice::Service represent the points at which a 
subclass can intercept the service activities. All of the virtual member functions 
(except start) have default implementations.

• void handleInterrupt(int sig)

Invoked by the CtrlCHandler when a signal occurs. The default imple-
mentation ignores the signal if it represents a logoff event and the 
Ice.Nohup property is set to a value larger than zero, otherwise it invokes 
the interrupt member function.

• Ice::CommunicatorPtr 
initializeCommunicator(int & argc, char * argv[], 
                       const Ice::InitializationData & data)

Initializes a communicator. The default implementation invokes 
Ice::initialize and passes the given arguments.

• void interrupt()

Invoked by the signal handler to indicate a signal was received. The default 
implementation invokes the shutdown member function.
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• bool shutdown()

Causes the service to begin the shutdown process. The default implementation 
invokes shutdown on the communicator. The subclass must return true if 
shutdown was started successfully, and false otherwise.

• bool start(int argc, char * argv[])

Allows the subclass to perform its startup activities, such as scanning the 
provided argument vector for recognized command-line options, creating an 
object adapter, and registering servants. The subclass must return true if 
startup was successful, and false otherwise.

• bool stop()

Allows the subclass to clean up prior to termination. The default implementa-
tion does nothing but return true. The subclass must return true if the 
service has stopped successfully, and false otherwise.

• void syserror(const std::string & msg) const

• void error(const std::string & msg) const

• void warning(const std::string & msg) const

• void trace(const std::string & msg) const

• void print(const std::string & msg) const

Convenience functions for logging messages to the communicator’s logger. 
The syserror member function includes a description of the system’s 
current error code.

• void waitForShutdown()

Waits indefinitely for the service to shut down. The default implementation 
invokes waitForShutdown on the communicator.

The non-virtual member functions shown in the class definition are described 
below:

• bool checkSystem() const

Returns true if the operating system supports Win32 services or Unix 
daemons. This function returns false on Windows 95/98/ME.

• Ice::CommunicatorPtr communicator() const

Returns the communicator used by the service, as created by initialize-
Communicator.

• void configureDaemon(bool chdir, bool close)

Configures the program to run as a Unix daemon. The chdir parameter 
determines whether the daemon changes its working directory to the root 
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directory. The close parameter determines whether the daemon closes 
unnecessary file descriptors (i.e., stdin, stdout, etc.).

• void configureService(const std::string & name)

Configures the program to run as a Win32 service with the given name.
• void disableInterrupt()

Disables the signal handling behavior in Ice::Service. When disabled, 
signals are ignored.

• void enableInterrupt()

Enables the signal handling behavior in Ice::Service. When enabled, the 
occurrence of a signal causes the handleInterrupt member function to 
be invoked.

• int installService(const std::string & name, 
                   const std::string & display, 
                   const std::string & executable, 
                   const std::vector<std::string> & args)

Registers the program as a Win32 service with the given name. If the 
display parameter is non-empty, it is used as the display name for the 
service, otherwise the service name is used. If the executable parameter is 
non-empty, it is used as the pathname of the executable, otherwise the path-
name of the current executable is used. The values in args are passed to the 
service as command-line arguments at startup. This vector should typically 
include an option to notify the program that it is being started as a service. The 
function returns EXIT_SUCCESS for success, EXIT_FAILURE for failure.

• static Service * instance()

Returns the singleton Ice::Service instance.
• int main(int & argc, char * argv[], 
         const Ice::InitializationData & data = 
         Ice::InitializationData())

The primary entry point of the Ice::Service class. The tasks performed 
by this function are described earlier in this section. The function returns 
EXIT_SUCCESS for success, EXIT_FAILURE for failure.

• std::string name() const

Returns the name of the service. If the program is running as a Win32 service, 
the return value is the Win32 service name, otherwise it returns the value of 
argv[0].
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• int run(int & argc, char * argv[], 
        const Ice::InitializationData & data)

Alternative entry point for applications that prefer a different style of service 
configuration. The program must invoke configureService (Win32) or 
configureDaemon (Unix) in order to run as a service. The tasks performed 
by this function are described earlier in this section. The function returns 
EXIT_SUCCESS for success, EXIT_FAILURE for failure.

• bool service() const

Returns true if the program is running as a Win32 service or Unix daemon, or 
false otherwise.

• int startService(const std::string & name, 
                 const std::vector<std::string> & args)

Starts the Win32 service using the Service Control Manager. The values in 
args are passed to the service as command-line options at startup. The func-
tion returns EXIT_SUCCESS for success, EXIT_FAILURE for failure.

• int stopService(const std::string & name)

Stops the Win32 service using the Service Control Manager. The function 
returns EXIT_SUCCESS for success, EXIT_FAILURE for failure.

• int uninstallService(const std::string & name)

Removes a Win32 service using the Service Control Manager. The function 
returns EXIT_SUCCESS for success, EXIT_FAILURE for failure.

Unix Daemons

On Unix platforms, Ice::Service recognizes the following command-line 
options:

• --daemon

Indicates that the program should run as a daemon. This involves the creation 
of a background child process in which Service::main performs its tasks. 
The parent process does not terminate until the child process has successfully 
invoked the start member function1. Unless instructed otherwise, 
Ice::Service changes the current working directory of the child process 
to the root directory, and closes all unnecessary file descriptors. Note that the 

1. This behavior avoids the uncertainty often associated with starting a daemon from a shell script, 
because it ensures that the command invocation does not complete until the daemon is ready to 
receive requests.
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file descriptors are not closed until after the communicator is initialized, 
meaning standard input, standard output, and standard error are available for 
use during this time. For example, the IceSSL plug-in may need to prompt for 
a passphrase on standard input, or Ice may print the child’s process id on stan-
dard output if the property Ice.PrintProcessId is set.

• --noclose

Prevents Ice::Service from closing unnecessary file descriptors. This 
can be useful during debugging and diagnosis because it provides access to the 
output from the daemon’s standard output and standard error.

• --nochdir

Prevents Ice::Service from changing the current working directory.

The --noclose and --nochdir options can only be specified in conjunction 
with --daemon. These options are removed from the argument vector that is 
passed to the start member function.

Win32 Services

On Win32 platforms2, Ice::Service starts the application as a Windows 
service if the --service option is specified:

• --service NAME

Run as a Windows service named NAME. This option is removed from the 
argument vector that is passed to the start member function.

Before an application can run as a Windows service, however, it must be installed, 
therefore the Ice::Service class supports several additional command-line 
options for performing administrative duties:

• --install NAME [--display DISP] [--executable EXEC] 
[ARG ...]

Installs the service NAME. If the --display option is specified, use DISP as 
the display name of the service, otherwise use NAME. If the --executable 
option is specified, use EXEC as the service executable pathname, otherwise 
use the pathname of the executable used to invoke --install. Any addi-
tional arguments are passed unchanged to the Service::start member 
function. Note that this command automatically adds the command-line 

2. Windows services are not supported on Windows 95/98/ME.
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option --service NAME to the set of arguments passed to the service at 
startup, therefore it is not necessary to specify those options explicitly.

• --uninstall NAME

Removes the service NAME. If the service is currently active, it must be 
stopped before it can be uninstalled.

• --start NAME [ARG ...]

Starts the service NAME. Any additional arguments are passed unchanged to 
the Service::start member function.

• --stop NAME

Stops the service NAME.

An error occurs if more than one administrative command is specified, or if the -
-service option is specified in conjunction with an administrative command. 
The program terminates immediately after executing the administrative command.

The Ice::Service class supports the Windows service control codes 
SERVICE_CONTROL_INTERROGATE and SERVICE_CONTROL_STOP. Upon 
receipt of SERVICE_CONTROL_STOP, Ice::Service invokes the shut-
down member function.

Logging Considerations

When an application is running as a Unix daemon or Windows service, the default 
implementation of Ice::Logger is usually not appropriate because its output is 
sent to standard error and is therefore lost. The application can implement a 
custom logger, or it can use one of the alternatives provided by Ice:

• On Unix, the Ice.UseSyslog property selects a logger implementation 
that uses the syslog facility.

• On Windows, the Ice.UseEventLog property causes log messages to be 
recorded in the Windows event log. The logger implementation automatically 
adds the necessary key to the registry to enable the service to use the event 
log. Alternatively, the default logger can be used in conjunction with the 
Ice.StdErr property to redirect standard error to a file.

Note that when preparing to start a Windows service, Ice::Service may 
encounter errors before the communicator is initialized. If no logger is supplied in 
the InitializationData argument to main, Ice::Service creates a 
temporary instance of the Windows event logger to use until the communicator is 
successfully initialized and the communicator’s configured logger can be used 
instead. Therefore, even if a failing service is configured to use a different logger 
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implementation, useful diagnostic information may have been recorded in the 
Windows event log.

If an Ice::Service subclass needs to supply an alternate logger imple-
mentation, the subclass can provide it using the InitializationData argu-
ment to main, or the subclass can override the initializeCommunicator 
member function.

Troubleshooting Win32 Service Failures

One failure that commonly occurs when starting a Windows service is caused by 
missing DLLs, which usually results in an error window stating a particular DLL 
cannot be found. Fixing this problem can often be a trial-and-error process 
because the DLL mentioned in the error may depend on other DLLs that are also 
missing. It is important to understand that a Windows service is launched by the 
operating system and can be configured to execute as a different user, which 
means the service’s environment (most importantly its PATH) may not match 
yours and therefore extra steps are necessary to ensure that the service can locate 
its required DLLs3.

The simplest approach is to copy all of the necessary DLLs to the directory 
containing the service executable. If this solution is undesirable, another option is 
to modify the system PATH to include the directory or directories containing the 
required DLLs. (Note that modifying the system PATH requires restarting the 
system.) Finally, you can copy the necessary DLLs to \WINDOWS\system32, 
although we do not recommend this approach4. 

Assuming that DLL issues are resolved, a Windows service can fail to start for 
a number of other reasons, including

• invalid command-line arguments or configuration properties

• inability to access necessary resources such as filesystems and databases, 
because either the resources do not exist or the service does not have sufficient 
access rights to them

3. The command-line utility dumpbin can be used to discover the dependencies of an executable 
or DLL.

4. Copying DLLs to \WINDOWS\system32 often results in subtle problems later when trying to 
develop using newer versions of the DLLs. Inevitably you will forget about the DLLs in 
\WINDOWS\system32 and struggle to determine why your application is misbehaving or 
failing to start.
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• networking issues, such as attempting to open a port that is already in use, or 
DNS lookup failures

Failures encountered by the Ice run time prior to initialization of the communi-
cator are reported to the Windows event log if no other logger implementation is 
defined, so that should be the first place you look. Typically you will find an entry 
in the System event log resembling the following message:

The IcePatch2 service terminated with service-specific error 1.

Error code 1 corresponds to EXIT_FAILURE, the value used by 
Ice::Service to indicate a failure during startup. Additional diagnostic 
messages may be available in the Application event log. See page 266 for more 
information on configuring a logger for a Windows service.

As we mentioned earlier, insufficient access rights can also prevent a Windows 
service from starting successfully. By default, a Windows service is configured to 
run under a local system account, in which case the service may not be able to 
access resources owned by other users. It may be necessary for you to configure a 
service to run under a different account, which you can do using the Services 
control panel.

8.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing virtual functions in a servant class, you provide the hook 
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

8.4.1 Skeleton Classes
On the client side, interfaces map to proxy classes (see Section 6.11). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure 
virtual member function for each operation on the corresponding interface. For 
example, consider the Slice definition for the Node interface we defined in 
Chapter 5 once more:
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module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem { 
 
    class Node : virtual public Ice::Object { 
    public: 
        virtual std::string name(const Ice::Current& = 
                                    Ice::Current()) const = 0; 
        // ... 
    }; 
    // ... 
}

For the moment, we will ignore a number of other member functions of this class. 
The important points to note are:

• As for the client side, Slice modules are mapped to C++ namespaces with the 
same name, so the skeleton class definition is nested in the namespace File-
system.

• The name of the skeleton class is the same as the name of the Slice interface 
(Node).

• The skeleton class contains a pure virtual member function for each operation 
in the Slice interface.

• The skeleton class is an abstract base class because its member functions are 
pure virtual.

• The skeleton class inherits from Ice::Object (which forms the root of the 
Ice object hierarchy).

8.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:
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#include <Filesystem.h> // Slice-generated header 
 
class NodeI : public virtual Filesystem::Node { 
public: 
    NodeI(const std::string&); 
    virtual std::string name(const Ice::Current&) const; 
private: 
    std::string _name; 
};

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.)

Note that NodeI inherits from Filesystem::Node, that is, it derives from 
its skeleton class. It is a good idea to always use virtual inheritance when defining 
servant classes. Strictly speaking, virtual inheritance is necessary only for servants 
that implement interfaces that use multiple inheritance; however, the virtual 
keyword does no harm and, if you add multiple inheritance to an interface hier-
archy half-way through development, you do not have to go back and add a 
virtual keyword to all your servant classes.

As far as Ice is concerned, the NodeI class must implement only a single 
member function: the pure virtual name function that it inherits from its skeleton. 
This makes the servant class a concrete class that can be instantiated. You can add 
other member functions and data members as you see fit to support your imple-
mentation. For example, in the preceding definition, we added a _name member 
and a constructor. Obviously, the constructor initializes the _name member and 
the name function returns its value:

NodeI::NodeI(const std::string& name) : _name(name) 
{ 
} 
 
std::string 
NodeI::name(const Ice::Current&) const 
{ 
    return _name; 
}

Normal, idempotent, and nonmutating Operations

The name member function of the NodeI skeleton on page 270 is a const 
member function. The const keyword is added by the Slice compiler because 
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name is a nonmutating operation (see Section 3.8.1). In contrast, normal opera-
tions and idempotent operations are non-const member functions. For 
example, the following interface contains a normal operation, an idempotent 
operation, and a nonmutating operation:

interface Example { 
                void normalOp(); 
    idempotent  void idempotentOp(); 
    nonmutating void nonmutatingOp(); 
};

The skeleton class for this interface looks like this:

class Example : virtual public Ice::Object { 
public: 
    virtual void normalOp(const Ice::Current& 
                                = Ice::Current()) = 0; 
    virtual void idempotentOp(const Ice::Current& 
                                = Ice::Current()) = 0; 
    virtual void nonmutatingOp(const Ice::Current& 
                                = Ice::Current()) const = 0; 
    // ... 
};

Note that only the nonmutating operation is mapped as a const member func-
tion; normal and idempotent operations are ordinary member functions.

8.5 Parameter Passing

For each parameter of a Slice operation, the C++ mapping generates a corre-
sponding parameter for the virtual member function in the skeleton. In addition, 
every operation has an additional, trailing parameter of type Ice::Current. 
For example, the name operation of the Node interface has no parameters, but the 
name member function of the Node skeleton class has a single parameter of type 
Ice::Current. We explain the purpose of this parameter in Section 30.6 and 
will ignore it for now.

Parameter passing on the server side follows the rules for the client side:

• in-parameters are passed by value or const reference.

• out-parameters are passed by reference.

• return values are passed by value
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To illustrate the rules, consider the following interface that passes string parame-
ters in all possible directions:

module M { 
    interface Example { 
        string op(string sin, out string sout); 
    }; 
};

The generated skeleton class for this interface looks as follows:

namespace M { 
    class Example : virtual public ::Ice::Object { 
    public: 
        virtual std::string 
                    op(const std::string&, std::string&, 
                       const Ice::Current& = Ice::Current()) = 0; 
        // ... 
    }; 
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

std::string 
ExampleI::op(const std::string& sin, 
                   std::string& sout, 
             const Ice::Current&) 
{ 
    cout << sin << endl;        // In parameters are initialized 
    sout = "Hello World!";      // Assign out parameter 
    return "Done";              // Return a string 
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal C++ rules and do not require special-purpose API calls 
or memory management.5

5. This is in sharp contrast to the CORBA C++ mapping, which has very complex parameter 
passing rules that make it all too easy to leak memory or cause undefined behavior.
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8.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    // Try to write the file contents here... 
    // Assume we are out of space... 
    if (error) { 
        Filesystem::GenericError e; 
        e.reason = "file too large"; 
        throw e; 
    } 
};

No memory management issues arise in the presence of exceptions.
Note that the Slice compiler never generates exception specifications for oper-

ations, regardless of whether the corresponding Slice operation definition has an 
exception specification or not. This is deliberate: C++ exception specifications do 
not add any value and are therefore not used by the Ice C++ mapping. (See [22] 
for an excellent treatment of the problems associated with C++ exception specifi-
cations.)

If you throw an arbitrary C++ exception (such as an int or other unexpected 
type), the Ice run time catches the exception and then returns an UnknownExcep-
tion to the client. Similarly, if you throw an “impossible” user exception (a user 
exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw a run-time excception, such as MemoryLimitException, the 
client receives an UnknownLocalException.6 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

6. There are three system exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Section 4.10.4 and 
Chapter 32.
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8.7 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 8.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must follow the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

8.7.1 Instantiating a Servant
Instantiating a servant means to allocate an instance on the heap:

NodePtr servant = new NodeI("Fred");

This code creates a new NodeI instance on the heap and assigns its address to a 
smart pointer of type NodePtr (see also page 228). This works because NodeI 
is derived from Node, so a smart pointer of type NodePtr can also look after an 
instance of type NodeI. However, if we want to invoke a member function of the 
derived NodeI class at this point, we have a problem: we cannot access member 
functions of the derived NodeI class through a NodePtr smart pointer, only 
member functions of Node base class. (The C++ type rules prevent us from 
accessing a member of a derived class through a pointer to a base class.) To get 
around this, we can modify the code as follows:

typedef IceUtil::Handle<NodeI> NodeIPtr; 
NodeIPtr servant = new NodeI("Fred");

This code makes use of the smart pointer template we presented in Section 6.14.6 
by defining NodeIPtr as a smart pointer to NodeI instances. Whether you use 
a smart pointer of type NodePtr or NodeIPtr depends solely on whether you 
want to invoke a member function of the NodeI derived class; if you only want to 
invoke member functions that are defined in the Node skeleton base class, it is 
sufficient to use a NodePtr and you need not define the NodeIPtr type.

Whether you use NodePtr or NodeIPtr, the advantages of using a smart 
pointer class should be obvious from the discussion in Section 6.14.6: they make 
it impossible to accidentally leak memory.



8.7 Object Incarnation 275

8.7.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.7 An Ice object identity is a structure with the 
following Slice definition:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
    // ... 
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 30.7 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice::Identity id; 
id.name = "Fred"; // Not unique, but good enough for now

8.7.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object 
identity. Calling add on the object adapter adds the servant pointer and the 
servant’s identity to the adapter’s servant map and links the proxy for an Ice object 
to the correct servant instance in the server’s memory as follows:

7. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See XREF for further discussion.
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1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
pointer from the servant map and dispatches the incoming request into the 
correct member function on the servant.

Assuming that the object adapter is in the active state (see Section 30.4.5), client 
requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instanti-
ates and activates one of our NodeI servants. For this example, we use a simple 
helper function called activateServant that creates and activates a servant 
with a given identity:

void 
activateServant(const string& name) 
{ 
    NodePtr servant = new NodeI(name);          // Refcount == 1 
    Ice::Identity id; 
    id.name = name; 
    _adapter->add(servant, id);                 // Refcount == 2 
}                                               // Refcount == 1

Note that we create the servant on the heap and that, once activateServant 
returns, we lose the last remaining handle to the servant (because the servant 
variable goes out of scope). The question is, what happens to the heap-allocated 
servant instance? The answer lies in the smart pointer semantics:

• When the new servant is instantiated, its reference count is initialized to 0.

• Assigning the servant’s address to the servant smart pointer increments the 
servant’s reference count to 1.

• Calling add passes the servant smart pointer to the object adapter which 
keeps a copy of the handle internally. This increments the reference count of 
the servant to 2.

• When activateServant returns, the destructor of the servant variable 
decrements the reference count of the servant to 1.
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The net effect is that the servant is retained on the heap with a reference count of 1 
for as long as the servant is in the servant map of its object adapter. (If we deacti-
vate the servant, that is, remove it from the servant map, the reference count drops 
to zero and the memory occupied by the servant is reclaimed; we discuss these life 
cycle issues in XREF.)

8.7.4 UUIDs as Identities
As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs 
(Universally Unique Identifiers) [14] as identities. The IceUtil namespace 
contains a helper function to create such identities:

#include <IceUtil/UUID.h> 
#include <iostream> 
 
using namespace std; 
 
int 
main() 
{ 
    cout << IceUtil::generateUUID() << endl; 
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to generate-
UUID creates a string that differs from all previous ones.8 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can rewrite the code on page 276 
like this:

void 
activateServant(const string& name) 
{ 
    NodePtr servant = new NodeI(name); 
    _adapter->addWithUUID(servant); 
}

8. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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8.7.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

typedef IceUtil::Handle<NodeI> NodeIPtr; 
NodeIPtr servant = new NodeI(name); 
NodePrx proxy = NodePrx::uncheckedCast( 
                                _adapter->addWithUUID(servant)); 
 
// Pass proxy to client...

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice::ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice { 
    local interface ObjectAdapter { 
        Object* createProxy(Identity id); 
        // ... 
    }; 
};
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Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice::Identity id; 
id.name = IceUtil::generateUUID(); 
ObjectPrx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to 
a client and the client invokes an operation on the proxy, the client will receive an 
ObjectNotExistException. (We examine these life cycle issues in more detail in 
XREF.)

8.8 Summary

This chapter presented the server-side C++ mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 30), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any C++ mapping 
rules beyond those we described here.
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Chapter 9
Developing a File System Server in 
C++

9.1 Chapter Overview

In this chapter, we present the source code for a C++ server that implements the 
file system we developed in Chapter 5 (see Chapter 7 for the corresponding 
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Chapter 29.)

9.2 Implementing a File System Server

We have now seen enough of the server-side C++ mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5 before studying the source 
code.)

Our server is composed of two source files:

• Server.cpp

This file contains the server main program.

• FilesystemI.cpp

This file contains the implementation for the file system servants.
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9.2.1 The Server main Program
Our server main program, in the file Server.cpp, uses the 
Ice::Application class we discussed in Section 8.3.1. The run method 
installs a signal handler, creates an object adapter, instantiates a few servants for 
the directories and files in the file system, and then activates the adapter. This 
leads to a main program as follows:

#include <FilesystemI.h> 
#include <Ice/Application.h> 
 
using namespace std; 
using namespace Filesystem; 
 
class FilesystemApp : virtual public Ice::Application { 
public: 
    virtual int run(int, char*[]) { 
        // Create an object adapter (stored in the NodeI::_adapter 
        // static member) 
        // 
        NodeI::_adapter = 
            communicator()->createObjectAdapterWithEndpoints( 
                        "SimpleFilesystem", "default -p 10000"); 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryIPtr root = new DirectoryI("/", 0); 
 
        // Create a file called "README" in the root directory 
        // 
        FilePtr file = new FileI("README", root); 
        Lines text; 
        text.push_back("This file system contains" 
            "a collection of poetry."); 
        file->write(text); 
 
        // Create a directory called "Coleridge" in 
        // the root directory 
        // 
        DirectoryIPtr coleridge 
            = new DirectoryI("Coleridge", root); 
 
        // Create a file called "Kubla_Khan" in the 
        // Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
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        text.erase(text.begin(), text.end()); 
        text.push_back("In Xanadu did Kubla Khan"); 
        text.push_back("A stately pleasure-dome decree:"); 
        text.push_back("Where Alph, the sacred river, ran"); 
        text.push_back("Through caverns measureless to man"); 
        text.push_back("Down to a sunless sea."); 
        file->write(text); 
 
        // All objects are created, allow client requests now 
        // 
        NodeI::_adapter->activate(); 
 
        // Wait until we are done 
        // 
        communicator()->waitForShutdown(); 
        if (interrupted()) { 
            cerr << appName() 
                 << ": received signal, shutting down" << endl; 
        } 
        NodeI::_adapter = 0; 
        return 0; 
    }; 
}; 
 
int 
main(int argc, char* argv[]) 
{ 
    FilesystemApp app; 
    return app.main(argc, argv); 
}

There is quite a bit of code here, so let us examine each section in detail:

#include <FilesystemI.h> 
#include <Ice/Application.h> 
 
using namespace std; 
using namespace Filesystem;

The code includes the header file FilesystemI.h (see page 292). That file 
includes Ice/Ice.h as well as the header file that is generated by the Slice 
compiler, Filesystem.h. Because we are using Ice::Application, we 
need to include Ice/Application.h as well.

Two using declarations, for the namespaces std and Filesystem, permit 
us to be a little less verbose in the source code.
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The next part of the source code is the definition of FilesystemApp, which 
derives from Ice::Application and contains the main application logic in 
its run method:

class FilesystemApp : virtual public Ice::Application { 
public: 
    virtual int run(int, char*[]) { 
        // Create an object adapter (stored in the NodeI::_adapter 
        // static member) 
        // 
        NodeI::_adapter = 
            communicator()->createObjectAdapterWithEndpoints( 
                        "SimpleFilesystem", "default -p 10000"); 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryIPtr root = new DirectoryI("/", 0); 
 
        // Create a file called "README" in the root directory 
        // 
        FilePtr file = new FileI("README", root); 
        Lines text; 
        text.push_back("This file system contains" 
            "a collection of poetry."); 
        file->write(text); 
 
        // Create a directory called "Coleridge" in 
        // the root directory 
        // 
        DirectoryIPtr coleridge 
            = new DirectoryI("Coleridge", root); 
 
        // Create a file called "Kubla_Khan" in the 
        // Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text.erase(text.begin(), text.end()); 
        text.push_back("In Xanadu did Kubla Khan"); 
        text.push_back("A stately pleasure-dome decree:"); 
        text.push_back("Where Alph, the sacred river, ran"); 
        text.push_back("Through caverns measureless to man"); 
        text.push_back("Down to a sunless sea."); 
        file->write(text); 
 
        // All objects are created, allow client requests now 
        // 
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        NodeI::_adapter->activate(); 
 
        // Wait until we are done 
        // 
        communicator()->waitForShutdown(); 
        if (interrupted()) { 
            cerr << appName() 
                 << ": received signal, shutting down" << endl; 
        } 
        NodeI::_adapter = 0; 
        return 0; 
    }; 
};

Much of this code is boiler plate that we saw previously: we create an object 
adapter, and, towards the end, activate the object adapter and call waitFor-
Shutdown. (Setting _adapter to zero before returning prevents a warning 
from the Ice run time about Ice objects that persist beyond the life time of the 
communicator.)

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 9.1.

Figure 9.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a handle to the servant for the parent directory. (For the root directory, which has 
no parent, we pass a null parent handle.) Thus, the statement

DirectoryIPtr root = new DirectoryI("/", 0);

creates the root directory, with the name "/" and no parent directory. Note that 
we use the smart pointer class we discussed in Section 6.14.6 to hold the return 
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value from new; that way, we avoid any memory management issues. The type 
DirectoryIPtr is defined as follows in a header file FilesystemI.h (see 
page 292):

typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

Here is the code that establishes the structure in Figure 9.1:

        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryIPtr root = new DirectoryI("/", 0); 
 
        // Create a file called "README" in the root directory 
        // 
        FilePtr file = new FileI("README", root); 
        Lines text; 
        text.push_back("This file system contains" 
            "a collection of poetry."); 
        file->write(text); 
 
        // Create a directory called "Coleridge" in 
        // the root directory 
        // 
        DirectoryIPtr coleridge 
            = new DirectoryI("Coleridge", root); 
 
        // Create a file called "Kubla_Khan" in the 
        // Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text.erase(text.begin(), text.end()); 
        text.push_back("In Xanadu did Kubla Khan"); 
        text.push_back("A stately pleasure-dome decree:"); 
        text.push_back("Where Alph, the sacred river, ran"); 
        text.push_back("Through caverns measureless to man"); 
        text.push_back("Down to a sunless sea."); 
        file->write(text);

We first create the root directory and a file README within the root directory. 
(Note that we pass the handle to the root directory as the parent pointer when we 
create the new node of type FileI.)

The next step is to fill the file with text:
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        FilePtr file = new FileI("README", root); 
        Lines text; 
        text.push_back("This file system contains" 
            "a collection of poetry."); 
        file->write(text);

Recall from Section 6.7.3 that Slice sequences map to STL vectors. The Slice type 
Lines is a sequence of strings, so the C++ type Lines is a vector of strings; we 
add a line of text to our README file by calling push_back on that vector.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

        file->write(text);

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a smart class pointer (of type 
FilePtr) and not via a proxy (of type FilePrx), the Ice run time does not 
know that this call is even taking place—such a direct call into a servant is not 
mediated by the Ice run time in any way and is dispatched as an ordinary C++ 
function call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 9.1.

9.2.2 The Servant Class Definitions
We must provide servants for the concrete interfaces in our Slice specification, 
that is, we must provide servants for the File and Directory interfaces in the 
C++ classes FileI and DirectoryI. This means that our servant classes 
might look as follows:

namespace Filesystem { 
  class FileI : virtual public File { 
    // ... 
  }; 
 
  class DirectoryI : virtual public Directory { 
     // ... 
  }; 
}
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This leads to the C++ class structure as shown in Figure 9.2.

Figure 9.2. File system servants using interface inheritance.

The shaded classes in Figure 9.2 are skeleton classes and the unshaded classes are 
our servant implementations. If we implement our servants like this, FileI must 
implement the pure virtual operations it inherits from the File skeleton (read 
and write), as well as the operation it inherits from the Node skeleton (name). 
Similarly, DirectoryI must implement the pure virtual function it inherits 
from the Directory skeleton (list), as well as the operation it inherits from 
the Node skeleton (name). Implementing the servants in this way uses interface 
inheritance from Node because no implementation code is inherited from that 
class.

Alternatively, we can implement our servants using the following definitions:

namespace Filesystem { 
  class NodeI : virtual public Node { 
    // ... 
  }; 
 
  class FileI : virtual public File, 
                virtual public NodeI { 
    // ... 
  }; 
 
  class DirectoryI : virtual public Directory, 
                     virtual public NodeI { 
    // ... 
  }; 
}
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This leads to the C++ class structure shown in Figure 9.3.

Figure 9.3. File system servants using implementation inheritance.

In this implementation, NodeI is a concrete base class that implements the name 
operation it inherits from the Node skeleton. FileI and DirectoryI use 
multiple inheritance from NodeI and their respective skeletons, that is, FileI 
and DirectoryI use implementation inheritance from their NodeI base class.

Either implementation approach is equally valid. Which one to choose simply 
depends on whether we want to re-use common code provided by NodeI. For the 
implementation that follows, we have chosen the second approach, using imple-
mentation inheritance.

Given the structure in Figure 9.3 and the operations we have defined in the 
Slice definition for our file system, we can add these operations to the class defini-
tion for our servants:

namespace Filesystem { 
  class NodeI : virtual public Node { 
  public: 
    virtual std::string name(const Ice::Current&) const; 
  }; 
   
  class FileI : virtual public File, 
                virtual public NodeI { 
  public: 
    virtual Lines read(const Ice::Current&) const; 
    virtual void write(const Lines&, 
                       const Ice::Current&); 
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  }; 
   
  class DirectoryI : virtual public Directory, 
                     virtual public NodeI { 
  public: 
    virtual NodeSeq list(const Ice::Current&) const; 
  }; 
}

This simply adds signatures for the operation implementations to each class. 
(Note that the signatures must exactly match the operation signatures in the gener-
ated skeleton classes—if they do not match exactly, you end up overloading the 
pure virtual function in the base class instead of overriding it, meaning that the 
servant class cannot be instantiated because it will still be abstract. To avoid signa-
ture mismatches, you can copy the signatures from the generated header file 
(Filesystem.h).)

Now that we have the basic structure in place, we need to think about other 
methods and data members we need to support our servant implementation. Typi-
cally, each servant class hides the copy constructor and assignment operator, and 
has a constructor to provide initial state for its data members. Given that all nodes 
in our file system have both a name and a parent directory, this suggests that the 
NodeI class should implement the functionality relating to tracking the name of 
each node, as well as the parent–child relationships:

namespace Filesystem { 
  class DirectoryI; 
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr; 
 
  class NodeI : virtual public Node { 
  public: 
    virtual std::string name(const Ice::Current&) const; 
    NodeI(const std::string&, const DirectoryIPtr& parent); 
    static Ice::ObjectAdapterPtr _adapter; 
  private: 
    const std::string _name; 
    DirectoryIPtr _parent; 
    NodeI(const NodeI&);                // Copy forbidden 
    void operator=(const NodeI&);       // Assignment forbidden 
  }; 
}

The NodeI class has a private data member to store its name (of type 
std::string) and its parent directory (of type DirectoryIPtr). The 
constructor accepts parameters that set the value of these data members. For the 
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root directory, by convention, we pass a null handle to the constructor to indicate 
that the root directory has no parent. We have also added a public static variable to 
hold a smart pointer to the (single) object adapter we use in our server; that vari-
able is initialized by the Filesystem::run method on page 284.

The FileI servant class must store the contents of its file, so it requires a 
data member for this. We can conveniently use the generated Lines type (which 
is a std::vector<std::string>) to hold the file contents, one string for 
each line. Because FileI inherits from NodeI, it also requires a constructor that 
accepts the file name and the parent directory, leading to the following class defi-
nition:

namespace Filesystem { 
  class FileI : virtual public File, 
                virtual public NodeI { 
  public: 
    virtual Lines read(const Ice::Current&) const; 
    virtual void write(const Lines&, 
                       const Ice::Current&); 
    FileI(const std::string&, const DirectoryIPtr&); 
  private: 
    Lines _lines; 
  }; 
}

For directories, each directory must store its list of child notes. We can conve-
niently use the generated NodeSeq type (which is a vector<NodePrx>) to do 
this. Because DirectoryI inherits from NodeI, we need to add a constructor 
to initialize the directory name and its parent directory. As we will see shortly, we 
also need a private helper function, addChild, to make it easier to connect a 
newly created directory to its parent. This leads to the following class definition:

namespace Filesystem { 
  class DirectoryI : virtual public Directory, 
                     virtual public NodeI { 
  public: 
    virtual NodeSeq list(const Ice::Current&) const; 
    DirectoryI(const std::string&, const DirectoryIPtr&); 
    void addChild(NodePrx child); 
  private: 
    NodeSeq _contents; 
  }; 
}
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Putting all this together, we end up with a servant header file, FilesystemI.h, 
as follows:

#include <Ice/Ice.h> 
#include <Filesystem.h> 
 
namespace Filesystem { 
  class DirectoryI; 
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr; 
   
  class NodeI : virtual public Node { 
  public: 
    virtual std::string name(const Ice::Current&) const; 
    NodeI(const std::string&, const DirectoryIPtr& parent); 
    static Ice::ObjectAdapterPtr _adapter; 
  private: 
    const std::string _name; 
    DirectoryIPtr _parent; 
    NodeI(const NodeI&);                // Copy forbidden 
    void operator=(const NodeI&);       // Assignment forbidden 
  }; 
   
  class FileI : virtual public File, 
                virtual public NodeI { 
  public: 
    virtual Lines read(const Ice::Current&) const; 
    virtual void write(const Lines&, 
                       const Ice::Current&); 
    FileI(const std::string&, const DirectoryIPtr&); 
  private: 
    Lines _lines; 
  }; 
   
  class DirectoryI : virtual public Directory, 
                     virtual public NodeI { 
  public: 
    virtual NodeSeq list(const Ice::Current&) const; 
    DirectoryI(const std::string&, const DirectoryIPtr&); 
    void addChild(NodePrx child); 
  private: 
    NodeSeq _contents; 
  }; 
}
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9.2.3 The Servant Implementation
The implementation of our servants is mostly trivial, following from the class 
definitions in our FilesystemI.h header file.

Implementing FileI

The implementation of the read and write operations for files is trivial: we 
simply store the passed file contents in the _lines data member. The constructor 
is equally trivial, simply passing its arguments through to the NodeI base class 
constructor:

Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    return _lines; 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    _lines = text; 
} 
 
Filesystem::FileI::FileI(const string& name, 
                         const DirectoryIPtr& parent 
                        ) : NodeI(name, parent) 
{ 
}

Implementing DirectoryI

The implementation of DirectoryI is equally trivial: the list operation 
simply returns the _contents data member and the constructor passes its argu-
ments through to the NodeI base class constructor:

Filesystem::NodeSeq 
Filesystem::DirectoryI::list(const Ice::Current&) const 
{ 
    return _contents; 
} 
 
Filesystem::DirectoryI::DirectoryI(const string& name, 
                                   const DirectoryIPtr& parent 
                                  ) : NodeI(name, parent) 



294 Developing a File System Server in C++

{ 
} 
 
void 
Filesystem::DirectoryI::addChild(const NodePrx child) 
{ 
    _contents.push_back(child); 
}

The only noteworthy thing is the implementation of addChild: when a new 
directory or file is created, the constructor of the NodeI base class calls 
addChild on its own parent, passing it the proxy to the newly-created child. The 
implementation of addChild appends the passed reference to the contents list of 
the directory it is invoked on (which is the parent directory).

Implementing NodeI

The name operation of our NodeI class is again trivial: it simply returns the 
_name data member:

std::string 
Filesystem::NodeI::name(const Ice::Current&) const 
{ 
    return _name; 
}

Most of the meat of our implementation is in the NodeI constructor. It is here that 
we create the proxy for each node and connect parent and child nodes:

Filesystem::NodeI::NodeI(const string& name, 
                         const DirectoryIPtr& parent 
                        ) : _name(name), _parent(parent) 
{ 
    // Create an identity. The parent has the 
    // fixed identity "RootDir" 
    // 
    Ice::Identity myID = _adapter.getCommunicator()-> 
        stringToIdentity(parent ? IceUtil::generateUUID() 
                                : "RootDir"); 
 
    // Create a proxy for the new node and add it as 
    // a child to the parent 
    // 
    NodePrx thisNode 
        = NodePrx::uncheckedCast(_adapter->createProxy(myID)); 
    if (parent) 
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        parent->addChild(thisNode); 
 
    // Activate the servant 
    // 
    _adapter->add(this, myID); 
}

The first step is to create a unique identity for each node. For the root directory, 
we use the fixed identity "RootDir". This allows the client to create a proxy for 
the root directory (see Section 7.2). For directories other than the root directory, 
we use a UUID as the identity (see page 277).

The next step is to create a proxy for the child and to add the child to the 
parent directory’s content list by calling addChild. This connects the child to 
the parent.

Finally, we need to activate the servant so the Ice run time knows about the 
servant’s existence, so we call add on the object adapter.

This completes our servant implementation. The complete source code is 
shown here once more:

#include <FilesystemI.h> 
#include <IceUtil/UUID.h> 
 
using namespace std; 
 
Ice::ObjectAdapterPtr Filesystem::NodeI::_adapter; 
 
// Slice Node::name() operation 
 
std::string 
Filesystem::NodeI::name(const Ice::Current&) const 
{ 
    return _name; 
} 
 
// NodeI constructor 
 
Filesystem::NodeI::NodeI(const string& name, 
                         const DirectoryIPtr& parent 
                        ) : _name(name), _parent(parent) 
{ 
    // Create an identity. The parent has the 
    // fixed identity "RootDir" 
    // 
    Ice::Identity myID = _adapter.getCommunicator-> 
        stringToIdentity(parent ? IceUtil::generateUUID() 
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                                : "RootDir"); 
 
    // Create a proxy for the new node and add it 
    // as a child to the parent 
    // 
    NodePrx thisNode 
        = NodePrx::uncheckedCast(_adapter->createProxy(myID)); 
    if (parent) 
        parent->addChild(thisNode); 
 
    // Activate the servant 
    // 
    _adapter->add(this, myID); 
} 
 
// Slice File::read() operation 
 
Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    return _lines; 
} 
 
// Slice File::write() operation 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    _lines = text; 
} 
 
// FileI constructor 
 
Filesystem::FileI::FileI(const string& name, 
                         const DirectoryIPtr& parent 
                        ) : NodeI(name, parent) 
{ 
} 
 
// Slice Directory::list() operation 
 
Filesystem::NodeSeq 
Filesystem::DirectoryI::list(const Ice::Current&) const 
{ 
    return _contents; 
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} 
 
// DirectoryI constructor 
 
Filesystem::DirectoryI::DirectoryI(const string& name, 
                                   const DirectoryIPtr& parent 
                                  ) : NodeI(name, parent) 
{ 
} 
 
// addChild is called by the child in order to add 
// itself to the _contents member of the parent 
 
void 
Filesystem::DirectoryI::addChild(const NodePrx child) 
{ 
    _contents.push_back(child); 
}

9.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe: a single data 
member and two lines of source code are sufficient to achieve this. We discuss 
how to write thread-safe servant implementations in Chapter 29.
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Chapter 10
Client-Side Slice-to-Java Mapping

10.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Java mapping (see Chapter 12 
for the server-side mapping). One part of the client-side Java mapping concerns 
itself with rules for representing each Slice data type as a corresponding Java type; 
we cover these rules in Section 10.3 to Section 10.10. Another part of the mapping 
deals with how clients can invoke operations, pass and receive parameters, and 
handle exceptions. These topics are covered in Section 10.11 to Section 10.13. 
Slice classes have the characteristics of both data types and interfaces and are 
covered in Section 10.14. In Section 10.15, we show how you can customize the 
Slice-to-Java mapping using metadata. Section 10.16 lists the command-line 
options for the Slice-to-Java compiler Finally, Section 10.17 covers the use of 
Slice checksums in the Java mapping.

10.2 Introduction

The client-side Slice-to-Java mapping defines how Slice data types are translated 
to Java types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the Java mapping is intuitive. For example, Slice sequences map 



to Java arrays, so there is essentially nothing new you have learn in order to use 
Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still 
synchronize access to data from different threads. For example, if you have two 
threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 10.9 to 
Section 10.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Java mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the Java mapping rules. In particular, looking through the generated code in 
order to discern how to use the Java mapping is likely to be inefficient, due to the 
amount of detail. Of course, occasionally, you may want to refer to the generated 
code to confirm a detail of the mapping, but we recommend that you otherwise 
use the material presented here to see how to write your client-side code.

10.3 Mapping for Identifiers

Slice identifiers map to an identical Java identifier. For example, the Slice identi-
fier Clock becomes the Java identifier Clock. There is one exception to this rule: 
if a Slice identifier is the same as a Java keyword, the corresponding Java identi-
fier is prefixed with an underscore. For example, the Slice identifier while is 
mapped as _while.1

A single Slice identifier often results in several Java identifiers. For example, 
for a Slice interface named Foo, the generated Java code uses the identifiers Foo 
and FooPrx (among others). If the interface has the name while, the generated 

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such identifiers as much as 
possible.



identifiers are _while and whilePrx (not _whilePrx), that is, the under-
score prefix is applied only to those generated identifiers that actually require it.

10.4 Mapping for Modules

Slice modules map to Java packages with the same name as the Slice module. The 
mapping preserves the nesting of the Slice definitions. For example:

// Definitions at global scope here... 
 
module M1 { 
    // Definitions for M1 here... 
    module M2 { 
        // Definitions for M2 here... 
    }; 
}; 
 
// ... 
 
module M1 {     // Reopen M1 
    // More definitions for M1 here... 
};

This definition maps to the corresponding Java definitions:

package M1; 
// Definitions for M1 here... 
 
package M1.M2; 
// Definitions for M2 here... 
 
package M1; 
// Definitions for M1 here...

Note that these definitions appear in the appropriate source files; source files for 
definitions in module M1 are generated in directory M1 underneath the top-level 
directory, and source files for definitions for module M2 are generated in 
directory M1/M2 underneath the top-level directory. You can set the top-level 
output directory using the --output-dir option with slice2java (see 
Section 4.19).



10.5 The Ice Package

All of the APIs for the Ice run time are nested in the Ice package, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice package are generated from Slice definitions; other parts of the Ice 
package provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice package 
throughout the remainder of the book.

10.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to Java types as shown in Table 10.1.

10.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

Table 10.1. Mapping of Slice built-in types to Java.

Slice Java

bool boolean

byte byte

short short

int int

long long

float float

double double

string String



10.7.1 Mapping for Enumerations
Java2 does not have an enumerated type, so the Slice enumerations are emulated 
using a Java class: the name of the Slice enumeration becomes the name of the 
Java class; for each enumerator, the class contains two public final members, one 
with the same name as the enumerator, and one with the same name as the 
enumerator with a prepended underscore. For example:

enum Fruit { Apple, Pear, Orange };

The generated Java class looks as follows:

public final class Fruit { 
    public static final int _Apple = 0; 
    public static final int _Pear = 1; 
    public static final int _Orange = 2; 
 
    public static final Fruit Apple = new Fruit(_Apple); 
    public static final Fruit Pear = new Fruit(_Pear); 
    public static final Fruit Orange = new Fruit(_Orange); 
 
    public int 
    value() { 
        // ... 
    } 
 
    public static Fruit 
    convert(int val) { 
        // ... 
    } 
 
    public static Fruit 
    convert(String val) { 
        // ... 
    } 
 
    // ... 
}

Note that the generated class contains a number of other members, which we have 
not shown. These members are internal to the Ice run time and you must not use 
them in your application code (because they may change from release to release).

Given the above definitions, we can use enumerated values as follows:



Fruit favoriteFruit = Fruit.Apple; 
Fruit otherFavoriteFruit = Fruit.Orange; 
 
if (favoriteFruit == Fruit.Apple) // Compare with constant 
    // ... 
 
if (f1 == f2)                     // Compare two enums 
    // ... 
 
switch (f2.value()) {             // Switch on enum 
case Fruit._Apple: 
    // ... 
    break; 
case Fruit._Pear 
    // ... 
    break; 
case Fruit._Orange 
    // ... 
    break; 
}

As you can see, the generated class enables natural use of enumerated values. The 
int members with a prepended underscore are constants that encode each 
enumerator; the Fruit members are preinitialized enumerators that you can use 
for initialization and comparison.

The value and convert methods act as an accessor and a modifier, so you 
can read and write the value of an enumerated variable as an int. If you are using 
the convert method, you must make sure that the passed value is within the 
range of the enumeration; failure to do so will result in an assertion failure:

Fruit favoriteFruit = Fruit.convert(4); // Assertion failure!

See Section 10.15.2 for information on the Java5 mapping for Slice enumerations.

10.7.2 Mapping for Structures
Slice structures map to Java structures with the same name. For each Slice data 
member, the Java class contains a corresponding public data member. For 
example, here is our Employee structure from Section 4.9.4 once more:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};



The Slice-to-Java compiler generates the following definition for this structure:

public final class Employee implements java.lang.Cloneable { 
    public long number; 
    public String firstName; 
    public String lastName; 
 
    public Employee {} 
 
    public Employee(long number, 
                    String firstName, 
                    String lastName) { 
        this.number = number; 
        this.firstName = firstName; 
        this.lastName = lastName; 
    } 
 
    public boolean equals(java.lang.Object rhs) { 
        // ... 
    } 
    public int hashCode() { 
        // ... 
    } 
 
    public java.lang.Object clone() 
        java.lang.Object o; 
        try 
        { 
            o = super.clone(); 
        } 
        catch(java.lang.CloneNotSupportedException ex) 
        { 
            assert false; // impossible 
        } 
        return o; 
    } 
}

For each data member in the Slice definition, the Java class contains a corre-
sponding public data member of the same name. Refer to Section 10.15.4 for 
additional information on data members.

The equals member function compares two structures for equality. Note that 
the generated class also provides the usual hashCode and clone methods. 
(clone has the default behavior of making a shallow copy.)



The Java class also has a default constructor as well as a second constructor 
that accepts one argument for each data member of the structure. This constructor 
allows you to construct and initialize a structure in a single statement (instead of 
having to first instantiate the structure and then initialize its members).

10.7.3 Mapping for Sequences
Slice sequences map to Java arrays. This means that the Slice-to-Java compiler 
does not generate a separate named type for a Slice sequence. For example:

sequence<Fruit> FruitPlatter;

This definition simply corresponds to the Java type Fruit[]. Naturally, because 
Slice sequences are mapped to Java arrays, you can take advantage of all the array 
functionality provided by Java, such as initialization, assignment, cloning, and the 
length member. For example:

Fruit[] platter = { Fruit.Apple, Fruit.Pear }; 
assert(platter.length == 2);

See Section 10.15 for information on alternate mappings for sequence types.

10.7.4 Mapping for Dictionaries
Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

As for sequences, the Java mapping does not create a separate named type for this 
definition. Instead, all dictionaries are simply of type java.util.Map, so we 
can use a map of employee structures like any other Java map. (Of course, because 
java.util.Map is an abstract class, we must use a concrete class, such as 
java.util.HashMap for the actual map.) For example:

java.util.Map em = new java.util.HashMap(); 
 
Employee e = new Employee(); 
e.number = 31; 
e.firstName = "James"; 
e.lastName = "Gosling"; 
 
em.put(new Long(e.number), e);

See Section 10.15 for information on alternate mappings for dictionary types.



10.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public interface AppendByDefault { 
    boolean value = true; 
} 
 
public interface LowerNibble { 
    byte value = 15; 
} 
 
public interface Advice { 
    String value = "Don't Panic!"; 
} 
 
public interface TheAnswer { 
    short value = 42; 
} 
 
public interface PI { 
    double value = 3.1416; 
} 
 
public interface FavoriteFruit { 
    Fruit value = Fruit.Pear; 
}

As you can see, each Slice constant is mapped to a Java interface with the same 
name as the constant. The interface contains a member named value that holds 
the value of the constant.



10.9 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 109 once more:

exception GenericError { 
    string reason; 
}; 
exception BadTimeVal extends GenericError {}; 
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public class GenericError extends Ice.UserException { 
    public String reason; 
 
    public GenericError() {} 
 
    public GenericError(String reason) 
    { 
        this.reason = reason; 
    } 
 
 
    public String ice_name() { 
        return "GenericError"; 
    } 
} 
 
public class BadTimeVal extends GenericError { 
    public String ice_name() { 
        return "BadTimeVal"; 
    } 
} 
 
public class BadZoneName extends GenericError { 
    public String ice_name() { 
        return "BadZoneName"; 
    } 
}

Each Slice exception is mapped to a Java class with the same name. For each data 
member, the corresponding class contains a public data member. (Obviously, 
because BadTimeVal and BadZoneName do not have members, the generated 



classes for these exceptions also do not have members.) Refer to Section 10.15.4 
for additional information on data members.

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Exceptions have a default constructor as well as a second constructor that 
accepts one argument for each exception member. This constructor allows you to 
instantiate and initialize an exception in a single statement, instead of having to 
first instantiate the exception and then assign to its members. (For derived excep-
tions, the constructor accepts one argument for each base exception member, plus 
one argument for each derived exception member, in base-to-derived order.)

Each exception also defines the ice_name member function, which returns 
the name of the exception.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Ice.UserException, in turn, derives from 
java.lang.Exception.

Ice.UserExceptions implements a clone method that is inherited by 
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

Note that the generated exception classes contain other member functions that 
are not shown. However, those member functions are internal to the Java mapping 
and are not meant to be called by application code.

10.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice.LocalException (which, in turn, derives from java.lang.Runt-
imeException).

Ice.LocalExceptions implements a clone method that is inherited by 
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 106. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice.LocalException

This is the root of the inheritance tree for run-time exceptions.



• Ice.UserException

This is the root of the inheritance tree for user exceptions.

• Ice.TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice.ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining exceptions by category; 
the fine-grained error handling offered by the remainder of the hierarchy is of 
interest mainly in the implementation of the Ice run time. However, there is one 
exception you will probably be interested in specifically: 
Ice.ObjectNotExistException. This exception is raised if a client 
invokes an operation on an Ice object that no longer exists. In other words, the 
client holds a dangling reference to an object that probably existed some time in 
the past but has since been permanently destroyed.

10.11 Mapping for Interfaces

Slice interfaces map to proxies on the client side. A proxy is simply a Java inter-
face with operations that correspond to the operations defined in the Slice inter-
face.

The compiler generates quite few source files for each Slice interface. In 
general, for an interface <interface-name>, the following source files are created 
by the compiler:

• <interface-name>.java

This source file declares the <interface-name> Java interface.

• <interface-name>Holder.java

This source file defines a holder type for the interface (see page 323).

• <interface-name>Prx.java

This source file defines the <interface-name>Prx interface (see 
page 313).



• <interface-name>PrxHelper.java

This source file defines the helper type for the interface’s proxy (see 
page 316).

• <interface-name>PrxHolder.java

This source file defines the a holder type for the interface’s proxy (see 
page 323).

• _<interface-name>Operations.java 
_<interface-name>OperationsNC.java

These source files each define an interface that contains the operations corre-
sponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The 
compiler also generates a file that is specific to the server side, plus three addi-
tional files:

• _<interface-name>Disp.java

This file contains the definition of the server-side skeleton class.

• _<interface-name>Del.java

• _<interface-name>DelD.java

• _<interface-name>DelM.java

These files contain code that is internal to the Java mapping; they do not 
contain any functions of relevance to application programmers. 

10.11.1 Proxy Interfaces
On the client side, Slice interfaces map to Java interfaces with member functions 
that correspond to the operations on those interfaces. Consider the following 
simple interface:

interface Simple { 
    void op(); 
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx extends Ice.ObjectPrx { 
    public void op(); 
    public void op(java.util.Map __context); 
}



As you can see, the compiler generates a proxy interface SimplePrx. In general, 
the generated name is <interface-name>Prx. If an interface is nested in a 
module M, the generated class is part of package M, so the fully-qualified name is 
M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simple interface in a server and is known as a 
proxy instance. All the details about the server-side object, such as its address, 
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a member function of 
the same name. For the preceding example, we find that the operation op has been 
mapped to the member function op. Also note that op is overloaded: the second 
version of op has a parameter __context of type java.util.Map. This 
parameter is for use by the Ice run time to store information about how to deliver a 
request. You normally do not need to use it. (We examine the __context 
parameter in detail in Chapter 30. The parameter is also used by IceStorm—see 
Chapter 42.)

Because all the <interface-name>Prx types are interfaces, you cannot 
instantiate an object of such a type. Instead, proxy instances are always instanti-
ated on behalf of the client by the Ice run time, so client code never has any need 
to instantiate a proxy directly.The proxy references handed out by the Ice run time 
are always of type <interface-name>Prx; the concrete implementation of 
the interface is part of the Ice run time and does not concern application code.

10.11.2 The Ice.ObjectPrx Interface
All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

package Ice; 
 
public interface ObjectPrx { 
    boolean equals(java.lang.Object r); 
    Identity ice_getIdentity(); 
    int ice_getHash(); 
    boolean ice_isA(String __id); 
    String ice_id(); 
    void ice_ping(); 
    // ... 
}



The methods behave as follows:

• equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

Ice.ObjectPrx o1 = ...; 
Ice.ObjectPrx o2 = ...; 
Ice.Identity i1 = o1.ice_getIdentity(); 
Ice.Identity i2 = o2.ice_getIdentity(); 
 
if (i1.equals(i2)) 
    // o1 and o2 denote the same object 
else 
    // o1 and o2 denote different objects

• ice_getHash

This method returns a hash key for the proxy.

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

Ice.ObjectPrx o = ...; 
if (o != null && o.ice_isA("::Printer")) 



    // o denotes a Printer object 
else 
    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke 
the ice_isA method. This avoids getting a NullPointerException if 
the proxy is null.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be ::Base, or it might something more derived, such as ::Derived.

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as 
ObjectNotExistException or ConnectTimeoutException.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call. (We discuss these methods in 
Chapter 30.)

10.11.3 Proxy Helpers
For each Slice interface, apart from the proxy interface, the Slice-to-Java compiler 
creates a helper class: for an interface Simple, the name of the generated helper 
class is SimplePrxHelper. The helper classes contains two methods of to 
support down-casting:

public final class SimplePrxHelper 
        extends Ice.ObjectPrxHelper implements SimplePrx { 
    public static SimplePrx checkedCast(Ice.ObjectPrx b) { 
        // ... 
    } 
 
    public static SimplePrx checkedCast(Ice.ObjectPrx b, 
                                        Ice.Context ctx) { 
        // ... 
    } 
 



    public static SimplePrx uncheckedCast(Ice.ObjectPrx b) { 
        // ... 
    } 
 
    // ... 
}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a non-null reference to a 
proxy of type SimplePrx; otherwise, if the passed proxy denotes an object of a 
different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere... 
 
SimplePrx simple = SimplePrxHelper.checkedCast(obj); 
if (simple != null) 
    // Object supports the Simple interface... 
else 
    // Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of a proxy in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException. (This also explains the need 
for the helper class: the Ice run time must contact the server, so we cannot use a 
Java down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:



interface Process { 
    void launch(int stackSize, int dataSize); 
}; 
 
// ... 
 
interface Rocket { 
    void launch(float xCoord, float yCoord); 
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

Ice.ObjectPrx obj = ...;                    // Get proxy... 
ProcessPrx process 
    = ProcessPrxHelper.uncheckedCast(obj);  // No worries... 
process.launch(40, 60);                     // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or 
an uncheckedCast to down-cast a proxy. If you use a Java cast, the behavior is 
undefined.

10.11.4 Object Identity and Proxy Comparison
Proxies provide an equals method that compares proxies:

interface ObjectPrx { 
    boolean equals(java.lang.Object r); 
}

Note that proxy comparison with equals uses all of the information in a proxy 
for the comparison. This means that not only the object identity must match for a 
comparison to succeed, but other details inside the proxy, such as the protocol and 



endpoint information, must be the same. In other words, comparison with 
equals tests for proxy identity, not object identity. A common mistake is to write 
code along the following lines:

Ice.ObjectPrx p1 = ...;        // Get a proxy... 
Ice.ObjectPrx p2 = ...;        // Get another proxy... 
 
if (p1.equals(p2)) { 
    // p1 and p2 denote different objects       // WRONG! 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with equals, we know that the two proxies denote the 
same object (because they are identical in all respects); however, if two proxies 
compare unequal with equals, we know absolutely nothing: the proxies may or 
may not denote the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice.Util class:

package Ice; 
 
public final class Util { 
    public static int proxyIdentityCompare(ObjectPrx lhs, 
                                           ObjectPrx rhs); 
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs, 
                                                   ObjectPrx rhs); 
    // ... 
}

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

Ice.ObjectPrx p1 = ...;        // Get a proxy... 
Ice.ObjectPrx p2 = ...;        // Get another proxy... 
 
if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) { 



    // p1 and p2 denote different objects       // Correct 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

The function returns 0 if the identities are equal, −1 p1 is less than p2, and 1 if p1 
is greater than p2. (The comparison uses name as the major and category as 
the minor sort key.)

The proxyIdentityAndFacetCompare performs the same function, 
but compares both the identity and the facet name (see Chapter 32).

In addition, the Java mapping provides two wrapper classes that allow you to 
wrap proxies to use as the key of a hashed collection:

package Ice; 
 
public class ProxyIdentityKey { 
    public ProxyIdentityKey(Ice.ObjectPrx proxy); 
    public int hashCode(); 
    public boolean equals(java.lang.Object obj); 
    public Ice.ObjectPrx getProxy(); 
} 
 
public class ProxyIdentityFacetKey { 
    public ProxyIdentityFacetKey(Ice.ObjectPrx proxy); 
    public int hashCode(); 
    public boolean equals(java.lang.Object obj); 
    public Ice.ObjectPrx getProxy(); 
}

The constructor caches the identity and the hash code of the passed proxy, so calls 
to hashCode and equals can be evaluated efficiently. The getProxy method 
returns the proxy that was passed to the constructor.

As for the comparison functions, ProxyIdentityKey only uses the 
proxy’s identity, whereas ProxyIdentityFacetKey also includes the facet 
name.

10.12 Mapping for Operations

As we saw in Section 10.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy. For example, here is part of the definitions for 
our file system from Section 5.4:



module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy 
String name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are 
returned by reference for complex types, and by value for simple types (such as 
int or double).

10.12.1 Normal, idempotent, and nonmutating Operations
You can add an idempotent or nonmutating qualifier to a Slice operation. As far 
as the signature for the corresponding proxy methods is concerned, neither idem-
potent nor nonmutating have any effect. For example, consider the following 
interface:

interface Example { 
                string op1(); 
    idempotent  string op2(); 
    nonmutating string op3(); 
};

The proxy interface for this is:

public interface ExamplePrx extends Ice.ObjectPrx { 
    public String op1(); 
    public String op2(); 
    public String op3(); 
}

idempotent and nonmutating affect an aspect of call dispatch, not interface, so it 
makes sense for the three methods to look the same.



10.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the Java mapping are very simple: parameters are 
passed either by value (for simple types) or by reference (for complex types and 
type String). Semantically, the two ways of passing parameters are identical: it 
is guaranteed that the value of a parameter will not be changed by the invocation 
(with some caveats—see XREF).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServer* proxy); 
};

The Slice compiler generates the following proxy for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx { 
    public void op1(int i, float f, boolean b, String s); 
    public void op2(NumberAndString ns, 
                    String[] ss, 
                    java.util.Map st); 
    public void op3(ClientToServerPrx proxy); 
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy... 
 
p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals 
 
int i = 42; 
float f = 3.14f; 



boolean b = true; 
String s = "Hello world!"; 
p.op1(i, f, b, s);                      // Pass simple variables 
 
NumberAndString ns = new NumberAndString(); 
ns.x = 42; 
ns.str = "The Answer"; 
String[] ss = { "Hello world!" }; 
java.util.HashMap st = new java.util.HashMap(); 
st.put(new Long(0), ns); 
p.op2(ns, ss, st);                      // Pass complex variables 
 
p.op3(p);                               // Pass proxy

out-Parameters

Java does not have pass-by-reference: parameters are always passed by value. For 
a function to modify one of its arguments, we must pass a reference (by value) to 
an object; the called function can then modify the object’s contents via the passed 
reference.

To permit the called function to modify a parameter, the Java mapping 
provides so-called holder classes. For example, for each of the built-in Slice types, 
such as int and string, the Ice package contains a corresponding holder class. 
Here are the definitions for the holder classes Ice.IntHolder and 
Ice.StringHolder:

package Ice; 
 
public final class IntHolder { 
    public IntHolder() {} 
    public IntHolder(int value) 
        this.value = value; 
    } 
    public int value; 
} 
 
public final class StringHolder { 
    public StringHolder() {} 
    public StringHolder(String value) { 
        this.value = value; 
    } 
    public String value; 
}



A holder class has a public value member that stores the value of the parameter; 
the called function can modify the value by assigning to that member. The class 
also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates 
a corresponding holder type. For example, here is the generated holder type for 
the NumberAndString structure we defined on page 322:

public final class NumberAndStringHolder { 
    public NumberAndStringHolder() {} 
 
    public NumberAndStringHolder(NumberAndString value) { 
        this.value = value; 
    } 
 
    public NumberAndString value; 
}

This looks exactly like the holder classes for the built-in types: we get a default 
constructor, a constructor that accepts an initial value, and the public value 
member.

Note that holder classes are generated for every Slice type you define. For 
example, for sequences, such as the FruitPlatter sequence we saw on page 308, 
the compiler does not generate a special Java FruitPlatter type because 
sequences map to Java arrays. However, the compiler does generate a Fruit-
PlatterHolder class, so we can pass a FruitPlatter array as an out-
parameter.

To pass an out-parameter to an operation, we simply pass an instance of a 
holder class and examine the value member of each out-parameter when the call 
completes. Here is the same Slice definition we saw on page 322 once more, but 
this time with all parameters being passed in the out direction:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ServerToClient { 
    void op1(out int i, out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 



             out StringSeq ss, 
             out StringTable st); 
    void op3(out ServerToClient* proxy); 
};

The Slice compiler generates the following code for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx { 
    public void op1(Ice.IntHolder i, Ice.FloatHolder f, 
                    Ice.BooleanHolder b, Ice.StringHolder s); 
    public void op2(NumberAndStringHolder ns, 
                    StringSeqHolder ss, StringTableHolder st); 
    public void op3(ClientToServerPrxHolder proxy); 
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy... 
 
Ice.IntHolder ih = new Ice.IntHolder(); 
Ice.FloatHolder fh = new Ice.FloatHolder(); 
Ice.BooleanHolder bh = new Ice.BooleanHolder(); 
Ice.StringHolder sh = new Ice.StringHolder(); 
p.op1(ih, fh, bh, sh); 
 
NumberAndStringHolder nsh = new NumberAndString(); 
StringSeqHolder ssh = new StringSeqHolder(); 
StringTableHolder sth = new StringTableHolder(); 
p.op2(nsh, ssh, sth); 
 
ServerToClientPrxHolder stcph = new ServerToClientPrxHolder(); 
p.op3(stch); 
 
System.out.writeln(ih.value);   // Show one of the values

Again, there are no surprises in this code: the various holder instances contain 
values once the operation invocation completes and the value member of each 
instance provides access to those values.

Parameter Type Mismatches

Parameters in the Java mapping are statically type safe, with one exception: dictio-
naries map to java.util.Map, which is simply a mapping from 
java.lang.Object to java.lang.Object. It follows that, if you pass a 



map between client and server, you must take care to ensure that the pairs of 
values you insert into the map are of the correct type. For example:

dictionary<string, long> AgeTable; 
 
interface Ages { 
    void put(AgeTable ages); 
};

Given a proxy to an Ages object, the client code could look as follows:

AgesPrx ages = ...;     // Get proxy... 
 
java.util.HashMap ageTable = new java.util.HashMap(); 
String name = "Michi Henning"; 
Long age = new Long(42); 
ageTable.put(age, name);        // Oops... 
ages.put(ageTable);             // ClassCastException!

The problem here is that the order of the parameters for ageTable.put is 
reversed. When the proxy implementation tries to marshal the data, it notices the 
type mismatch and throws a ClassCastException.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
proxies, sequences, dictionaries, and strings all can be null:

• For proxies, a Java null references denotes the null proxy. The null proxy is 
dedicated value that indicates that a proxy points “nowhere” (denotes no 
object).

• Sequences and dictionaries cannot be null, but can be empty. To make life 
with these types easier, whenever you pass a Java null reference as a param-
eter or return value of type sequence or dictionary, the Ice run time automati-
cally sends an empty sequence or dictionary to the receiver.

• Java strings can be null, but Slice strings cannot (because Slice strings do not 
support the concept of a null string). Whenever you pass a Java null string as a 
parameter or return value, the Ice run time automatically sends an empty 
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data 
types, members that are sequences, dictionaries, or strings automatically arrive as 
an empty value at the receiving end. This saves you having to explicitly initialize, 
for example, every string element in a large sequence before sending it in order to 



avoid NullPointerExceptions. Note that using null parameters in this way 
does not create null semantics for sequences, dictionaries, or strings. As far as the 
object model is concerned, these do not exist (only empty sequences, dictionaries, 
and strings do). For example if you send a string as a null reference or an empty 
string makes no difference to the receiver: either way, the receiver sees an empty 
string.

10.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 10.10 on 
page 311) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 10.9 on page 310). Suppose we have the following 
simple interface:

exception Tantrum { 
    string reason; 
}; 
 
interface Child { 
    void askToCleanUp() throws Tantrum; 
};

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:

ChildPrx child = ...;   // Get child proxy... 
 
try { 
    child.askToCleanUp(); 
} catch (Tantrum t) { 
    System.out.write("The child says: "); 
    System.out.writeln(t.reason); 
}

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

public class Client { 
    static void run() { 
        ChildPrx child = ...;   // Get child proxy... 
        try { 
            child.askToCleanUp(); 



        } catch (Tantrum t) { 
            System.out.print("The child says: "); 
            System.out.println(t.reason); 
            child.scold();          // Recover from error... 
        } 
        child.praise();             // Give positive feedback... 
    } 
 
    public static void 
    main(String[] args) 
    { 
        try { 
            // ... 
            run(); 
            // ... 
        } catch (Ice.LocalException e) { 
            e.printStackTrace(); 
        } catch (Ice.UserException e) { 
            System.err.println(e.getMessage()); 
        } 
    } 
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

Exceptions and out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may still have its original value or 
may have been changed by the operation’s implementation in the target object. In 
other words, for out-parameters, Ice provides the weak exception guarantee [21] 
but does not provide the strong exception guarantee.2

2. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.



10.14 Mapping for Classes

Slice classes are mapped to Java classes with the same name. The generated class 
contains a public data member for each Slice data member (just as for structures 
and exceptions), and a member function for each operation. Consider the 
following class definition:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 -59 
    string format();    // Return time as hh:mm:ss 
};

The Slice compiler generates the following code for this definition:

public interface _TimeOfDayOperations { 
    String format(Ice.Current current); 
} 
 
public interface _TimeOfDayOperationsNC { 
    String format(); 
} 
 
public abstract class TimeOfDay extends Ice.ObjectImpl 
                                implements _TimeOfDayOperations, 
                                           _TimeOfDayOperationsNC 
{ 
    public short hour; 
    public short minute; 
    public short second; 
 
    public TimeOfDay(); 
    public TimeOfDay(short hour, short minute, short second); 
    // ... 
}

There are a number of things to note about the generated code:

1. The compiler generates “operations interfaces” called 
_TimeOfDayOperations and _TimeOfDayOperationsNC. These 
interfaces contain a method for each Slice operation of the class.

2. The generated class TimeOfDay inherits (indirectly) from Ice.Object. 
This means that all classes implicitly inherit from Ice.Object, which is the 
ultimate ancestor of all classes. Note that Ice.Object is not the same as 



Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a 
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from 
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

10.14.1 Operations Interfaces
The methods in the _<interface-name>Operations interface have an 
additional trailing parameter of type Ice.Current, whereas the methods in the 
_<interface-name>OperationsNC interface lack this additional trailing 
parameter. The methods without the Current parameter simply forward to the 
methods with a Current parameter, supplying a default Current. For now, 
you can ignore this parameter and pretend it does not exist. (We look at it in more 
detail in Section 30.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the _<interface-name>Operations and _<inter-
face-name>OperationsNC interfaces.

10.14.2 Inheritance from Ice.Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 10.1, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inherit-
ance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 



expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 10.1. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

package Ice; 
 
public interface Object 
{ 
    int ice_getHash(); 
 
    boolean ice_isA(String s); 
    boolean ice_isA(String s, Current current); 
 
    void ice_ping(); 
    void ice_ping(Current current); 
 
    String[] ice_ids(); 
    String[] ice_ids(Current current); 
 
    String ice_id(); 
    String ice_id(Current current); 
 
    void ice_preMarshal(); 
    void ice_postUnmarshal(); 
}

The member functions of Ice.Object behave as follows:

• ice_getHash

This function returns a hash value for the class, allowing you to easily place 
classes into hash tables. The implementation returns the value of hashCode.

Ice.ObjectPrx

Proxies... Classes...

Ice.Object



• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

10.14.3 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for 
each data member in the Slice definition, the generated class contains a corre-
sponding public data member. Refer to Section 10.15.4 for additional information 
on data members.

10.14.4 Operations of Classes
Operations on classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:



public class TimeOfDayI extends TimeOfDay { 
    public String format(Ice.Current current) { 
        DecimalFormat df 
            = (DecimalFormat)DecimalFormat.getInstance(); 
        df.setMinimumIntegerDigits(2); 
        return new String(df.format(hour) + ":" + 
                          df.format(minute) + ":" + 
                          df.format(second)); 
    } 
}

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time { 
    TimeOfDay get(); 
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
 
    local interface Communicator { 
        void addObjectFactory(ObjectFactory factory, string id); 
        ObjectFactory findObjectFactory(string id); 
        // ... 
    }; 
};



To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory 
        extends Ice.LocalObjectImpl 
        implements Ice.ObjectFactory { 
    public Ice.Object create(String type) { 
        if(type.equals("::M::TimeOfDay")) { 
            return new TimeOfDayI(); 
        } 
        assert(false); 
        return null; 
    } 
 
    public void destroy() { 
        // Nothing to do 
    } 
}

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it is "::M::TimeOfDay", it 
instantiates and returns a TimeOfDayI object. For other type IDs, it asserts 
because it does not know how to instantiate other types of objects.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Ice.Communicator ic = ...; 
ic.addObjectFactory(new ObjectFactory(), "::M::TimeOfDay");

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.



The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

Inheritance from LocalObject

Note that the implementation of the factory in the previous example extends 
Ice.LocalObjectImpl. The object factory, being a local object, inherits a 
number of operations from Ice.LocalObject, such as ice_getHash (see 
page 315). The Ice.LocalObjectImpl class provides implementations for 
these operations, so you do not need to implement them yourself.

In general, all local interfaces inherit from Ice.LocalObject, and all 
implementations of local interfaces, such as an object factory or servant locator 
(see Section 30.7) must inherit from Ice.LocalObjectImpl.

10.14.5 Class Constructors
The generated class contains both a default constructor, and a constructor that 
accepts one argument for each member of the class. This allows you to create and 
initialize a class in a single statement, for example:

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 14:45pm

For derived classes, the constructor requires one argument of all of the members 
of the class, including members of the base class(es). For example, consider the 
the definition from Section 4.11.2 once more:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
class DateTime extends TimeOfDay { 



    short day;          // 1 - 31 
    short month;        // 1 - 12 
    short year;         // 1753 onwards 
};

The constructors for the generated classes are as follows:

public class TimeOfDay extends Ice.ObjectImpl { 
    public TimeOfDay() {} 
 
    public TimeOfDay(short hour, short minute, short second) 
    { 
        this.hour = hour; 
        this.minute = minute; 
        this.second = second; 
    } 
 
    // ... 
} 
 
public class DateTime extends TimeOfDay 
{ 
    public DateTime() 
    { 
        super(); 
    } 
 
    public DateTime(short hour, short minute, short second, 
                    short day, short month, short year) 
    { 
        super(hour, minute, second); 
        this.day = day; 
        this.month = month; 
        this.year = year; 
    } 
 
    // ... 
}

In other words, if you want to instantiate and initialize a DateTime instance, you 
must either use the default constructor or provide data for all of the data members 
of the instance, including data members of any base classes.



10.15 Customizing the Java Mapping

You can customize the code that the Slice-to-Java compiler produces by anno-
tating your Slice definitions with metadata (see Section 4.17). This section 
describes how metadata influences several aspects of the generated Java code.

10.15.1 Packages
By default, the scope of a Slice definition determines the package of its mapped 
Java construct. A Slice type defined in a module hierarchy is mapped to a type 
residing in the equivalent Java package (see Section 10.4 for more information on 
the module mapping).

There are times when applications require greater control over the packaging 
of generated Java classes. For instance, a company may have software develop-
ment guidelines that require all Java classes to reside in a designated package. One 
way to satisfy this requirement is to modify the Slice module hierarchy so that the 
generated code uses the required package by default. In the example below, we 
have enclosed the original definition of Workflow::Document in the modules 
com::acme so that the compiler will create the class in the com.acme package:

module com { 
    module acme { 
        module Workflow { 
            class Document { 
                // ... 
            }; 
        }; 
    }; 
};

There are two problems with this workaround:

1. It incorporates the requirements of an implementation language into the appli-
cation’s interface specification.

2. Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of gener-
ated code through the use of global metadata (see Section 4.17). The example 
above can be converted as follows:



[["java:package:com.acme"]] 
module Workflow { 
    class Document { 
        // ... 
    }; 
};

The global metadata directive java:package:com.acme instructs the 
compiler to generate all of the classes resulting from definitions in this Slice file 
into the Java package com.acme. The net effect is the same: the class for Docu-
ment is generated in the package com.acme.Workflow. However, we have 
addressed the two shortcomings of the first solution by reducing our impact on the 
interface specification: the Slice-to-Java compiler recognizes the package meta-
data directive and modifies its actions accordingly, whereas the compilers for 
other language mappings simply ignore it.

Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifi-
cations for the Ice run time when unmarshaling exceptions and concrete class 
types. The Ice run time dynamically loads generated classes by translating their 
Slice type ids into Java class names. For example, the Ice run time translates the 
Slice type id ::Workflow::Document into the class name Work-
flow.Document.

However, when the generated classes are placed in a user-specified package, 
the Ice run time can no longer rely on the direct translation of a Slice type id into a 
Java class name, and therefore must be configured in order to successfully locate 
the generated classes. Two configuration properties are supported:

• Ice.Package.Module=package

Associates a top-level3 Slice module with the package in which it was gener-
ated.

• Ice.Default.Package=package

Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete 
class is described below:

3. Only top-level module names are allowed; the semantics of global metadata prevent a nested 
module from being generated into a different package than its enclosing module.



1. Translate the Slice type id into a Java class name and attempt to load the class.

2. If that fails, extract the top-level module from the type id and check for an 
Ice.Package property with a matching module name. If found, prepend 
the specified package to the class name and try to load the class again.

3. If that fails, check for the presence of Ice.Default.Package. If found, 
prepend the specified package to the class name and try to load the class again.

4. If the class still cannot be loaded, the instance may be sliced according to the 
rules described in Section 33.2.11.

Continuing our example from the previous section, we can define the following 
property:

Ice.Package.Workflow=com.acme

Alternatively, we could achieve the same result with this property:

Ice.Default.Package=com.acme

10.15.2 Java5 Mapping
The language features introduced in Java5 offer a number of convenient new capa-
bilities that you can incorporate into your Ice applications. To enable support for 
Java5, you must annotate your Slice definitions with global metadata, and you 
must use a Java5-specific distribution of Ice for Java.

Metadata

The global metadata java:java5 activates the Slice-to-Java compiler’s support 
for the Java5 mapping. The effects of this metadata are described in the sections 
below. If you would prefer not to modify each of your Slice files to include the 
metadata, you can use the compiler’s --meta option instead, as shown below:

$ slice2java --meta java:java5 Document.ice

The Java5 mapping cannot be used selectively. The metadata may only appear as 
global metadata, and has no effect when specified on individual Slice definitions. 
Furthermore, since the Java5 mapping alters the default mapping of several Slice 
types, you must use it for all of your Slice definitions. Using the --meta option 
as shown above is equivalent to defining the global metadata in Document.ice 
and in any files included directly or indirectly by Document.ice.

Regardless of whether you use the Java5 mapping, you may still customize the 
mapping of Slice sequence and dictionary types as described in Section 10.15.3.



Mapping for Enum

A Slice enum type maps to the Java5 enum type. Consider the example from 
Section 10.7.1:

enum Fruit { Apple, Pear, Orange };

The Java5 mapping for Fruit is shown below:

public enum Fruit { 
    Apple(0), 
    Pear(1), 
    Orange(2); 
 
    public static final int _Apple = 0; 
    public static final int _Pear = 1; 
    public static final int _Orange = 2; 
 
    public int 
    value() { 
        // ... 
    } 
 
    public static Fruit 
    convert(int val) { 
        // ... 
    } 
 
    public static Fruit 
    convert(String val) { 
        // ... 
    } 
 
    // ... 
}

As you can see, the Java5 mapping is very similar to the default mapping. The 
static members such as _Apple that supply the integer values of each enumerator 
are retained for backward compatibility.

Mapping for Dictionary

As explained in Section 10.7.4, the mapping for a Slice dictionary type defines 
both abstract and concrete types. In the Java5 mapping for a dictionary, the 
abstract and concrete types are instances of the generic types 
java.util.Map<K, V> and java.util.HashMap<K, V>, respectively, 



where K is the Java5 mapping of the key type and V is the Java5 mapping of the 
value type.

Consider our earlier dictionary example:

dictionary<long, Employee> EmployeeMap;

The typesafe nature of the Java5 mapping makes using dictionaries simpler, since 
it eliminates the need for casts and wrapper objects:

java.util.Map<Long, Employee> em = 
    new java.util.HashMap<Long, Employee>(); 
 
Employee e = new Employee(); 
e.number = 31; 
e.firstName = "James"; 
e.lastName = "Gosling"; 
 
em.put(e.number, e);

Iterating over the dictionary is also more convenient in the Java5 mapping:

for(java.util.Map.Entry<Long, Employee> i : em.entrySet()) 
{ 
    long num = i.getKey(); 
    Employee emp = i.getValue(); 
    System.out.println(emp.firstName + " was employee #" + num); 
}

Mapping for Sequence

The default mapping for a Slice sequence type remains unchanged for Java5 and 
continues to use a native Java array, which is the most efficient representation. If 
you specify a custom type for a sequence (see Section 10.15.3) and do not also 
specify the abstract type, the Java5 mapping uses the abstract type 
java.util.List<E> by default, where E is the Java5 mapping of the element 
type.

10.15.3 Custom Types
One of the more powerful applications of metadata is the ability to tailor the Java 
mapping for sequence and dictionary types to match the needs of your application.



Metadata

The metadata for specifying a custom type has the following format:

java:type:concrete-type[:abstract-type]

The abstract type is optional; the compiler uses a default value if one is not 
defined. The concrete type must satisfy an is-A relationship with the abstract type: 
either the same class is specified for both types, or the concrete type must be 
derived from the abstract type.

The Slice-to-Java compiler generates code that uses the abstract type for all 
occurrences of the modified Slice definition except when the generated code must 
instantiate the type, in which case the compiler uses the concrete type instead.

The compiler performs no validation on your custom types. Misspellings and 
other errors will not be apparent until you compile the generated code.

Defining a Custom Sequence Type

Although the default mapping of a sequence type to a native Java array is efficient 
and typesafe, it is not always the most convenient representation of your data. To 
use a different representation, specify the type information in a metadata directive, 
as shown in the following example:

["java:type:java.util.LinkedList"] 
sequence<string> StringList;

If you prefer a typesafe class, you can use a Java5 generic type instead:

["java:type:java.util.LinkedList<String>"] 
sequence<string> StringList;

It is your responsibility to use a type parameter for the Java5 class (String in the 
example above) that is the correct mapping for the sequence’s element type.

The compiler selects a default abstract type if you do not define one. If the 
Java5 mapping is enabled (see Section 10.15.2), the default abstract type is 
java.util.List<E>, where E is the Java5 mapping of the element type. 
Otherwise, the default abstract type is java.util.List.

It is legal to use Java5 classes in your metadata even if the Java5 mapping is 
not enabled. In this situation, we recommend that you always specify an appro-
priate abstract type explicitly because the compiler’s default type, 
java.util.List, may cause the Java compiler to emit warnings when you 
compile the generated code. The example below demonstrates the use of an 
abstract type:



["java:type:java.util.LinkedList<String>:java.util.List<String>"] 
sequence<string> StringList;

Defining a Custom Dictionary Type

If the semantics of a HashMap are not suitable for your application, you can 
specify an alternate type using metadata as shown in the example below:

["java:type:java.util.TreeMap"] 
dictionary<string, string> StringMap;

If you prefer a typesafe class, you can use a Java5 generic type instead:

["java:type:java.util.TreeMap<String, String>"] 
dictionary<string, string> StringMap;

It is your responsibility to use type parameters for the Java5 class (String in the 
example above) that are the correct mappings for the dictionary’s key and value 
types.

The compiler selects a default abstract type if you do not define one. If the 
Java5 mapping is enabled (see Section 10.15.2), the default abstract type is 
java.util.Map<K, V>, where K is the Java5 mapping of the key type and V 
is the Java5 mapping of the value type. Otherwise, the default abstract type is 
java.util.Map.

It is legal to use Java5 classes in your metadata even if the Java5 mapping is 
not enabled. In this situation, we recommend that you always specify an appro-
priate abstract type explicitly because the compiler’s default type, 
java.util.Map, may cause the Java compiler to emit warnings when you 
compile the generated code. The example below demonstrates the use of an 
abstract type:

["java:type:java.util.TreeMap<String, String>:java.util.Map<String
, String>"] 
dictionary<string, string> StringMap;

Usage

You can define custom type metadata in a variety of situations. The simplest 
scenario is specifying the metadata at the point of definition:

["java:type:java.util.LinkedList"] 
sequence<string> StringList;



Defined in this manner, the Slice-to-Java compiler uses java.util.List (the 
default abstract type) for all occurrences of StringList, and 
java.util.LinkedList when it needs to instantiate StringList.

You may also specify a custom type more selectively by defining metadata for 
a data member, parameter or return value. For instance, the mapping for the orig-
inal Slice definition might be sufficient in most situations, but a different mapping 
is more convenient in particular cases. The example below demonstrates how to 
override the sequence mapping for the data member of a structure as well as for 
several operations:

sequence<string> StringSeq; 
 
struct S { 
    ["java:type:java.util.LinkedList"] StringSeq seq; 
}; 
 
interface I { 
    ["java:type:java.util.ArrayList"] StringSeq 
    modifiedReturnValue(); 
 
    void modifiedInParam( 
        ["java:type:java.util.ArrayList"] StringSeq seq); 
 
    void modifiedOutParam( 
        out ["java:type:java.util.ArrayList"] StringSeq seq); 
};

As you might expect, modifying the mapping for an operation’s parameters or 
return value may require the application to manually convert values from the orig-
inal mapping to the modified mapping. For example, suppose we want to invoke 
the modifiedInParam operation. The signature of its proxy operation is shown 
below:

void modifiedInParam(java.util.List seq, Ice.Current curr)

The metadata changes the mapping of the seq parameter to java.util.List, 
which is the default abstract type. If a caller has a StringSeq value in the original 
mapping, it must convert the array as shown in the following example:

String[] seq = new String[2]; 
seq[0] = "hi"; 
seq[1] = "there"; 
IPrx proxy = ...; 
proxy.modifiedInParam(java.util.Arrays.asList(seq));



Although we specified the concrete type java.util.ArrayList for the 
parameter, we are still able to pass the result of asList because its return type 
(java.util.List) is compatible with the parameter’s abstract type declared 
by the proxy method. In the case of an operation parameter, the concrete type is 
only relevant to a servant implementation, which may need to make assumptions 
about the actual type of the parameter.

Mapping for Modified Out Parameters

The mapping for an out parameter uses a generated “holder” class to convey the 
parameter value (see Section 10.12.2). If you modify the mapping of an out 
parameter, as discussed in the previous section, it is possible that the holder class 
for the parameter’s unmodified type is no longer compatible with the custom type 
you have specified. The holder class generated for StringSeq is shown below:

public final class StringSeqHolder 
{ 
    public 
    StringSeqHolder() 
    { 
    } 
 
    public 
    StringSeqHolder(String[] value) 
    { 
        this.value = value; 
    } 
 
    public String[] value; 
}

An out parameter of type StringSeq would normally map to a proxy method that 
used StringSeqHolder to hold the parameter value. When the parameter is 
modified, as is the case with the modifiedOutParam operation, the Slice-to-Java 
compiler cannot use StringSeqHolder to hold an instance of 
java.util.List, because StringSeqHolder is only appropriate for the 
default mapping to a native array.

As a result, the compiler uses special holder classes in these situations. For the 
example above, the compiler generates the following proxy method:

void modifiedOutParam(Ice.ListHolder seq, Ice.Current curr)

The Ice.ListHolder class holds an instance of java.util.List. The 
compiler uses ListHolder for all modified out sequence parameters whose 



abstract type is java.util.List. As a convenience, the compiler uses the 
class Ice.ArrayListHolder for an abstract type of java.util.Array-
List, and Ice.LinkedListHolder for an abstract type of 
java.util.LinkedList.

In a similar fashion, the compiler uses Ice.MapHolder when it detects an 
incompatibility for a modified out dictionary parameter. Ice.MapHolder 
holds a value of type java.util.Map.

In the Java5 mapping, the compiler handles these situations using instances of 
the generic class Ice.Holder<T>, where T is the parameter’s abstract type. 
Consider the following example:

sequence<string> StringSeq; 
 
interface I { 
    void modifiedOutParam( 
        out ["java:type:java.util.ArrayList<String>"] 
        StringSeq seq); 
};

The compiler generates the following Java5 mapping for the modifiedOutParam 
proxy method:

void modifiedOutParam( 
    Ice.Holder<java.util.List<java.lang.String> > seq, 
    Ice.Current curr)

The abstract type of the parameter is java.util.List<String>, therefore 
the holder class becomes Ice.Holder<java.util.List<String>>.

10.15.4 JavaBean Mapping
The Java mapping optionally generates JavaBean-style methods for the data 
members of class, struct and exception types.

Generated Methods

For each data member val of type T, the mapping generates the following 
methods:

public T getVal(); 
public void setVal(T v);

The mapping generates an additional method if T is the bool type:

public boolean isVal();



Finally, if T is a sequence type with an element type E, two methods are generated 
to provide direct access to elements:

public E getVal(int index); 
public void setVal(int index, E v);

Note that these element methods are only generated for sequence types that use 
the default mapping.

The Slice-to-Java compiler considers it a fatal error for a JavaBean method of 
a class data member to conflict with a declared operation of the class. In this situ-
ation, you must rename the operation or the data member, or disable the genera-
tion of JavaBean methods for the data member in question.

Metadata

The JavaBean methods are generated for a data member when the member or its 
enclosing type is annotated with the java:getset metadata. The following 
example demonstrates both styles of usage:

sequence<int> IntSeq; 
 
class C { 
    ["java:getset"] int i; 
    double d; 
}; 
 
["java:getset"] 
struct S { 
    bool b; 
    string str; 
}; 
 
["java:getset"] 
exception E { 
    IntSeq seq; 
};

JavaBean methods are generated for all members of struct S and exception E, but 
for only one member of class C. Relevant portions of the generated code are shown 
below:

public class C extends Ice.ObjectImpl 
{ 
    ... 
 
    public int i; 



 
    public int 
    getI() 
    { 
        return i; 
    } 
 
    public void 
    setI(int _i) 
    { 
        i = _i; 
    } 
 
    public double d; 
} 
 
public final class S implements java.lang.Cloneable 
{ 
    public boolean b; 
 
    public boolean 
    getB() 
    { 
        return b; 
    } 
 
    public void 
    setB(boolean _b) 
    { 
        b = _b; 
    } 
 
    public boolean 
    isB() 
    { 
        return b; 
    } 
 
    public String str; 
 
    public String 
    getStr() 
    { 
        return str; 
    } 
 



    public void 
    setStr(String _str) 
    { 
        str = _str; 
    } 
 
    ... 
} 
 
public class E extends Ice.UserException 
{ 
    ... 
 
    public int[] seq; 
 
    public int[] 
    getSeq() 
    { 
        return seq; 
    } 
 
    public void 
    setSeq(int[] _seq) 
    { 
        seq = _seq; 
    } 
 
    public int 
    getSeq(int _index) 
    { 
        return seq[_index]; 
    } 
 
    public void 
    setSeq(int _index, int _val) 
    { 
        seq[_index] = _val; 
    } 
 
    ... 
}



10.16 slice2java Command-Line Options

The Slice-to-Java compiler, slice2java, offers the following command-line 
options in addition to the standard options described in Section 4.19:

• --tie

Generate tie classes (see Section 12.7).

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --impl-tie

Generate sample implementation files using ties (see Section 12.7). This 
option will not overwrite an existing file.

• --checksum CLASS

Generate checksums for Slice definitions into the class CLASS. The given 
class name may optionally contain a package specifier. The generated class 
contains checksums for all of the Slice files being translated by this invocation 
of the compiler. For example, the command below causes slice2java to 
generate the file Checksums.java containing the checksums for the Slice 
definitions in File1.ice and File2.ice:

slice2java --checksum Checksums File1.ice File2.ice

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

• --meta META

Define the global metadata directive META. Using this option is equivalent to 
defining the global metadata META in each named Slice file, as well as in any 
file included by a named Slice file. See Section 10.15.2 for an example of 
using this option.

10.17 Using Slice Checksums

As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2java, the --checksum option causes 
the compiler to generate a new Java class that adds checksums to a static map 



member. Assuming we supplied the option --checksum Checksums to 
slice2java, the generated class Checksums.java looks like this:

public class Checksums { 
    public static java.util.Map checksums; 
}

The read-only map checksums is initialized automatically prior to first use; no 
action is required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the equals method. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:

java.util.Map serverChecksums = ... 
java.util.Iterator i = Checksums.checksums.entrySet().iterator(); 
while(i.hasNext()) { 
    java.util.Map.Entry e = (java.util.Map.Entry)i.next(); 
    String id = (String)e.getKey(); 
    String checksum = (String)e.getValue(); 
    String serverChecksum = (String)serverChecksums.get(id); 
    if(serverChecksum == null) { 
        // No match found for type id! 
    } else if(!checksum.equals(serverChecksum)) { 
        // Checksum mismatch! 
    } 
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 11
Developing a File System Client in 
Java

11.1 Chapter Overview

In this chapter, we present the source code for a Java client that accesses the file 
system we developed in Chapter 5 (see Chapter 13 for the corresponding server).

11.2 The Java Client

We now have seen enough of the client-side Java mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
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        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

import Filesystem.*; 
 
public class Client { 
 
    // Recursively print the contents of directory "dir" in 
    // tree fashion.  For files, show the contents of each file. 
    // The "depth" parameter is the current nesting level 
    // (for indentation). 
 
    static void 
    listRecursive(DirectoryPrx dir, int depth) 
    { 
        char[] indentCh = new char[++depth]; 
        java.util.Arrays.fill(indentCh, '\t'); 
        String indent = new String(indentCh); 
 
        NodePrx[] contents = dir.list(); 
 
        for (int i = 0; i < contents.length; ++i) { 
            DirectoryPrx subdir 
                = DirectoryPrxHelper.checkedCast(contents[i]); 
            FilePrx file 
                = FilePrxHelper.uncheckedCast(contents[i]); 
            System.out.println(indent + contents[i].name() + 
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                (subdir != null ? " (directory):" : " (file):")); 
            if (subdir != null) { 
                listRecursive(subdir, depth); 
            } else { 
                String[] text = file.read(); 
                for (int j = 0; j < text.length; ++j) 
                    System.out.println(indent + "\t" + text[j]); 
            } 
        } 
    } 
 
    public static void 
    main(String[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            // Create a communicator 
            // 
            ic = Ice.Util.initialize(args); 
 
            // Create a proxy for the root directory 
            // 
            Ice.ObjectPrx base 
                = ic.stringToProxy("RootDir:default -p 10000"); 
            if (base == null) 
                throw new RuntimeException("Cannot create proxy"); 
 
            // Down-cast the proxy to a Directory proxy 
            // 
            DirectoryPrx rootDir 
                = DirectoryPrxHelper.checkedCast(base); 
            if (rootDir == null) 
                throw new RuntimeException("Invalid proxy"); 
 
            // Recursively list the contents of the root directory 
            // 
            System.out.println("Contents of root directory:"); 
            listRecursive(rootDir, 0); 
        } catch (Ice.LocalException e) { 
            e.printStackTrace(); 
            status = 1; 
        } catch (Exception e) { 
            System.err.println(e.getMessage()); 
            status = 1; 
        } 
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        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                System.err.println(e.getMessage()); 
                status = 1; 
            } 
        } 
        System.exit(status); 
    } 
}

After importing the Filesystem package, the Client class defines two 
methods: listRecursive, which is a helper function to print the contents of 
the file system, and main, which is the main program. Let us look at main first:

1. The structure of the code in main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.
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2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 11.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 
                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 36 and XREF.

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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11.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Java code hardly 
differs from the code you would write for an ordinary Java program. This is one of 
the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local Java object. This allows you to put your effort where 
you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs. As we will see in Chapter 13, this is true 
for the server side as well, meaning that you can develop distributed applications 
easily and efficiently.
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Chapter 12
Server-Side Slice-to-Java Mapping

12.1 Chapter Overview

In this chapter, we present the server-side Slice-to-Java mapping (see Chapter 10 
for the client-side mapping). Section 12.3 discusses how to initialize and finalize 
the server-side run time, sections 12.4 to 12.7 show how to implement interfaces 
and operations, and Section 12.8 discusses how to register objects with the server-
side Ice run time.

12.2 Introduction

The mapping for Slice data types to Java is identical on the client side and server 
side. This means that everything in Chapter 10 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.
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12.3 The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.Util.initialize before you can do anything else in your 
server. Ice.Util.initialize returns a reference to an instance of an 
Ice.Communicator:

public class Server { 
    public static void 
    main(String[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            ic = Ice.Util.initialize(args); 
            // ... 
        } catch (Exception e) { 
            e.printStackTrace(); 
            status = 1; 
        } 
        // ... 
    } 
}

Ice.Util.initialize accepts the argument vector that is passed to main 
by the operating system. The function scans the argument vector for any 
command-line options that are relevant to the Ice run time, but does not remove 
those options.1 If anything goes wrong during initialization, initialize 
throws an exception.

Before leaving your main function, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation invocations that may still be running to 
complete. In addition, destroy ensures that any outstanding threads are joined 
with and reclaims a number of operating system resources, such as file descriptors 
and memory. Never allow your main function to terminate without calling 
destroy first; doing so has undefined behavior.

1. The semantics of Java arrays prevents Ice.Util.initialize from modifying the size of 
the argument vector. However, another overloading of Ice.Util.initialize is provided 
that allows the application to obtain a new argument vector with the Ice options removed.



12.3 The Server-Side main Function 361

The general shape of our server-side main function is therefore as follows:

public class Server { 
    public static void 
    main(String[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            ic = Ice.Util.initialize(args); 
            // ... 
        } catch (Exception e) { 
            e.printStackTrace(); 
            status = 1; 
        } 
        if (ic != null) { 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                e.printStackTrace(); 
                status = 1; 
            } 
        } 
        System.exit(status); 
    } 
}

Note that the code places the call to Ice::initialize into a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

12.3.1 The Ice.Application Class
The preceding structure for the main function is so common that Ice offers a 
class, Ice.Application, that encapsulates all the correct initialization and 
finalization activities. The synopsis of the class is as follows (with some detail 
omitted for now):

package Ice; 
 
public abstract class Application { 
    public Application() 
 
    public final int main(String appName, String[] args) 
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    public final int 
        main(String appName, String[] args, String configFile) 
 
    public abstract int run(String[] args); 
 
    public static String appName() 
 
    public static Communicator communicator() 
 
    // ... 
}

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

public class Server extends Ice.Application { 
    public int 
    run(String[] args) 
    { 
        // Server code here... 
 
        return 0; 
    } 
 
    public static void 
    main(String[] args) 
    { 
        Server app = new Server(); 
        int status = app.main("Server", args); 
        System.exit(status); 
    } 
}

The Application.main function does the following:

1. It installs an exception handler for java.lang.Exception. If your code 
fails to handle an exception, Application.main prints the name of an 
exception and a stack trace on System.err before returning with a non-zero 
return value.

2. It initializes (by calling Ice.Util.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator accessor.
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3. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName member 
function. The return value from this call is the first argument in the call to 
Application.main, so you can get at this name from anywhere in your 
code by calling Ice.Application.appName (which is usually required 
for error messages). In the example above, the return value from appName 
would be Server.

5. It installs a shutdown hook that properly shuts down the communicator.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception. 
We recommend that all your programs use this class; doing so makes your life 
easier. In addition Ice.Application also provides features for signal 
handling and configuration that you do not have to implement yourself when you 
use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an applica-
tion to register a shutdown hook that is invoked when the JVM is shutting down. 
There are several events which trigger JVM shutdown, such as a call to 
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System.exit or an interrupt signal from the operating system, but the shut-
down hook is not provided with the reason for the shut down.

Ice.Application registers a shutdown hook by default, allowing you to 
cleanly terminate your application prior to JVM shutdown:

package Ice; 
 
public abstract class Application { 
    // ... 
 
    synchronized public static void destroyOnInterrupt() 
     
    synchronized public static void shutdownOnInterrupt() 
     
    synchronized public static void defaultInterrupt() 
 
    synchronized public static boolean interrupted() 
}

The member functions behave as follows:

• destroyOnInterrupt

This function installs a shutdown hook that calls destroy on the communi-
cator. This is the default behavior.

• shutdownOnInterrupt

This function installs a shutdown hook that calls shutdown on the communi-
cator.

• defaultInterrupt

This function removes the shutdown hook.

• interrupted

This function returns true if the shutdown hook caused the communicator to 
shut down, false otherwise. This allows us to distinguish intentional shutdown 
from a forced shutdown that was caused by the JVM. This is useful, for 
example, for logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server main function requires no change to ensure that the 
program terminates cleanly on JVM shutdown. However, we add a diagnostic to 
report the occurrence, so our main function now looks like:
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public class Server extends Ice.Application { 
    public int 
    run(String[] args) 
    { 
        // Server code here... 
 
        if (interrupted()) 
            System.err.println(appName() + ": terminating"); 
 
        return 0; 
    } 
 
    public static void 
    main(String[] args) 
    { 
        Server app = new Server(); 
        int status = app.main("Server", args); 
        System.exit(status); 
    } 
}

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main function of Ice.Application is overloaded; the second version allows 
you to specify the name of a configuration file that will be processed during 
initialization. We discuss Ice properties in more detail in Chapter 28.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

12.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing member functions in a servant class, you provide the hook 



366 Server-Side Slice-to-Java Mapping

that gets the thread of control from the Ice server-side run time into your applica-
tion code.

12.4.1 Skeleton Classes
On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure 
virtual member function for each operation on the corresponding interface. For 
example, consider the Slice definition for the Node interface we defined in 
Chapter 5 once more:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The Slice compiler generates the following definition for this interface:

package Filesystem; 
 
public interface _NodeOperations 
{ 
    String name(Ice.Current current); 
} 
 
public interface _NodeOperationsNC 
{ 
    String name(); 
} 
 
public interface Node extends Ice.Object, 
                              _NodeOperations, 
                              _NodeOperationsNC {} 
 
public abstract class _NodeDisp extends Ice.ObjectImpl 
                                implements Node 
{ 
    // Mapping-internal code here... 
}

The important points to note here are:



12.4 Mapping for Interfaces 367

• As for the client side, Slice modules are mapped to Java packages with the 
same name, so the skeleton class definitions are part of the Filesystem 
package.

• For each Slice interface <interface-name>, the compiler generates Java 
interfaces _<interface-name>Operations and 
_<interface-name>OperationsNC (_NodeOperations and 
_NodeOperationsNC in this example). These interfaces contains a 
member function for each operation in the Slice interface. (You can ignore the 
Ice.Current parameter for the time being—we discuss it in detail in 
Section 30.6.)

• For each Slice interface <interface-name>, the compiler generates a Java 
interface <interface-name> (Node in this example). That interface 
extends Ice.Object and the two operations interfaces.

• For each Slice interface <interface-name>, the compiler generates an 
abstract class _<interface-name>Disp (_NodeDisp in this example). 
This abstract class is the actual skeleton class; it is the base class from which 
you derive your servant class.

12.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

package Filesystem; 
 
public final class NodeI extends _NodeDisp { 
 
    public NodeI(String name) 
    { 
        _name = name; 
    } 
 
    public String name(Ice.Current current) 
    { 
        return _name; 
    } 
 
    private String _name; 
}
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By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.) Note that NodeI extends _NodeDisp, that is, it 
derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the name method that it inherits from its skeleton. This makes the servant 
class a concrete class that can be instantiated. You can add other member func-
tions and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
constructor. (Obviously, the constructor initializes the _name member and the 
name function returns its value.)

Normal, idempotent, and nonmutating Operations

Whether an operation is an ordinary operation, or an idempotent or nonmutating 
operation has no influence on the way the operation is mapped. To illustrate this, 
consider the following interface:

interface Example { 
                void normalOp(); 
    idempotent  void idempotentOp(); 
    nonmutating void nonmutatingOp(); 
};

The operations class for this interface looks like this:

public interface _ExampleOperations 
{ 
    void normalOp(Ice.Current current); 
    void idempotentOp(Ice.Current current); 
    void nonmutatingOp(Ice.Current current); 
}

Note that the signatures of the member functions are unaffected by the idempo-
tent and nonmutating qualifiers. (In C++, the nonmutating qualifier generates a 
C++ const member function.)

12.5 Parameter Passing

For each parameter of a Slice operation, the Java mapping generates a corre-
sponding parameter for the corresponding method in the 
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_<interface-name>Operations interface. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name member 
function of the _NodeOperations interface has a single parameter of type 
Ice.Current. We explain the purpose of this parameter in Section 30.6 and 
will ignore it for now.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:

module M { 
    interface Example { 
        string op(string sin, out string sout); 
    }; 
};

The generated skeleton class for this interface looks as follows:

public interface _ExampleOperations 
{ 
    String op(String sin, Ice.StringHolder sout, 
              Ice.Current current); 
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

public final class ExampleI extends M._ExampleDisp { 
 
    public String op(String sin, Ice.StringHolder sout, 
                     Ice.Current current) 
    { 
        System.out.println(sin);     // In params are initialized 
        sout.value = "Hello World!"; // Assign out param 
        return "Done"; 
    } 
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal Java rules and do not require special-purpose API 
calls.
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12.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

// ... 
 
public void 
write(String[] text, Ice.Current current) 
    throws GenericError 
 
{ 
    // Try to write file contents here... 
    // Assume we are out of space... 
    if (error) { 
        GenericError e = new GenericError(); 
        e.reason = "file too large"; 
        throw e; 
    } 
}

If you throw an arbitrary Java run-time exception (such as a ClassCastEx-
ception), the Ice run time catches the exception and then returns an Unknown-
Exception to the client. Similarly, if you throw an “impossible” user exception (a 
user exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.2 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

12.7 Tie Classes

The mapping to skeleton classes we saw in Section 12.4 requires the servant class 
to inherit from its skeleton class. Occasionally, this creates a problem: some class 

2. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 32.
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libraries require you to inherit from a base class in order to access functionality 
provided by the library; because Java does not support multiple inheritance, this 
means that you cannot use such a class library to implement your servants because 
your servants cannot inherit from both the library class and the skeleton class 
simultaneously.

To allow you to still use such class libraries, Ice provides a way to write 
servants that replaces inheritance with delegation. This approach is supported by 
tie classes. The idea is that, instead of inheriting from the skeleton class, you 
simply create a class (known as an implementation class or delegate class) that 
contains methods corresponding to the operations of an interface. You use the 
--tie option with the slice2java compiler to create a tie class. For example, 
for the Node interface we saw in Section 12.4.1, the --tie option causes the 
compiler to create exactly the same code as we saw previously, but to also emit an 
additional tie class. For an interface <interface-name>, the generated tie class 
has the name _<interface-name>Tie:

package Filesystem; 
 
public class _NodeTie extends _NodeDisp implements Ice.TieBase { 
 
    public _NodeTie() {} 
 
    public 
    _NodeTie(_NodeOperations delegate) 
    { 
        _ice_delegate = delegate; 
    } 
 
    public java.lang.Object 
    ice_delegate() 
    { 
        return _ice_delegate; 
    } 
 
    public void 
    ice_delegate(java.lang.Object delegate) 
    { 
        _ice_delegate = (_NodeOperations)delegate; 
    } 
 
    public boolean 
    equals(java.lang.Object rhs) 
    { 
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        if(this == rhs) 
        { 
            return true; 
        } 
        if(!(rhs instanceof _NodeTie)) 
        { 
            return false; 
        } 
 
        return _ice_delegate.equals(((_NodeTie)rhs)._ice_delegate)
; 
    } 
 
    public int 
    hashCode() 
    { 
        return _ice_delegate.hashCode(); 
    } 
 
    public String 
    name(Ice.Current current) 
    { 
        return _ice_delegate.name(current); 
    } 
 
    private _NodeOperations _ice_delegate; 
}

This looks a lot worse than it is: in essence, the generated tie class is simply a 
servant class (it extends _NodeDisp) that delegates each invocation of a method 
that corresponds to a Slice operation to your implementation class (see 
Figure 12.1).

Figure 12.1. A skeleton class, tie class, and implementation class.

The generated tie class also implements the Ice.TieBase interface, which 
defines methods for obtaining and changing the delegate object:

_NodeTie
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«interface»

NodeI
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Class

Tie 
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Implementation 
Class

_NodeOperations
«interface»
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package Ice; 
 
public interface TieBase { 
    java.lang.Object ice_delegate(); 
    void ice_delegate(java.lang.Object delegate); 
}

The delegate has type java.lang.Object in these methods in order to allow a 
tie object’s delegate to be manipulated without knowing its actual type. However, 
the ice_delegate modifier raises ClassCastException if the given dele-
gate object is not of the correct type.

Given this machinery, we can create an implementation class for our Node 
interface as follows:

package Filesystem; 
 
public final class NodeI implements _NodeOperations { 
{ 
    public NodeI(String name) 
    { 
        _name = name; 
    } 
 
    public String name(Ice.Current current) 
    { 
        return _name; 
    } 
 
    private String _name; 
}

Note that this class is identical to our previous implementation, except that it 
implements the _NodeOperations interface and does not extend 
_NodeDisp (which means that you are now free to extend any other class to 
support your implementation).

To create a servant, you instantiate your implementation class and the tie class, 
passing a reference to the implementation instance to the tie constructor:

NodeI fred = new NodeI("Fred");         // Create implementation 
_NodeTie servant = new _NodeTie(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate 
instance by calling ice_delegate:
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_NodeTie servant = new _NodeTie();      // Create tie 
// ... 
NodeI fred = new NodeI("Fred");         // Create implementation 
// ... 
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the 
servant, not your delegate. Furthermore, you must not use a tie instance to incar-
nate (see Section 12.8) an Ice object until the tie has a delegate. Once you have set 
the delegate, you must not change it for the lifetime of the tie; otherwise, unde-
fined behavior results.

You should use the tie approach only if you need to, that is, if you need to 
extend some base class in order to implement your servants: using the tie 
approach is more costly in terms of memory because each Ice object is incarnated 
by two Java objects instead of one, the tie and the delegate. In addition, call 
dispatch for ties is marginally slower than for ordinary servants because the tie 
forwards each operation to the delegate, that is, each operation invocation requires 
two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the dele-
gate back to the tie. If you need to navigate back to the tie from the delegate, you 
can store a reference to the tie in a member of the delegate. (The reference can, for 
example, be initialized by the constructor of the delegate.)

12.8 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 12.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

12.8.1 Instantiating a Servant
Instantiating a servant means to allocate an instance:
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Node servant = new NodeI("Fred");

This code creates a new NodeI instance and assigns its address to a reference of 
type Node. This works because NodeI is derived from Node, so a Node refer-
ence can refer to an instance of type NodeI. However, if we want to invoke a 
member function of the NodeI class at this point, we must use a NodeI refer-
ence:

NodeI servant = new NodeI("Fred");

Whether you use a Node or a NodeI reference depends purely on whether you 
want to invoke a member function of the NodeI class: if not, a Node reference 
works just as well as a NodeI reference.

12.8.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
    // ... 
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 30.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice.Identity id = new Ice.Identity(); 
id.name = "Fred"; // Not unique, but good enough for now

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See XREF for further discussion.
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12.8.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter.add(servant, id);

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
member function on the servant.

Assuming that the object adapter is in the active state (see Section 30.4), client 
requests are dispatched to the servant as soon as you call add.

12.8.4 UUIDs as Identities
As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs 
(Universally Unique Identifiers) [14] as identities. The Ice.Util package 
contains a helper function to create such identities:

public class Example { 
    public static void 
    main(String[] args) 
    { 
        System.out.println(Ice.Util.generateUUID()); 
    } 
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to generate-
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UUID creates a string that differs from all previous ones.4 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

_adapter.addWithUUID(new NodeI("Fred"));

12.8.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

NodePrx proxy = NodePrxHelper.uncheckedCast( 
                    _adapter.addWithUUID(new NodeI("Fred")));

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

4. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice { 
    local interface ObjectAdapter { 
        Object* createProxy(Identity id); 
        // ... 
    }; 
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice.Identity id = new Ice.Identity(); 
id.name = Ice.Util.generateUUID(); 
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to 
a client and the client invokes an operation on the proxy, the client will receive an 
ObjectNotExistException. (We examine these life cycle issues in more detail in 
XREF.)

12.9 Summary

This chapter presented the server-side Java mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 30), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any Java mapping 
rules beyond those we described here.



379

Chapter 13
Developing a File System Server in 
Java

13.1 Chapter Overview

In this chapter, we present the source code for a Java server that implements the 
file system we developed in Chapter 5 (see Chapter 11 for the corresponding 
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Section 30.9.)

13.2 Implementing a File System Server

We have now seen enough of the server-side Java mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5 before studying the source 
code.)

Our server is composed of three source files:

• Server.java

This file contains the server main program.

• Filesystem/DirectoryI.java

This file contains the implementation for the Directory servants.
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• Filesystem/FileI.java

This file contains the implementation for the File servants.

13.2.1 The Server main Program
Our server main program, in the file Server.java, uses the 
Ice.Application class we discussed in Section 12.3.1. The run method 
installs a shutdown hook, creates an object adapter, instantiates a few servants for 
the directories and files in the file system, and then activates the adapter. This 
leads to a main program as follows:

import Filesystem.*; 
 
public class Server extends Ice.Application { 
    public int 
    run(String[] args) 
    { 
        // Create an object adapter (stored in the _adapter 
        // static members) 
        // 
        Ice.ObjectAdapter adapter 
            = communicator().createObjectAdapterWithEndpoints( 
                        "SimpleFilesystem", "default -p 10000"); 
        DirectoryI._adapter = adapter; 
        FileI._adapter = adapter; 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryI root = new DirectoryI("/", null); 
 
        // Create a file "README" in the root directory 
        // 
        File file = new FileI("README", root); 
        String[] text; 
        text = new String[] { 
            "This file system contains a collection of poetry." 
        }; 
        try { 
            file.write(text, null); 
        } catch (GenericError e) { 
            System.err.println(e.reason); 
        } 
 
        // Create a directory "Coleridge" in the root directory 
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        // 
        DirectoryI coleridge 
            = new DirectoryI("Coleridge", root); 
 
        // Create a file "Kubla_Khan" in the Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text = new String[]{ "In Xanadu did Kubla Khan", 
                             "A stately pleasure-dome decree:", 
                             "Where Alph, the sacred river, ran", 
                             "Through caverns measureless to man", 
                             "Down to a sunless sea." }; 
        try { 
            file.write(text, null); 
        } catch (GenericError e) { 
            System.err.println(e.reason); 
        } 
 
        // All objects are created, allow client requests now 
        // 
        adapter.activate(); 
 
        // Wait until we are done 
        // 
        communicator().waitForShutdown(); 
 
        return 0; 
    } 
 
    public static void 
    main(String[] args) 
    { 
        Server app = new Server(); 
        System.exit(app.main("Server", args)); 
    } 
}

The code imports the contents of the Filesystem package. This avoids having 
to continuously use fully-qualified identifiers with a Filesystem. prefix.

The next part of the source code is the definition of the Server class, which 
derives from Ice.Application and contains the main application logic in its 
run method. Much of this code is boiler plate that we saw previously: we create 
an object adapter, and, towards the end, activate the object adapter and call wait-
ForShutdown.
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The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 13.1.

Figure 13.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass a null parent.) Thus, the statement

DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 13.1:

        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryI root = new DirectoryI("/", null); 
 
        // Create a file "README" in the root directory 
        // 
        File file = new FileI("README", root); 
        String[] text; 
        text = new String[] { 
            "This file system contains a collection of poetry." 
        }; 
        try { 
            file.write(text, null); 
        } catch (GenericError e) { 
            System.err.println(e.reason); 
        } 
 
        // Create a directory "Coleridge" in the root directory 
        // 
        DirectoryI coleridge 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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            = new DirectoryI("Coleridge", root); 
 
        // Create a file "Kubla_Khan" in the Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text = new String[]{ "In Xanadu did Kubla Khan", 
                             "A stately pleasure-dome decree:", 
                             "Where Alph, the sacred river, ran", 
                             "Through caverns measureless to man", 
                             "Down to a sunless sea." }; 
        try { 
            file.write(text, null); 
        } catch (GenericError e) { 
            System.err.println(e.reason); 
        }

We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        String[] text; 
        text = new String[] { 
            "This file system contains a collection of poetry." 
        }; 
        try { 
            file.write(text, null); 
        } catch (GenericError e) { 
            System.err.println(e.reason); 
        }

Recall from Section 10.7.3 that Slice sequences by default map to Java arrays. The 
Slice type Lines is simply an array of strings; we add a line of text to our README 
file by initializing the text array to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

            file.write(text, null);

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary Java function call.
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In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 13.1.

13.2.2 The FileI Servant Class
Our FileI servant class has the following basic structure:

public class FileI extends _FileDisp 
{ 
    // Constructor and operations here... 
 
    public static Ice.ObjectAdapter _adapter; 
    private String _name; 
    private DirectoryI _parent; 
    private String[] _lines; 
}

The class has a number of data members:

• _adapter

This static member stores a reference to the single object adapter we use in our 
server.

• _name

This member stores the name of the file incarnated by the servant.

• _parent

This member stores the reference to the servant for the file’s parent directory.

• _lines

This member holds the contents of the file.

The _name and _parent data members are initialized by the constructor:

public 
FileI(String name, DirectoryI parent) 
{ 
    _name = name; 
    _parent = parent; 
 
    assert(_parent != null); 
 
    // Create an identity 
    // 
    Ice.Identity myID 
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        = Ice.Util.stringToIdentity(Ice.Util.generateUUID()); 
 
    // Add the identity to the object adapter 
    // 
    _adapter.add(this, myID); 
 
    // Create a proxy for the new node and 
    // add it as a child to the parent 
    // 
    NodePrx thisNode 
        = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID)); 
    _parent.addChild(thisNode); 
}

After initializing the _name and _parent members, the code verifies that the 
reference to the parent is not null because every file must have a parent directory. 
The constructor then generates an identity for the file by calling 
Ice.Util.generateUUID and adds itself to the servant map by calling 
ObjectAdapter.add. Finally, the constructor creates a proxy for this file and 
calls the addChild method on its parent directory. addChild is a helper func-
tion that a child directory or file calls to add itself to the list of descendant nodes 
of its parent directory. We will see the implementation of this function on 
page 387.

The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

// Slice Node::name() operation 
 
public String 
name(Ice.Current current) 
{ 
    return _name; 
} 
 
// Slice File::read() operation 
 
public String[] 
read(Ice.Current current) 
{ 
    return _lines; 
} 
 
// Slice File::write() operation 
 
public void 
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write(String[] text, Ice.Current current) 
    throws GenericError 
{ 
    _lines = text; 
}

The name method is inherited from the generated Node interface (which is a base 
interface of the _FileDisp class from which FileI is derived). It simply 
returns the value of the _name member.

The read and write methods are inherited from the generated File inter-
face (which is a base interface of the _FileDisp class from which FileI is 
derived) and simply return and set the _lines member.

13.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

package Filesystem; 
 
public final class DirectoryI extends _DirectoryDisp 
{ 
    // Constructor and operations here... 
 
    public static Ice.ObjectAdapter _adapter; 
    private String _name; 
    private DirectoryI _parent; 
    private java.util.ArrayList _contents 
        = new java.util.ArrayList(); 
}

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds a null reference.) In addition, we have a _contents data member that 
stores the list of child directories. These data members are initialized by the 
constructor:

public 
DirectoryI(String name, DirectoryI parent) 
{ 
    _name = name; 
    _parent = parent; 
 
    // Create an identity. The parent has the 
    // fixed identity "RootDir" 
    // 



13.2 Implementing a File System Server 387

    Ice.Identity myID 
        = Ice.Util.stringToIdentity(_parent != null ? 
                        Ice.Util.generateUUID() : "RootDir"); 
 
    // Add the identity to the object adapter 
    // 
    _adapter.add(this, myID); 
 
    // Create a proxy for the new node and add it as a 
    // child to the parent 
    // 
    NodePrx thisNode 
        = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID)); 
    if (_parent != null) 
        _parent.addChild(thisNode); 
}

The constructor creates an identity for the new directory by calling 
Ice.Util.generateUUID. (For the root directory, we use the fixed identity 
"RootDir".) The servant adds itself to the servant map by calling Object-
Adapter.add and then creates a reference to itself and passes it to the 
addChild helper function.

addChild simply adds the passed reference to the _contents list:

void 
addChild(NodePrx child) 
{ 
    _contents.add(child); 
}

The remainder of the operations, name and list, are trivial:

public String 
name(Ice.Current current) 
{ 
    return _name; 
} 
 
// Slice Directory::list() operation 
 
public NodePrx[] 
list(Ice.Current current) 
{ 
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    NodePrx[] result = new NodePrx[_contents.size()]; 
    _contents.toArray(result); 
    return result; 
}

Note that the _contents member is of type java.util.ArrayList, which 
is convenient for the implementation of the addChild method. However, this 
requires us to convert the list into a Java array in order to return it from the list 
operation.

13.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe. We discuss 
thread safety in Section 30.9.
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Chapter 14
Client-Side Slice-to-C# Mapping

14.1 Chapter Overview

In this chapter, we present the client-side Slice-to-C# mapping (see Chapter 16 for 
the server-side mapping). One part of the client-side C# mapping concerns itself 
with rules for representing each Slice data type as a corresponding C# type; we 
cover these rules in Section 14.3 to Section 14.10. Another part of the mapping 
deals with how clients can invoke operations, pass and receive parameters, and 
handle exceptions. These topics are covered in Section 14.11 to Section 14.13. 
Slice classes have the characteristics of both data types and interfaces and are 
covered in Section 14.14.

14.2 Introduction

The client-side Slice-to-C# mapping defines how Slice data types are translated to 
C# types, and how clients invoke operations, pass parameters, and handle errors. 
Much of the C# mapping is intuitive. For example, Slice dictionaries map to a C# 
class that derives from System.Collections.DictionaryBase, so there 
is little you have learn in order to use Slice dictionaries in C#.

The C# API to the Ice run time is fully thread-safe. Obviously, you must still 
synchronize access to data from different threads. For example, if you have two 
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threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 14.10 to 
Section 14.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C# mapping, you should 
need no more than the Slice definition of your application and knowledge of the 
C# mapping rules. In particular, looking through the generated code in order to 
discern how to use the C# mapping is likely to be inefficient, due to the amount of 
detail. Of course, occasionally, you may want to refer to the generated code to 
confirm a detail of the mapping, but we recommend that you otherwise use the 
material presented here to see how to write your client-side code.

14.3 Mapping for Identifiers

Slice identifiers map to an identical C# identifier. For example, the Slice identifier 
Clock becomes the C# identifier Clock. If a Slice identifier is the same as a C# 
keyword, the corresponding C# identifier is a verbatim identifier (an identifier 
prefixed with @). For example, the Slice identifier while is mapped as @while.1

The Slice-to-C# compiler generates classes that inherit from interfaces or base 
classes in the .NET framework. These interfaces and classes introduce a number 
of methods into derived classes. To avoid name clashes between Slice identifiers 
that happen to be the same as an inherited method, such identifiers are prefixed 
with ice_ and suffixed with _ in the generated code. For example, the Slice iden-
tifier Clone maps to the VB identifier ice_Clone_ if it would clash with an 
inherited Clone. The complete list of identifiers that are so changed is:

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such Slice identifiers as much 
as possible.

Clone Equals Finalize
GetBaseException GetHashCode GetObjectData
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Note that Slice identifiers in this list are translated to the corresponding C# identi-
fier only where necessary. For example, structures do not derive from IClone-
able, so if a Slice structure contains a member named Clone, the corresponding 
C# structure’s member is named Clone as well. On the other hand, classes do 
derive from ICloneable, so, if a Slice class contains a member named Clone, 
the corresponding C# class’s member is named ice_Clone_.

Also note that, for the purpose of prefixing, Slice identifiers are case-insensi-
tive, that is, both Clone and clone are escaped and map to ice_Clone_ and 
ice_clone_, respectively.

14.4 Mapping for Modules

Slice modules map to C# namespaces with the same name as the Slice module. 
The mapping preserves the nesting of the Slice definitions. For example:

module M1 { 
    // Definitions for M1 here... 
    module M2 { 
        // Definitions for M2 here... 
    }; 
}; 
 
// ... 
 
module M1 {     // Reopen M1 
    // More definitions for M1 here... 
};

This definition maps to the corresponding C# definitions:

namespace M1 
{ 
    namespace M2 
    { 
        // ... 
    } 
    // ... 
} 
 
// ... 

GetType MemberwiseClone ReferenceEquals
ToString checkedCast uncheckedCast
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namespace M1    // Reopen M1 
{ 
    // ... 
}

If a Slice module is reopened, the corresponding C# namespace is reopened as 
well.

14.5 The Ice Namespace

All of the APIs for the Ice run time are nested in the Ice namespace, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice namespace are generated from Slice definitions; other parts of the Ice 
namespace provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice namespace 
throughout the remainder of the book.

14.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to C# types as shown in Table 14.1.

Table 14.1. Mapping of Slice built-in types to C#.

Slice C#

bool bool

byte byte

short short

int int

long long

float float
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14.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

14.7.1 Mapping for Enumerations
Enumerations map to the corresponding enumeration in C#. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C# definition is identical:

enum Fruit { Apple, Pear, Orange };

14.7.2 Mapping for Structures
Ice for C# supports two different mappings for structures. By default, Slice struc-
tures map to C# structures if they (recursively) contain only value types. If a Slice 
structure (recursively) contains a string, proxy, class, sequence, or dictionary 
member, it maps to a C# class. A metadata directive (see Section 4.17) allows you 
to force the mapping to a C# class for Slice structures that contain only value 
types.

In addition, for either mapping, you can control whether Slice data members 
are mapped to fields or to properties (see page 398).

Structure Mapping for Structures

Consider the following structure:

double double

string string

Table 14.1. Mapping of Slice built-in types to C#.

Slice C#
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struct Point { 
    double x; 
    double y; 
};

This structure consist of only value types and so, by default, maps to a C# struc-
ture:

public struct Point 
{ 
    public double x; 
    public double y; 
 
    public Point(double x, double y); 
 
    public override int GetHashCode(); 
    public override bool Equals(object other); 
 
    public static bool operator==(Point lhs, Point rhs); 
    public static bool operator!=(Point lhs, Point rhs); 
}

For each data member in the Slice definition, the C# structure contains a corre-
sponding public data member of the same name.

The generated constructor accepts one argument for each structure member, in 
the order in which they are defined in the Slice definition. This allows you to 
construct and initialize a structure in a single statement:

Point p = new Point(5.1, 7.8);

The structure overrides the GetHashCode and Equals methods to allow you to 
use it as the key type of a dictionary. (Note that the static two-argument version of 
Equals is inherited from System.Object.) Two structures are equal if (recur-
sively) all their data members are equal. Otherwise, they are not equal. For struc-
tures that contain reference types, Equals performs a deep comparison; that is, 
reference types are compared for value equality, not reference equality.

Class Mapping for Structures

The mapping for Slice structures to C# structures provides value semantics. 
Usually, this is appropriate, but there are situations where you may want to change 
this:

• If you use structures as members of a collection, each access to an element of 
the collection incurs the cost of boxing or unboxing. Depending on your situa-
tion, the performance penalty may be noticeable.
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• On occasion, it is useful to be able to assign null to a structure, for example, to 
support “not there” semantics (such as when implementing parameters that are 
conceptually optional).

To allow you to choose the correct performance and functionality trade-off, the 
Slice-to-C# compiler provides an alternative mapping of structures to classes, for 
example:

["clr:class"] struct Point { 
    double x; 
    double y; 
};

The "clr:class" metadata directive instructs the Slice-to-C# compiler to 
generate a mapping to a C# class for this structure. The generated code is iden-
tical, except that the keyword struct is replaced by the keyword class2 and 
that the class also inherits from ICloneable:

public class Point : _System.ICloneable 
{ 
    public double x; 
    public double y; 
 
    public Point(); 
    public Point(double x, double y); 
 
    public object Clone(); 
 
    public override int GetHashCode(); 
    public override bool Equals(object other); 
 
    public static bool operator==(Point lhs, Point rhs); 
    public static bool operator!=(Point lhs, Point rhs); 
}

The Clone method performs a shallow memberwise copy, and the comparison 
methods have the usual semantics (they perform value comparison).

Note that you can influence the mapping for structures only at the point of 
definition of a structure, that is, for a particular structure type, you must decide 
whether you want to use the structure or the class mapping. (You cannot override 

2. Some of the generated marshaling code differs for the class mapping of structures, but this is 
irrelevant to application code.
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the structure mapping elsewhere, for example, for individual structure members or 
operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a 
member of reference type, it is automatically mapped to a C# class. (The compiler 
behaves as if you had explicitly specified the “clr:class” metadata directive for 
the structure.)

Here is our Employee structure from Section 4.9.4 once more:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};

The structure contains two strings, which are reference types, so the Slice-to-C# 
compiler generates a C# class for this structure:

public class Employee : _System.ICloneable 
{ 
    public long number; 
    public string firstName; 
    public string lastName; 
 
    public Employee(); 
    public Employee(long number, 
                    string firstName, 
                    string lastName); 
 
    public object Clone(); 
 
    public override int GetHashCode(); 
    public override bool Equals(object other); 
 
    public static bool operator==(Employee lhs, Employee rhs); 
    public static bool operator!=(Employee lhs, Employee rhs); 
}

Property Mapping for Structures

You can instruct the compiler to emit property definitions instead of public data 
members. For example:

["clr:property"] struct Point { 
    double x; 
    double y; 
};
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The “clr:property” metadata directive causes the compiler to generate a prop-
erty for each Slice data member:

public struct Point 
{ 
    private double x_prop; 
    public double x { 
        get { 
            return x_prop; 
        } 
        set { 
            x_prop = value; 
        } 
    } 
 
    private double y_prop; 
    public double y { 
        get { 
            return y_prop; 
        } 
        set { 
            y_prop = value; 
        } 
    } 
 
    // Other methods here... 
}

Note that the properties are non-virtual because C# structures cannot have virtual 
properties. However, if you apply the “clr:property” directive to a structure that 
contains a member of reference type, or if you combine the “clr:property” and 
“clr:class” directives, the generated properties are virtual. For example:

["clr:property", "clr:class"] 
struct Point { 
    double x; 
    double y; 
};

This generates the following code:

public class Point : System.ICloneable 
{ 
    private double x_prop; 
    public virtual double x { 
        get { 
            return x_prop; 
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        } 
        set { 
            x_prop = value; 
        } 
    } 
 
    private double y_prop; 
    public virtual double y { 
        get { 
            return y_prop; 
        } 
        set { 
            y_prop = value; 
        } 
    } 
 
    // Other methods here... 
}

14.7.3 Mapping for Sequences
Ice for C# supports two different mappings for sequences. By default, sequences 
are mapped to arrays. A metadata directive (see Section 4.17) allows you to 
instead map sequences to classes that are derived from System.Collec-
tions.CollectionBase.

Array Mapping for Sequences

By default, the Slice-to-C# compiler maps sequences to arrays. Interestingly, no 
code is generated in this case; you simply define an array of elements to model the 
Slice sequence. For example:

sequence<Fruit> FruitPlatter;

Given this definition, to create a sequence containing an apple and an orange, you 
could write:

Fruit[] fp = { Fruit.Apple, Fruit.Orange };

Or, alternatively:

Fruit fp[] = new Fruit[2]; 
fp[0] = Fruit.Apple; 
fp[1] = Fruit.Orange;
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The array mapping for sequences is both simple and efficient, especially for 
sequences of value types because accessing array elements does not require 
boxing and unboxing.

CollectionBase Mapping for Sequences

The mapping of sequences to arrays is simple, but has the disadvantage that the 
number of elements in the sequence is fixed when you instantiate the array. This 
makes the array mapping useless in situations where you need to grow and shrink 
a sequence on demand. To allow you to choose the correct feature trade-off, the 
Slice-to-C# compiler provides an alternative mapping, for example:

["clr:collection"] sequence<Fruit> FruitPlatter;

The "clr:collection" metadata directive instructs the Slice-to-C# compiler to 
generate a mapping to a C# class that derives from System.Collec-
tions.CollectionBase:

public class FruitPlatter : System.Collections.CollectionBase, 
                            System.ICloneable 
{ 
    public FruitPlatter(); 
    public FruitPlatter(int capacity); 
    public FruitPlatter(Fruit[] a); 
 
    public void CopyTo(Fruit[] a); 
    public void CopyTo(Fruit[] a, int i); 
    public void CopyTo(int i, Fruit[] a, int ai, int c); 
 
    public Fruit[] ToArray(); 
 
    public void AddRange(FruitPlatter s); 
    public void AddRange(Fruit[] a); 
 
    public Fruit this[int index] { get; set; } 
 
    public int Add(Fruit value); 
    public int IndexOf(Fruit value); 
    public void Insert(int index, Fruit value); 
    public void Remove(Fruit value); 
    public bool Contains(Fruit value); 
 
    public virtual int Capacity { get; set; } 
 
    public virtual void TrimToSize(); 
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    public virtual void Sort() 
    public virtual void Sort(System.Collections.IComparer comparer
) 
    public virtual void Sort(int index, int count, 
                             System.Collections.IComparer comparer
) 
 
    public virtual void Reverse() 
    public virtual void Reverse(int index, int count) 
 
    public virtual int BinarySearch(Fruit value) 
    public virtual int BinarySearch(Fruit value, System.Collection
s.IComparer comparer) 
    public virtual int BinarySearch(int index, int count, 
                                    Fruit value, 
                                    System.Collections.IComparer c
omparer) 
 
    public virtual void InsertRange(int index, FruitPlatter c) 
    public virtual void InsertRange(int index, Fruit[] c) 
 
    public virtual void RemoveRange(int index, int count) 
    public virtual FruitPlatter GetRange(int index, int count) 
 
    public virtual void SetRange(int index, FruitPlatter c) 
    public virtual void SetRange(int index, Fruit[] c) 
 
    public virtual int LastIndexOf(Fruit value) 
    public virtual int LastIndexOf(Fruit value, int startIndex) 
    public virtual int LastIndexOf(Fruit value, int startIndex, in
t count) 
 
    public static FruitPlatter Repeat(Fruit value, int count) 
 
    public object Clone(); 
 
    public override int GetHashCode(); 
    public override bool Equals(object other); 
 
    public static bool Equals(FruitPlatter lhs, 
                              FruitPlatter rhs); 
    public static bool operator==(FruitPlatter lhs, 
                                  FruitPlatter rhs); 
    public static bool operator!=(FruitPlatter lhs, 
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                                  FruitPlatter rhs); 
 
    // ... 
}

The generated FruitPlatter class provides implementations of the indexer 
(get and set methods), and the inherited Add, IndexOf, Insert, Remove, 
and Contains methods. (The CollectionBase base class provides imple-
mentations of yet more methods, such as RemoveAt and Clear.) To make 
sequences easier to use, the Slice-to-C# compiler adds a number of additional 
properties and methods:

• FruitPlatter(); 
FruitPlatter(int capacity); 
FruitPlatter(Fruit[] a);

Apart from calling the default constructor, you can also specify an initial 
capacity for the sequence or, using the array constructor, initialize a sequence 
from an array.

• void CopyTo(Fruit[] a); 
void CopyTo(Fruit[] a, int i); 
void CopyTo(int i, Fruit[] a, int ai, int c);

These methods copy the contents of a sequence into an array. The semantics 
are the same as for the corresponding methods on System.Collec-
tions.ArrayList.

• Fruit[] ToArray();

The ToArray method returns the contents of the sequence as an array.

• void AddRange(FruitPlatter s); 
void AddRange(Fruit[] a);

The AddRange methods append the contents of a sequence or an array to the 
current sequence, respectively.

• int Capacity { get; set }

This property controls the capacity of the sequence. Its semantics are as for 
System.Collections.ArrayList.

• virtual void TrimToSize();

This method sets the capacity of the sequence to the actual number of 
elements.

• virtual void Sort(); 
virtual void Sort(System.Collections.IComparer 
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                  comparer); 
virtual void Sort(int index, int count, 
    System.Collections.IComparer comparer);

These methods sort the sequence.

• virtual void Reverse(); 
virtual void Reverse(int index, int count);

These methods reverse the order of elements of the sequence.

• virtual int BinarySearch(Fruit value); 
virtual int BinarySearch(Fruit value, 
    System.Collections.IComparer comparer); 
virtual int BinarySearch(int index, int count, 
    Fruit value, 
    System.Collections.IComparer comparer);

The methods perform a binary search on the sequence, with semantics as for 
System.Collections.ArrayList.

• virtual void InsertRange(int index, FruitPlatter c); 
virtual void InsertRange(int index, Fruit[] c);

These methods insert a range of values into the sequence starting at the given 
index.

• virtual void RemoveRange(int index, int count);

This method removes count elements, starting at the given index.

• virtual FruitPlatter GetRange(int index, int count);

This method returns a subrange of the sequence. Note that, unlike 
System.Collections.ArrayList.GetRange, this method returns 
an independent copy of the subrange instead of a view on the underlying 
sequence.

• virtual void SetRange(int index, FruitPlatter c); 
virtual void SetRange(int index, Fruit[] c);

These methods copy the provided sequence over a range of elements in the 
target sequence, starting at the provided index, with semantics as for 
System.Collections.ArrayList

• virtual int LastIndexOf(Fruit value); 
virtual int LastIndexOf(Fruit value, 
    int startIndex); 
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virtual int LastIndexOf(Fruit value, int startIndex, 
    int count);

These methods search for the provided element and return its last occurence in 
the sequence, as for 
System.Collections.ArrayList.LastIndexOf.

• static FruitPlatter Repeat(Fruit value, int count);

This method returns a sequence with count elements that are initialized to 
value.

Note that all these methods perform a shallow copy, that is, if you have a sequence 
whose elements have reference type, what is copied are the references, not the 
objects denoted by those references.

The generated class also provides the usual GetHashCode and Equals 
methods, as well as the comparison operators for equality and inequality. (Two 
sequences are equal if they have the same number of elements and all elements in 
corresponding positions are equal.)

The Clone method performs a shallow copy.
The class also implements the inherited IsFixedSize, IsReadOnly, and 

IsSynchronized properties (which return false), and the inherited 
SyncRoot property (which returns this).

Creating a sequence containing an apple and an orange is simply a matter of 
writing:

FruitPlatter fp = new FruitPlatter(); 
fp.Add(Fruit.Apple); 
fp.Add(Fruit.Orange);

Which Mapping to Choose?

Note that you can influence the mapping for sequences only at the point of defini-
tion of a sequence, that is, you must decide up front whether you want to use the 
CollectionBase or the array mapping for a particular sequence type. (You 
cannot override the sequence mapping elsewhere, for example, for individual 
structure members or operation parameters.)

Note that the convenience of the CollectionBase mapping is not without 
its cost: sequences of value types (such as a sequence of int) are considerably 
slower for insertion and removal of elements than arrays, due to the cost of boxing 
and unboxing of the values. Depending on the access patterns, the array mapping 
can also be noticeably faster for sequences of reference types.
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In general, you must use the sequence mapping if you require a sequence 
whose number of elements can change during its lifetime. The array mapping for 
sequences is appropriate if the following conditions are met:

• The sequence has a fixed number of elements during its life time.

• The sequence is used in code that is highly performance-critical.

In practice, the array mapping for sequences is likely to yield a performance gain 
if the element type is a value type. For example, if you are using a 
sequence<byte> to model buffers for transmission of (large) binary data, the 
array mapping is likely to be considerably faster.

Multi-Dimensional Sequences

Slice permits you to define sequences of sequences, for example:

enum Fruit { Apple, Orange, Pear }; 
["clr:collection"] sequence<Fruit> FruitPlatter; 
["clr:collection"] sequence<FruitPlatter> Cornucopia;

If we use these definitions as shown, the generated code for the Cornucopia 
sequence (with some details removed for clarity) looks as follows:

public class Cornucopia : System.Collections.CollectionBase, 
                          System.ICloneable 
{ 
    public FruitPlatter this[int index] { get; set; } 
 
    public int Add(FruitPlatter value); 
    public int IndexOf(FruitPlatter value); 
    public void Insert(int index, FruitPlatter value); 
    public void Remove(FruitPlatter value); 
    public bool Contains(FruitPlatter value); 
 
    // ... 
}

As you can see, the Cornucopia class deals with elements of type Fruit-
Platter, as you would expect.

Now let us modify the definition to change the mapping of FruitPlatter to 
an array:

enum Fruit { Apple, Orange, Pear }; 
sequence<Fruit> FruitPlatter; 
["clr:collection"] sequence<FruitPlatter> Cornucopia;
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With this definition, the generated code for Cornucopia looks as follows (again, 
with some details removed for clarity):

public class Cornucopia : System.Collections.CollectionBase, 
                          System.ICloneable 
{ 
    public Fruit[] this[int index] { get; set; } 
 
    public int Add(Fruit[] value); 
 
    public int IndexOf(Fruit[] value); 
    public void Insert(int index, Fruit[] value); 
    public void Remove(Fruit[] value); 
    public bool Contains(Fruit[] value); 
 
    // ... 
}

As you can see, the generated code now no longer mentions the type Fruit-
Platter anywhere and deals with the Cornucopia elements as an array of 
Fruit instead.

Of course, we could also change the metadata directive to make the Cornu-
copia sequence an array, and use the CollectionBase mapping for Fruit-
Platter. In that case, the compiler does not generate any definitions for 
Cornucopia at all—there is no need to generate anything because the application 
code now has to treat Cornucopia as an array of FruitPlatter throughout.

14.8 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

The Slice-to-C# compiler maps the dictionary to a class with the same name:

public class EmployeeMap : System.Collections.DictionaryBase, 
                           System.ICloneable 
{ 
    public Employee this[long key] { get; set; } 
 
    public System.Collections.ICollection Keys { get; } 
    public System.Collections.ICollection Values { get; } 
 
    public void AddRange(EmployeeMap d); 



408 Client-Side Slice-to-C# Mapping

 
    public void Add(long key, Employee value); 
    public void Remove(long key); 
    public bool Contains(long key); 
 
    public object Clone(); 
 
    public override int GetHashCode(); 
    public override bool Equals(object other); 
 
    public static bool Equals(EmployeeMap lhs, 
                              EmployeeMap rhs); 
    public static bool operator==(EmployeeMap lhs, 
                                  EmployeeMap rhs); 
    public static bool operator!=(EmployeeMap lhs, 
                                  EmployeeMap rhs); 
}

Note that the generated EmployeeMap class inherits from DictionaryBase, 
so it follows the standard conventions of the .NET framework. Apart from 
methods inherited from DictionaryBase, the class provides an AddRange 
method that allows you to append the contents of one dictionary to another. If the 
target dictionary contains a key that is also in the source dictionary, the target 
dictionary’s value is preserved. For example:

Employee e1 = new Employee(); 
e1.number = 42; 
e1.firstName = "Herb"; 
e1.lastName = "Sutter"; 
 
EmployeeMap em1 = new EmployeeMap(); 
em[42] = e; 
 
Employee e2 = new Employee(); 
e2.number = 42; 
e2.firstName = "Stan"; 
e2.lastName = "Lipmann"; 
 
EmployeeMap em2 = new EmployeeMap(); 
em[42] = e2; 
 
// Add contents of em2 to em1 
// 
em1.AddRange(em2); 
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// Equal keys preserve the original value 
// 
Debug.Assert(em1[42].firstName.Equals("Herb"));

The generated class also provides the usual GetHashCode and Equals 
methods, as well as the comparison operators for equality and inequality. (Two 
dictionaries are equal if they contain the same number of entries and, for each 
entry, the key and value are the same.)

The Clone method performs a shallow copy.
The class also implements the inherited IsFixedSize, IsReadOnly, and 

IsSynchronized properties (which return false), and the inherited 
SyncRoot property (which returns this).

14.9 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public abstract class AppendByDefault 
{ 
    public const bool value = true; 
} 
 
public abstract class LowerNibble 
{ 
    public const byte value = 15; 
} 
 
public abstract class Advice 
{ 
    public const string value = "Don't Panic!"; 
} 
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public abstract class TheAnswer 
{ 
    public const short value = 42; 
} 
 
public abstract class PI 
{ 
    public const double value = 3.1416; 
} 
 
public enum Fruit { Apple, Pear, Orange } 
 
public abstract class FavoriteFruit 
{ 
    public const Fruit value = Fruit.Pear; 
}

As you can see, each Slice constant is mapped to a class with the same name as 
the constant. The class contains a member named value that holds the value of 
the constant.3

3. The mapping to classes instead of to plain constants is necessary because C# does not permit 
constant definitions at namespace scope.
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14.10 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 14.1

Figure 14.1. Inheritance structure for exceptions.

The ancestor of all exceptions is System.ApplicationException. 
Derived from that is Ice.Exception, which provides the definitions for a 
number of constructors. Ice.LocalException and Ice.UserException 
are derived from Ice.Exception and form the base for all run-time and user 
exceptions.

The constructors defined in Ice.Exception have the following signatures:

public abstract class Exception : System.ApplicationException 
{ 
    public Exception(); 
    public Exception(string msg); 
    public Exception(System.Exception ex); 
    public Exception(string msg, System.Exception ex); 
}

Each concrete derived exception class implements these constructors. The 
constructors initialize the Message and InnerException properties of 
ApplicationException. (The default constructor initializes the Message 
property to the name of the exception.)

Ice.LocalException Ice.UserException

Ice.Exception

Specific Run-Time Exceptions... Specific User Exceptions...

System.ApplicationException
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Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 109 once more:

exception GenericError { 
    string reason; 
}; 
 
exception BadTimeVal extends GenericError {}; 
 
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public class GenericError : Ice.UserException 
{ 
    public string reason; 
 
    public GenericError(); 
    public GenericError(string msg); 
    public GenericError(System.Exception ex); 
    public GenericError(string msg, System.Exception ex); 
 
    // GetHashCode and comparison methods defined here, 
    // as well as mapping-internal methods. 
} 
 
public class BadTimeVal : GenericError 
{ 
    public BadTimeVal(); 
    public BadTimeVal(string msg); 
    public BadTimeVal(System.Exception ex); 
    public BadTimeVal(string msg, System.Exception ex); 
 
    // GetHashCode and comparison methods defined here, 
    // as well as mapping-internal methods. 
} 
 
public class BadZoneName : GenericError 
{ 
    public BadZoneName(); 
    public BadZoneName(string msg); 
    public BadZoneName(System.Exception ex); 
    public BadZoneName(string msg, System.Exception ex); 
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    // GetHashCode and comparison methods defined here, 
    // as well as mapping-internal methods. 
}

Each Slice exception is mapped to a C# class with the same name. For each excep-
tion member, the corresponding class contains a public data member. (Obviously, 
because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice.LocalException, and you can catch all Ice excep-
tions with a handler for Ice.Exception.

All exceptions also provide the usual GetHashCode and Equals methods, 
as well as the == and != comparison operators.

The generated exception classes also contain other member functions that are 
not shown here; these member functions are internal to the C# mapping and are 
not meant to be called by application code.

14.11 Mapping for Interfaces

On the client side, Slice interfaces map to C# interfaces with member functions 
that correspond to the operations on those interfaces. Consider the following 
simple interface:

interface Simple { 
    void op(); 
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx : Ice.ObjectPrx 
{ 
    void op(); 
    void op(Ice.Context __context); 
}
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As you can see, the compiler generates a proxy interface SimplePrx. In general, 
the generated name is <interface-name>Prx. If an interface is nested in a 
module M, the generated interface is part of namespace M, so the fully-qualified 
name is M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simple interface in a server and is known as a 
proxy instance. All the details about the server-side object, such as its address, 
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a member function of 
the same name. For the preceding example, we find that the operation op has been 
mapped to the method op. Also note that op is overloaded: the second version of 
op has a parameter __context of type Ice.Context. This parameter is for 
use by the Ice run time to store information about how to deliver a request. You 
normally do not need to use it. (We examine the __context parameter in detail 
in Chapter 30. The parameter is also used by IceStorm—see Chapter 42.)

Because all the <interface-name>Prx types are interfaces, you cannot 
instantiate an object of such a type. Instead, proxy instances are always instanti-
ated on behalf of the client by the Ice run time, so client code never has any need 
to instantiate a proxy directly.The proxy references handed out by the Ice run time 
are always of type <interface-name>Prx; the concrete implementation of 
the interface is part of the Ice run time and does not concern application code.

14.11.1 The Ice.ObjectPrx Interface
All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

namespace Ice 
{ 
    public interface ObjectPrx 
    { 
        Identity ice_getIdentity(); 
        int ice_getHash(); 
        bool ice_isA(string id); 
        string ice_id(); 
        void ice_ping(); 
 
        int GetHashCode(); 
        bool Equals(object r); 
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        // Defined in a helper class: 
        // 
        public static bool Equals(Ice.ObjectPrx lhs, 
                                  Ice.ObjectPrx rhs); 
        public static bool operator==(ObjectPrx lhs, 
                                      ObjectPrx rhs); 
        public static bool operator!=(ObjectPrx lhs, 
                                      ObjectPrx rhs); 
 
        // ... 
    } 
}

Note that the static methods are not actually defined Ice.ObjectPrx, but in a 
helper class that becomes a base class of an instantiated proxy. However, this is 
simply an internal detail of the C# mapping—conceptually, these methods belong 
with Ice.ObjectPrx, so we discuss them here.

The methods behave as follows:

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

Ice.ObjectPrx o1 = ...; 
Ice.ObjectPrx o2 = ...; 
Ice.Identity i1 = o1.ice_getIdentity(); 
Ice.Identity i2 = o2.ice_getIdentity(); 
 
if (i1.Equals(i2)) 
    // o1 and o2 denote the same object 
else 
    // o1 and o2 denote different objects
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• ice_getHash

This method returns a hash key for the proxy. (It is a synonym for GetHash-
Code.)

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

Ice.ObjectPrx o = ...; 
if (o != null && o.ice_isA("::Printer")) 
    // o denotes a Printer object 
else 
    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke 
the ice_isA method. This avoids getting a NullReferenceException 
if the proxy is null.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be ::Base, or it might something more derived, such as ::Derived.

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExis-
tException or ConnectTimeoutException.

• Equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.
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Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call and also provide access to an 
object’s facets; we discuss these methods in Chapter 30 and XREF.

14.11.2 Proxy Helpers
For each Slice interface, apart from the proxy interface, the Slice-to-C# compiler 
creates a helper class: for an interface Simple, the name of the generated helper 
class is SimplePrxHelper.4 The helper class contains two methods of interest:

public class SimplePrxHelper : Ice.ObjectPrxHelperBase, SimplePrx 
{ 
    public static SimplePrx checkedCast(Ice.ObjectPrx b); 
    public static SimplePrx checkedCast(Ice.ObjectPrx b, 
                                        Ice.Context ctx); 
    public static SimplePrx uncheckedCast(Ice.ObjectPrx b) 
 
    // ... 
}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a non-null reference to a 
proxy of type SimplePrx; otherwise, if the passed proxy denotes an object of a 
different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere... 
 
SimplePrx simple = SimplePrxHelper.checkedCast(obj); 
if (simple != null) 
    // Object supports the Simple interface... 
else 
    // Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of an object in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-

4. You can ignore the ObjectPrxHelperBase base class—it exists for mapping-internal 
purposes.
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ception or an ObjectNotExistException. (This also explains the need 
for the helper class: the Ice run time must contact the server, so we cannot use a 
C# down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process { 
    void launch(int stackSize, int dataSize); 
}; 
 
// ... 
 
interface Rocket { 
    void launch(float xCoord, float yCoord); 
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

Ice.ObjectPrx obj = ...;                   // Get proxy... 
ProcessPrx process 
    = ProcessPrxHelper.uncheckedCast(obj); // No worries... 
process.launch(40, 60);                    // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
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shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or 
an uncheckedCast to down-cast a proxy. If you use a C# cast, the behavior is 
undefined.

14.11.3 Object Identity and Proxy Comparison
As mentioned on page 416, proxies provide an Equals operation. Proxy compar-
ison with Equals uses all of the information in a proxy for the comparison. This 
means that not only the object identity must match for a comparison to succeed, 
but other details inside the proxy, such as the protocol and endpoint information, 
must be the same. In other words, comparison with Equals (or == and !=) tests 
for proxy identity, not object identity. A common mistake is to write code along 
the following lines:

Ice.ObjectPrx p1 = ...;        // Get a proxy... 
Ice.ObjectPrx p2 = ...;        // Get another proxy... 
 
if (p1.Equals(p2)) { 
    // p1 and p2 denote different objects       // WRONG! 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with Equals, we know that the two proxies denote the 
same object (because they are identical in all respects); however, if two proxies 
compare unequal with Equals, we know absolutely nothing: the proxies may or 
may not denote the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice.Util class:
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public sealed class Util { 
    public static int proxyIdentityCompare(ObjectPrx lhs, 
                                           ObjectPrx rhs); 
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs, 
                                                   ObjectPrx rhs); 
// ...

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

Ice.ObjectPrx p1 = ...;        // Get a proxy... 
Ice.ObjectPrx p2 = ...;        // Get another proxy... 
 
if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) { 
    // p1 and p2 denote different objects       // Correct 
} else { 
    // p1 and p2 denote the same object         // Correct 
}

The function returns 0 if the identities are equal, −1 p1 is less than p2, and 1 if p1 
is greater than p2. (The comparison uses name as the major and category as 
the minor sort key.)

The proxyIdentityAndFacetCompare performs the same function, 
but compares both the identity and the facet name (see Chapter 32).

The C# mapping also provides two helper classes in the Ice namespace that 
allow you to insert proxies into hashtables or ordered collections, based on the 
identity, or the identity plus the facet name:

public class ProxyIdentityKey 
    : System.Collections.IHashCodeProvider, 
      System.Collections.IComparer { 
 
    public int GetHashCode(object obj); 
    public int Compare(object obj1, object obj2); 
} 
 
public class ProxyIdentityFacetKey 
    : System.Collections.IHashCodeProvider, 
      System.Collections.IComparer { 
 
    public int GetHashCode(object obj); 
    public int Compare(object obj1, object obj2); 
}

Note these classes derive from IHashCodeProvider and IComparer, so 
they can be used for both hash tables and ordered collections.
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14.12 Mapping for Operations

As we saw in Section 14.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy. For example, here is part of the definitions for 
our file system from Section 5.4:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy 
string name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are 
returned by reference for complex types, and by value for simple types (such as 
int or double).

14.12.1 Normal, idempotent, and nonmutating Operations
You can add an idempotent or nonmutating qualifier to a Slice operation. As far 
as the signature for the corresponding proxy methods is concerned, neither idem-
potent nor nonmutating have any effect. For example, consider the following 
interface:

interface Example { 
                string op1(); 
    idempotent  string op2(); 
    nonmutating string op3(); 
};

The proxy interface for this is:

public interface ExamplePrx : Ice.ObjectPrx 
{ 
    string op1(); 
    string op2(); 
    string op3(); 
}
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idempotent and nonmutating affect an aspect of call dispatch, not interface, so it 
makes sense for the three methods to look the same.

14.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the C# mapping are very simple: parameters are 
passed either by value (for value types) or by reference (for reference types). 
Semantically, the two ways of passing parameters are identical: it is guaranteed 
that the value of a parameter will not be changed by the invocation (with some 
caveats—see XREF).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServer* proxy); 
};

The Slice compiler generates the following proxy for this definition:

public interface ClientToServerPrx : Ice.ObjectPrx 
{ 
    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServerPrx proxy); 
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:
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ClientToServerPrx p = ...;              // Get proxy... 
 
p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals 
 
int i = 42; 
float f = 3.14f; 
bool b = true; 
string s = "Hello world!"; 
p.op1(i, f, b, s);                      // Pass simple variables 
 
NumberAndString ns = new NumberAndString(); 
ns.x = 42; 
ns.str = "The Answer"; 
StringSS ss = new StringSS(); 
ss.Add("Hello world!"); 
StringTable st = new StringTable(); 
st[0] = ns; 
p.op2(ns, ss, st);                      // Pass complex variables 
 
p.op3(p);                               // Pass proxy

out-Parameters

Slice out parameters simply map to C# out parameters.
Here is the same Slice definition we saw on page 422 once more, but this time 

with all parameters being passed in the out direction:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ServerToClient { 
    void op1(out int i, out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 
             out StringSeq ss, 
             out StringTable st); 
    void op3(out ServerToClient* proxy); 
};

The Slice compiler generates the following code for this definition:
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public interface ServerToClientPrx : Ice.ObjectPrx 
{ 
    void op1(out int i, out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 
             out StringSeq ss, 
             out StringTable st); 
    void op3(out ServerToClientPrx proxy); 
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy... 
 
int i; 
float f; 
bool b; 
string s; 
p.op1(out i, out f, out b, out s); 
 
NumberAndString ns; 
StringSeq ss; 
StringTable st; 
p.op2(out ns, out ss, out st); 
 
ServerToClientPrx stc; 
p.op3(out stc); 
 
System.Console.WriteLine(i);   // Show one of the values

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
proxies, sequences (if mapped to CollectionBase), dictionaries, strings, and 
structures (if mapped to classes) can be null:

• For proxies, a C# null reference denotes the null proxy. The null proxy is a 
dedicated value that indicates that a proxy points “nowhere” (denotes no 
object).

• Sequences and dictionaries cannot be null, but can be empty. To make life 
with these types easier, whenever you pass a C# null reference as a parameter 
or return value of type sequence or dictionary, the Ice run time automatically 
sends an empty sequence or dictionary to the receiver.

• C# strings can be null, but Slice strings cannot (because Slice strings do not 
support the concept of a null string). Whenever you pass a C# null string as a 
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parameter or return value, the Ice run time automatically sends an empty 
string to the receiver.

• Structures can be null if you use the class mapping. If you pass a C# null refer-
ence to such a structure as a parameter or return value, the Ice run time auto-
matically sends a structure whose elements are default initialized. This means 
that all proxy members are initialized to null, sequence and dictionary 
members are initialized to empty collections, strings are initialized to the 
empty string, and members that have a value type are initialized to their 
default values.

This behavior is useful as a convenience feature: especially for deeply-nested data 
types, members that are structures, sequences, dictionaries, or strings automati-
cally arrive as an empty value at the receiving end. This saves you having to 
explicitly initialize, for example, every string element in a large sequence before 
sending it in order to avoid NullReferenceExceptions. Note that using 
null parameters in this way does not create null semantics for sequences, dictio-
naries, or strings. As far as the object model is concerned, these do not exist (only 
empty sequences, dictionaries, and strings do). For example, sending a string as a 
null reference or as an empty string makes no difference to the receiver: either 
way, the receiver sees an empty string.

14.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 14.10 on 
page 411) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 14.10 on page 411). Suppose we have the following 
simple interface:

exception Tantrum { 
    string reason; 
}; 
 
interface Child { 
    void askToCleanUp() throws Tantrum; 
};

Slice exceptions are thrown as C# exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:
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ChildPrx child = ...;   // Get child proxy... 
 
try 
{ 
    child.askToCleanUp(); 
} 
catch (Tantrum t) 
{ 
    System.Console.Write("The child says: "); 
    System.Console.WriteLine(t.reason); 
}

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

public class Client 
{ 
    private static void run() { 
        ChildPrx child = ...;       // Get child proxy... 
        try 
        { 
            child.askToCleanUp(); 
        } 
        catch (Tantrum t) 
        { 
            System.Console.Write("The child says: "); 
            System.Console.WriteLine(t.reason); 
            child.scold();          // Recover from error... 
        } 
        child.praise();             // Give positive feedback... 
    } 
 
    static void Main(string[] args) 
    { 
        try 
        { 
            // ... 
            run(); 
            // ... 
        } 
        catch (Ice.Exception e) 
        { 
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            System.Console.WriteLine(e); 
        } 
    } 
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 15.)

Note that the ToString method of exceptions prints the name of the excep-
tion, any inner exceptions, and the stack trace. Of course, you can be more selec-
tive in the way exceptions are displayed. For example, e.Message contains the 
error message (if any) for the exception, and e.GetType().Name returns the 
(unscoped) name of an exception.

Exceptions and out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may still have its original value or 
may have been changed by the operation’s implementation in the target object. In 
other words, for out-parameters, Ice provides the weak exception guarantee [21] 
but does not provide the strong exception guarantee.5

14.14 Mapping for Classes

Slice classes are mapped to C# classes with the same name. By default, the gener-
ated class contains a public data member for each Slice data member (just as for 
structures and exceptions), and a member function for each operation.

Note that classes also support the “clr:property” metadata directive, so you 
can generate classes with virtual properties instead of data members. (See 
page 398 for details on “clr:property”.)

Consider the following class definition:

5. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.
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class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 -59 
    string format();    // Return time as hh:mm:ss 
};

The Slice compiler generates the following code for this definition:

public interface TimeOfDayOperations_ 
{ 
    string format(Ice.Current __current); 
} 
 
public interface TimeOfDayOperationsNC_ 
{ 
    string format(); 
} 
 
public abstract class TimeOfDay 
    : Ice.ObjectImpl, 
      TimeOfDayOperations_, 
      TimeOfDayOperationsNC_ 
{ 
    public short hour; 
    public short minute; 
    public short second; 
 
    public TimeOfDay() 
    { 
    } 
 
    public TimeOfDay(short hour, short minute, short second) 
    { 
        this.hour = hour; 
        this.minute = minute; 
        this.second = second; 
    } 
 
    public string format() 
    { 
        return format(new Ice.Current()); 
    } 
 
    public abstract string format(Ice.Current __current); 
}
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There are a number of things to note about the generated code:

1. The compiler generates “operations interfaces” called 
TimeOfDayOperations_ and TimeOfDayOperationsNC_. These 
interfaces contain a method for each Slice operation of the class.

2. The generated class TimeOfDay inherits (indirectly) from Ice.Object. 
This means that all classes implicitly inherit from Ice.Object, which is the 
ultimate ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a 
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from 
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

14.14.1 Operations Interfaces
The methods in the <interface-name>Operations_ interface have an 
additional trailing parameter of type Ice.Current, whereas the methods in the 
<interface-name>OperationsNC_ interface lack this additional trailing 
parameter. The methods without the Current parameter simply forward to the 
methods with a Current parameter, supplying a default Current. For now, 
you can ignore this parameter and pretend it does not exist. (We look at it in more 
detail in Section 30.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the <interface-name>Operations_ and <inter-
face-name>OperationsNC_ interfaces.

14.14.2 Inheritance from Ice.Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 14.2, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inherit-
ance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
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expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 14.2. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

namespace Ice 
{ 
    public interface Object : System.ICloneable 
    { 
        int ice_getHash(); 
 
        bool ice_isA(string s); 
        bool ice_isA(string s, Current current); 
 
        void ice_ping(); 
        void ice_ping(Current current); 
 
        string[] ice_ids(); 
        string[] ice_ids(Current current); 
 
        string ice_id(); 
        string ice_id(Current current); 
 
        void ice_preMarshal(); 
        void ice_postUnmarshal(); 
    } 
}

The member functions of Ice.Object behave as follows:

• ice_getHash

This function returns a hash value for the class, allowing you to easily place 
classes into hash tables. The implementation returns the value of 
System.Object.GetHashCode.

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

Note that the generated class does not override GetHashCode and Equals. 
This means that classes are compared using shallow reference equality, not value 
equality (as is used for structures).

The class also provides a Clone method (whose implementation is inherited 
from Ice.ObjectImpl); the Clone method returns a shallow memberwise 
copy.

14.14.3 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for 
each data member in the Slice definition, the generated class contains a corre-
sponding public data member.

14.14.4 Operations of Classes
Operations on classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
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of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:

public class TimeOfDayI : TimeOfDay 
{ 
    public string format(Ice.Current current) 
    { 
        return   hour.ToString("D2") + ":" 
               + minute.ToString("D2") + ":" 
               + second.ToString("D2"); 
    } 
}

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time { 
    TimeOfDay get(); 
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
 
    local interface Communicator { 
        void addObjectFactory(ObjectFactory factory, string id); 
        ObjectFactory findObjectFactory(string id); 
        // ... 
    }; 
};



14.14 Mapping for Classes 433

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory : Ice.LocalObjectImpl, Ice.ObjectFactory 
{ 
    public Ice.Object create(string type) 
    { 
        if (type.Equals("::M::TimeOfDay")) 
            return new TimeOfDayI(); 
        System.Diagnostics.Debug.Assert(false); 
        return null; 
    } 
 
    public void destroy() 
    { 
        // Nothing to do 
    } 
}

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it is "::M::TimeOfDay", it 
instantiates and returns a TimeOfDayI object. For other type IDs, it asserts 
because it does not know how to instantiate other types of objects.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Ice.Communicator ic = ...; 
ic.addObjectFactory(new ObjectFactory(), "::M::TimeOfDay");

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance, which returns a TimeOfDayI instance to the Ice run time.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.
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The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

Inheritance from LocalObject

Note that the implementation of the factory in the previous example extends 
Ice.LocalObjectImpl. The object factory, being a local object, inherits a 
number of operations from Ice.LocalObject, such as ice_getHash (see 
page 416). The Ice.LocalObjectImpl class provides implementations for 
these operations, so you do not need to implement them yourself.

In general, all local interfaces inherit from Ice.LocalObject, and all 
implementations of local interfaces, such as an object factory or servant locator 
(see Section 30.7) must inherit from Ice.LocalObjectImpl.

14.14.5 Class Constructors
The generated class contains both a default constructor, and a constructor that 
accepts one argument for each member of the class. This allows you to create and 
initialize a class in a single statement, for example:

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument of all of the members 
of the class, including members of the base class(es). For example, consider the 
the definition from Section 4.11.2 once more:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
class DateTime extends TimeOfDay { 
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    short day;          // 1 - 31 
    short month;        // 1 - 12 
    short year;         // 1753 onwards 
};

The constructors for the generated classes are as follows:

public class TimeOfDay : Ice.ObjectImpl 
{ 
    public TimeOfDay() {} 
 
    public TimeOfDay(short hour, short minute, short second) 
    { 
        this.hour = hour; 
        this.minute = minute; 
        this.second = second; 
    } 
 
    // ... 
} 
 
public class DateTime : TimeOfDay 
{ 
    public DateTime() : base() {} 
 
    public DateTime(short hour, 
                    short minute, 
                    short second, 
                    short day, 
                    short month, 
                    short year) : base(hour, minute, second) 
    { 
        this.day = day; 
        this.month = month; 
        this.year = year; 
    } 
 
    // ... 
}

In other words, if you want to instantiate and initialize a DateTime instance, you 
must either use the default constructor or provide data for all of the data members 
of the instance, including data members of any base classes.
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14.15 C#-Specific Metadata Directives

The slice2cs compiler supports metadata directives that allow you inject C# 
attribute specifications into the generated code. The metadata directive is 
cs:attribute:. For example:

["cs:attribute:System.Serializable"] 
struct Point { 
    double x; 
    double y; 
};

This results in the following code being generated for S:

[System.Serializable] 
public struct Point 
{ 
    public double x; 
    public double y; 
    // ... 
}

You can apply this metadata directive to any slice construct, such as structure, 
operation, or parameter definitions.

You can use this directive also at global level. For example:

[["cs:attribute:assembly: AssemblyDescription(\"My assembly\")"]]

This results in the following code being inserted following any using directives 
and preceding any definitions:

[assembly: AssemblyDescription("My assembly")]

14.16 slice2cs Command-Line Options

The Slice-to-C# compiler, slice2cs, offers the following command-line 
options in addition to the standard options described in Section 4.19:

• --tie

Generate tie classes (see Section 16.7).

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.
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• --impl-tie

Generate sample implementation files using ties (see Section 16.7). This 
option will not overwrite an existing file.

• --checksum

Generate checksums for Slice definitions.

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

14.17 Using Slice Checksums

As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cs, the --checksum option causes the 
compiler to generate checksums in each C# source file that are added to a member 
of the Ice.SliceChecksums class:

namespace Ice { 
    public sealed class SliceChecksums { 
        public readonly static SliceChecksumDict checksums; 
    }; 
}

The checksums map is initialized automatically prior to first use; no action is 
required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the Equals function. However, this is not feasible if it is 
possible that the server might be linked with more Slice definitions than the client. 
A more general solution is to iterate over the local checksums as demonstrated 
below:

Ice.SliceChecksumDict serverChecksums = ... 
foreach(System.Collections.DictionaryEntry e 
        in Ice.SliceChecksums.checksums) { 
    string checksum = serverChecksums[e.Key]; 
    if(checksum == null) { 
        // No match found for type id! 
    } else if(!checksum.Equals(e.Value)) { 
        // Checksum mismatch! 
    } 
}
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In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 15
Developing a File System Client in 
C#

15.1 Chapter Overview

In this chapter, we present the source code for a C# client that accesses the file 
system we developed in Chapter 5 (see Chapter 17 for the corresponding server).

15.2 The C# Client

We now have seen enough of the client-side C# mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
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        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

using System; 
using Filesystem; 
 
public class Client 
{ 
    // Recursively print the contents of directory "dir" 
    // in tree fashion. For files, show the contents of 
    // each file. The "depth" parameter is the current 
    // nesting level (for indentation). 
 
    static void listRecursive(DirectoryPrx dir, int depth) 
    { 
        string indent = new string('\t', ++depth); 
 
        NodePrx[] contents = dir.list(); 
 
        foreach (NodePrx node in contents) 
            DirectoryPrx subdir 
                = DirectoryPrxHelper.checkedCast(node); 
            FilePrx file = FilePrxHelper.uncheckedCast(node); 
            Console.WriteLine(indent + node.name() + 
                (subdir != null ? " (directory):" : " (file):")); 
            if (subdir != null) { 
                listRecursive(subdir, depth); 
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            } else { 
                string[] text = file.read(); 
                for (int j = 0; j < text.Length; ++j) 
                    Console.WriteLine(indent + "\t" + text[j]); 
            } 
        } 
    } 
 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator ic = null; 
        try { 
            // Create a communicator 
            // 
            ic = Ice.Util.initialize(ref args); 
 
            // Create a proxy for the root directory 
            // 
            Ice.ObjectPrx obj 
                = ic.stringToProxy("RootDir:default -p 10000"); 
 
            // Down-cast the proxy to a Directory proxy 
            // 
            DirectoryPrx rootDir 
                = DirectoryPrxHelper.checkedCast(obj); 
 
            // Recursively list the contents of the root directory 
            // 
            Console.WriteLine("Contents of root directory:"); 
            listRecursive(rootDir, 0); 
        } catch (Exception e) { 
            Console.Error.WriteLine(e); 
            status = 1; 
        } 
        if (ic != null) { 
            // Clean up 
            // 
            try { 
                ic.destroy(); 
            } catch (Exception e) { 
                Console.Error.WriteLine(e); 
                status = 1; 
            } 
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        } 
        Environment.Exit(status); 
    } 
}

The Client class defines two methods: listRecursive, which is a helper 
function to print the contents of the file system, and Main, which is the main 
program. Let us look at Main first:

1. The structure of the code in Main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 15.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 
                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 36 and XREF.

15.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the C# code hardly differs 
from the code you would write for an ordinary C# program. This is one of the 
biggest advantages of using Ice: accessing a remote object is as easy as accessing 
an ordinary, local C# object. This allows you to put your effort where you should, 
namely, into developing your application logic instead of having to struggle with 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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arcane networking APIs. As we will see in Chapter 17, this is true for the server 
side as well, meaning that you can develop distributed applications easily and effi-
ciently.



445

Chapter 16
Server-Side Slice-to-C# Mapping

16.1 Chapter Overview

In this chapter, we present the server-side Slice-to-C# mapping (see Chapter 14 
for the client-side mapping). Section 16.3 discusses how to initialize and finalize 
the server-side run time, sections 16.4 to 16.7 show how to implement interfaces 
and operations, and Section 16.8 discusses how to register objects with the server-
side Ice run time.

16.2 Introduction

The mapping for Slice data types to C# is identical on the client side and server 
side. This means that everything in Chapter 14 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.
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16.3 The Server-Side Main Method

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.Util.initialize before you can do anything else in your 
server. Ice.Util.initialize returns a reference to an instance of an 
Ice.Communicator:

using System; 
 
public class Server 
{ 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator communicator = null; 
         
        try { 
            communicator = Ice.Util.initialize(ref args); 
            // ... 
        } catch (Exception ex) { 
            Console.Error.WriteLine(ex); 
            status = 1; 
        } 
        // ... 
    } 
}

Ice.Util.initialize accepts the argument vector that is passed to Main 
by the operating system. The method scans the argument vector for any 
command-line options that are relevant to the Ice run time; any such options are 
removed from the argument vector so, when Ice.Util.initialize returns, 
the only options and arguments remaining are those that concern your application. 
If anything goes wrong during initialization, initialize throws an exception.

Before leaving your Main method, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation invocations that may still be running to 
complete. In addition, destroy ensures that any outstanding threads are joined 
with and reclaims a number of operating system resources, such as file descriptors 
and memory. Never allow your Main method to terminate without calling 
destroy first; doing so has undefined behavior.

The general shape of our server-side Main method is therefore as follows:
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using System; 
 
public class Server 
{ 
    public static void Main(string[] args) 
    { 
        int status = 0; 
        Ice.Communicator communicator = null; 
         
        try { 
            communicator = Ice.Util.initialize(ref args); 
            // ... 
        } catch (Exception ex) { 
            Console.Error.WriteLine(ex); 
            status = 1; 
        } 
        if (communicator != null) { 
            try { 
                communicator.destroy(); 
            } catch (Exception ex) { 
                Console.Error.WriteLine(ex); 
                status = 1; 
            } 
        } 
        Environment.Exit(status); 
    } 
}

Note that the code places the call to Ice.Util.initialize into a try block 
and takes care to return the correct exit status to the operating system. Also note 
that an attempt to destroy the communicator is made only if the initialization 
succeeded.

16.3.1 The Ice.Application Class
The preceding structure for the Main method is so common that Ice offers a class, 
Ice.Application, that encapsulates all the correct initialization and finaliza-
tion activities. The synopsis of the class is as follows (with some detail omitted for 
now):

namespace Ice 
{ 
    public abstract class Application 
    { 
        public abstract int run(string[] args); 
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        public Application(); 
 
        public int main(string[] args); 
        public int main(string[] args, string configFile); 
 
        public static string appName(); 
 
        public static Communicator communicator(); 
    } 
}

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in Main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

using System; 
 
public class Server : Ice.Application 
{ 
    public override int run(string[] args) 
    { 
        // Server code here... 
 
        return 0; 
    } 
 
    public static void Main(string[] args) 
    { 
        Server app = new Server(); 
        Environment.Exit(app.main(args)); 
    } 
}

The Application.main method does the following:

1. It installs an exception handler for System.Exception. If your code fails 
to handle an exception, Application.main prints the name of the excep-
tion and a stack trace on Console.Error before returning with a non-zero 
return value.

2. It initializes (by calling Ice.Util.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling he static communicator accessor.



16.3 The Server-Side Main Method 449

3. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName method. You 
can get at the application name from anywhere in your code by calling 
Ice.Application.appName (which is usually required for error 
messages).

5. It creates an IceUtil.CtrlCHandler that properly destroys the commu-
nicator.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception. 
We recommend that all your programs use this class; doing so makes your life 
easier. In addition Ice.Application also provides features for signal 
handling and configuration that you do not have to implement yourself when you 
use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice.Application encapsulates the 
platform-independent signal handling capabilities provided by the class 
IceUtil.CtrlCHandler (see Section 29.11). This allows you to cleanly shut 
down on receipt of a signal and to use the same source code regardless of the 
underlying operating system and C# run time:
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namespace Ice 
{ 
    public abstract class Application 
    { 
        // ... 
 
        public static void destroyOnInterrupt(); 
        public static void shutdownOnInterrupt(); 
        public static void ignoreInterrupt(); 
        public static void holdInterrupt(); 
        public static void releaseInterrupt(); 
 
        public static bool interrupted(); 
    } 
}

The methods behave as follows:

• destroyOnInterrupt

This method installs a handler that destroys the communicator if it is inter-
rupted. This is the default behavior.

• shutdownOnInterrupt

This method installs a handler that shuts down the communicator if it is inter-
rupted.

• ignoreInterrupt

This method causes signals to be ignored.

• holdInterrupt

This method temporarily blocks signal delivery.

• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns true if a signal caused the communicator to shut down, 
false otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server Main method requires no change to ensure that the 
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program terminates cleanly on receipt of a signal. However, we add a diagnostic to 
report the occurrence, so our run method now looks like:

using System; 
 
public class Server : Ice.Application 
{ 
    public override int run(string[] args) 
    { 
        // Server code here... 
 
        if (interrupted()) 
            Console.Error.WriteLine(appName() + ": terminating"); 
 
        return 0; 
    } 
 
    public static void Main(string[] args) 
    { 
        Server app = new Server(); 
        Environment.Exit(app.main(args)); 
    } 
}

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main method of Ice.Application is overloaded; the second version allows 
you to specify the name of a configuration file that will be processed during 
initialization. We discuss Ice properties in more detail in Chapter 28.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).
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16.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.

16.4.1 Skeleton Classes
On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has an 
abstract method for each operation on the corresponding interface. For example, 
consider the Slice definition for the Node interface we defined in Chapter 5 once 
more:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem 
{ 
    public interface NodeOperations_ 
    { 
        string name(Ice.Current __current); 
    } 
 
    public interface NodeOperationsNC_ 
    { 
        string name(); 
    } 
 
    public interface Node : Ice.Object, 
                            NodeOperations_, NodeOperationsNC_ 
    { 
    } 
 
    public abstract class NodeDisp_ : Ice.ObjectImpl, Node 
    { 
        public string name() 
        { 
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            return name(new Ice.Current()); 
        } 
 
        public abstract string name(Ice.Current __current); 
 
        // Mapping-internal code here... 
    } 
}

The important points to note here are:

• As for the client side, Slice modules are mapped to C# namespaces with the 
same name, so the skeleton class definitions are part of the Filesystem 
namespace.

• For each Slice interface <interface-name>, the compiler generates C# inter-
faces <interface-name>Operations_ and 
<interface-name>OperationsNC_ (NodeOperations_ and 
NodeOperationsNC_ in this example). These interfaces contain a method 
for each operation in the Slice interface. (You can ignore the Ice.Current 
parameter for the time being—we discuss it in detail in Section 30.6.)

• For each Slice interface <interface-name>, the compiler generates a C# 
interface <interface-name> (Node in this example). That interface 
extends Ice.Object and the two operations interfaces.

• For each Slice interface <interface-name>, the compiler generates an 
abstract class <interface-name>Disp_ (NodeDisp_ in this example). 
This abstract class is the actual skeleton class; it is the base class from which 
you derive your servant class.

16.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

public class NodeI : NodeDisp_ 
{ 
    public NodeI(string name) 
    { 
        _name = name; 
    } 
 
    public override string name(Ice.Current current) 
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    { 
        return _name; 
    } 
 
    private string _name; 
}

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.) Note that NodeI extends NodeDisp_, that is, it 
derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the abstract name method that it inherits from its skeleton. This makes 
the servant class a concrete class that can be instantiated. You can add other 
methods and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
constructor. (Obviously, the constructor initializes the _name member and the 
name method returns its value.)

Normal, idempotent, and nonmutating Operations

Whether an operation is an ordinary operation, or an idempotent or nonmutating 
operation has no influence on the way the operation is mapped. To illustrate this, 
consider the following interface:

interface Example { 
                void normalOp(); 
    idempotent  void idempotentOp(); 
    nonmutating void nonmutatingOp(); 
};

The operations class for this interface looks like this:

public interface ExampleOperations_ 
{ 
    void normalOp(Ice.Current __current); 
    void idempotentOp(Ice.Current __current); 
    void nonmutatingOp(Ice.Current __current); 
}

Note that the signatures of the methods are unaffected by the idempotent and 
nonmutating qualifiers because C# has no notion of const-correness (whereas, in 
C++, the nonmutating qualifier generates a C++ const member function).
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16.5 Parameter Passing

For each parameter of a Slice operation, the C# mapping generates a corre-
sponding parameter for the corresponding method in the 
<interface-name>Operations_ interface. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name method of 
the NodeOperations_ interface has a single parameter of type 
Ice.Current. We explain the purpose of this parameter in Section 30.6 and 
will ignore it for now.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:

module M { 
    interface Example { 
        string op(string sin, out string sout); 
    }; 
};

The generated method for op looks as follows:

public interface ExampleOperations_ 
{ 
    string op(string sin, out string sout, Ice.Current __current); 
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

using System; 
 
public class ExampleI : ExampleDisp_ 
{ 
    public override string op(string sin, out string sout, 
                              Ice.Current current) 
    { 
        Console.WriteLine(sin);      // In params are initialized 
        sout = "Hello World!";       // Assign out param 
        return "Done"; 
    } 
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a method; the fact that remote procedure calls are 
involved does not affect your code in any way. The same is true for parameters of 
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other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal C# rules and do not require special-purpose API calls.

16.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

// ... 
public override void write(string[] text, Ice.Current current) 
{ 
    try 
    { 
        // Try to write file contents here... 
    } 
    catch(System.Exception ex) 
    { 
        GenericError e = new GenericError("cannot write file", ex)
; 
        e.reason = "Exception during write operation"; 
        throw e; 
    } 
}

Note that, for this example, we have supplied the optional second parameter to the 
GenericError constructor (see Section 14.10). This parameter sets the 
InnerException member of System.Exception and preserves the orig-
inal cause of the error for later diagnosis.

// ... 
 
public void 
write(String[] text, Ice.Current current) 
    throws GenericError 
 
{ 
    // Try to write file contents here... 
    // Assume we are out of space... 
    if (error) { 
        GenericError e = new GenericError(); 
        e.reason = "file too large"; 
        throw e; 
    } 
}
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If you throw an arbitrary C# run-time exception (such as an InvalidCastEx-
ception), the Ice run time catches the exception and then returns an Unknown-
Exception to the client. Similarly, if you throw an “impossible” user exception (a 
user exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.1 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

16.7 Tie Classes

The mapping to skeleton classes we saw in Section 16.4 requires the servant class 
to inherit from its skeleton class. Occasionally, this creates a problem: some class 
libraries require you to inherit from a base class in order to access functionality 
provided by the library; because C# does not support multiple implementation 
inheritance, this means that you cannot use such a class library to implement your 
servants because your servants cannot inherit from both the library class and the 
skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write 
servants that replaces inheritance with delegation. This approach is supported by 
tie classes. The idea is that, instead of inheriting from the skeleton class, you 
simply create a class (known as an implementation class or delegate class) that 
contains methods corresponding to the operations of an interface. You use the 
--tie option with the slice2cs compiler to create a tie class. For example, 
for the Node interface we saw in Section 16.4.1, the --tie option causes the 
compiler to create exactly the same code as we saw previously, but to also emit an 
additional tie class. For an interface <interface-name>, the generated tie class 
has the name <interface-name>Tie_:

1. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 32.
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public class NodeTie_ : NodeDisp_, Ice.TieBase 
{ 
    public NodeTie_() 
    { 
    } 
 
    public NodeTie_(NodeOperations_ del) 
    { 
        _ice_delegate = del; 
    } 
 
    public object ice_delegate() 
    { 
        return _ice_delegate; 
    } 
 
    public void ice_delegate(object del) 
    { 
        _ice_delegate = (NodeOperations_)del; 
    } 
 
    public override int ice_getHash() 
    { 
        return GetHashCode(); 
    } 
 
    public override int GetHashCode() 
    { 
        return _ice_delegate == null 
                                ? 0 
                                : _ice_delegate.GetHashCode(); 
    } 
 
    public override bool Equals(object rhs) 
    { 
       if(object.ReferenceEquals(this, rhs)) 
       { 
           return true; 
       } 
       if(!(rhs is NodeTie_)) 
       { 
           return false; 
       } 
       if(_ice_delegate == null) 
       { 
           return ((NodeTie_)rhs)._ice_delegate == null; 
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       } 
       return _ice_delegate.Equals(((NodeTie_)rhs)._ice_delegate); 
    } 
 
    public override string name(Ice.Current __current) 
    { 
        return _ice_delegate.name(__current); 
    } 
 
    private NodeOperations_ _ice_delegate; 
}

This looks a lot worse than it is: in essence, the generated tie class is simply a 
servant class (it extends NodeDisp_) that delegates each invocation of a method 
that corresponds to a Slice operation to your implementation class (see 
Figure 16.1).

Figure 16.1. A skeleton class, tie class, and implementation class.

The Ice.TieBase interface defines the ice_delegate methods that allow 
you to get and set the delegate.

Given this machinery, we can create an implementation class for our Node 
interface as follows:

public class NodeI : NodeOperations_ 
{ 
    public NodeI(string name) 
    { 
        _name = name; 
    } 
 
    public override string name(Ice.Current current) 
    { 
        return _name; 
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    } 
 
    private string _name; 
}

Note that this class is identical to our previous implementation, except that it 
implements the NodeOperations_ interface and does not extend 
NodeDisp_ (which means that you are now free to extend any other class to 
support your implementation).

To create a servant, you instantiate your implementation class and the tie class, 
passing a reference to the implementation instance to the tie constructor:

NodeI fred = new NodeI("Fred");         // Create implementation 
NodeTie_ servant = new NodeTie_(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate 
instance by calling ice_delegate:

NodeTie_ servant = new NodeTie_();      // Create tie 
// ... 
NodeI fred = new NodeI("Fred");         // Create implementation 
// ... 
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the 
servant, not your delegate. Furthermore, you must not use a tie instance to incar-
nate (see Section 16.8) an Ice object until the tie has a delegate. Once you have set 
the delegate, you must not change it for the lifetime of the tie; otherwise, unde-
fined behavior results.

You should use the tie approach only if you need to, that is, if you need to 
extend some base class in order to implement your servants: using the tie 
approach is more costly in terms of memory because each Ice object is incarnated 
by two C# objects instead of one, the tie and the delegate. In addition, call 
dispatch for ties is marginally slower than for ordinary servants because the tie 
forwards each operation to the delegate, that is, each operation invocation requires 
two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the dele-
gate back to the tie. If you need to navigate back to the tie from the delegate, you 
can store a reference to the tie in a member of the delegate. (The reference can, for 
example, be initialized by the constructor of the delegate.)
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16.8 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 16.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

16.8.1 Instantiating a Servant
Instantiating a servant means to allocate an instance:

Node servant = new NodeI("Fred");

This code creates a new NodeI instance and assigns its address to a reference of 
type Node. This works because NodeI is derived from Node, so a Node refer-
ence can refer to an instance of type NodeI. However, if we want to invoke a 
method of the NodeI class at this point, we must use a NodeI reference:

NodeI servant = new NodeI("Fred");

Whether you use a Node or a NodeI reference depends purely on whether you 
want to invoke a method of the NodeI class: if not, a Node reference works just 
as well as a NodeI reference.

16.8.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.2 An Ice object identity is a structure with the 
following Slice definition:

2. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See XREF for further discussion.
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module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
    // ... 
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 30.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice.Identity id = new Ice.Identity(); 
id.name = "Fred"; // Not unique, but good enough for now

16.8.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter.add(servant, id);

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
method on the servant.
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Assuming that the object adapter is in the active state (see Section 30.4), client 
requests are dispatched to the servant as soon as you call add.

16.8.4 UUIDs as Identities
As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs 
(Universally Unique Identifiers) [14] as identities. The Ice.Util package 
contains a helper function to create such identities:

public class Example 
{ 
    public static void Main(string[] args) 
    { 
        System.Console.WriteLine(Ice.Util.generateUUID()); 
    } 
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to generate-
UUID creates a string that differs from all previous ones.3 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

_adapter.addWithUUID(new NodeI("Fred"));

16.8.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-

3. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

NodePrx proxy = NodePrxHelper.uncheckedCast( 
                    _adapter.addWithUUID(new NodeI("Fred")));

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice { 
    local interface ObjectAdapter { 
        Object* createProxy(Identity id); 
        // ... 
    }; 
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice.Identity id = new Ice.Identity(); 
id.name = Ice.Util.generateUUID(); 
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to 
a client and the client invokes an operation on the proxy, the client will receive an 
ObjectNotExistException. (We examine these life cycle issues in more detail in 
XREF.)
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16.9 Summary

This chapter presented the server-side C# mapping. Because the mapping for Slice 
data types is identical for clients and servers, the server-side mapping only adds a 
few additional mechanisms to the client side: a small API to initialize and finalize 
the run time, plus a few rules for how to derive servant classes from skeletons and 
how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 30), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any C# mapping rules 
beyond those we described here.
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Chapter 17
Developing a File System Server in 
C#

17.1 Chapter Overview

In this chapter, we present the source code for a C# server that implements the file 
system we developed in Chapter 5 (see Chapter 15 for the corresponding client). 
The code we present here is fully functional, apart from the required interlocking 
for threads. (We examine threading issues in detail in Section 30.9.)

17.2 Implementing a File System Server

We have now seen enough of the server-side C# mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5 before studying the source 
code.)

Our server is composed of three source files:

• Server.cs

This file contains the server main program.

• DirectoryI.cs

This file contains the implementation for the Directory servants.
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• FileI.cs

This file contains the implementation for the File servants.

17.2.1 The Server Main Program
Our server main program, in the file Server.cs, uses the Ice.Applica-
tion class we discussed in Section 16.3.1. The run method installs a signal 
hander, creates an object adapter, instantiates a few servants for the directories and 
files in the file system, and then activates the adapter. This leads to a Main 
method as follows:

using Filesystem; 
using System; 
 
public class Server : Ice.Application 
{ 
    public override int run(string[] args) 
    { 
        // Terminate cleanly on receipt of a signal 
        // 
        shutdownOnInterrupt(); 
 
        // Create an object adapter (stored in the _adapter 
        // static members) 
        // 
        Ice.ObjectAdapter adapter 
            = communicator().createObjectAdapterWithEndpoints( 
                        "SimpleFilesystem", "default -p 10000"); 
        DirectoryI._adapter = adapter; 
        FileI._adapter = adapter; 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryI root = new DirectoryI("/", null); 
 
        // Create a file called "README" in the root directory 
        // 
        File file = new FileI("README", root); 
        string[] text; 
        text = new string[]{ "This file system contains " 
                             + "a collection of poetry." }; 
        try { 
            file.write(text); 
        } catch (GenericError e) { 
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            Console.Error.WriteLine(e.reason); 
        } 
 
        // Create a directory called "Coleridge" 
        // in the root directory 
        // 
        DirectoryI coleridge = new DirectoryI("Coleridge", root); 
 
        // Create a file called "Kubla_Khan" 
        // in the Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text = new string[]{ "In Xanadu did Kubla Khan", 
                             "A stately pleasure-dome decree:", 
                             "Where Alph, the sacred river, ran", 
                             "Through caverns measureless to man", 
                             "Down to a sunless sea." }; 
        try { 
            file.write(text); 
        } catch (GenericError e) { 
            Console.Error.WriteLine(e.reason); 
        } 
 
        // All objects are created, allow client requests now 
        // 
        adapter.activate(); 
 
        // Wait until we are done 
        // 
        communicator().waitForShutdown(); 
 
        if (interrupted()) 
            Console.Error.WriteLine(appName() + ": terminating"); 
 
        return 0; 
    } 
 
    public static void Main(string[] args) 
    { 
        Server app = new Server(); 
        Environment.Exit(app.main(args)); 
    } 
}
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The code uses a using directive for the the Filesystem namespace. This avoids 
having to continuously use fully-qualified identifiers with a Filesystem. 
prefix.

The next part of the source code is the definition of the Server class, which 
derives from Ice.Application and contains the main application logic in its 
run method. Much of this code is boiler plate that we saw previously: we create 
an object adapter, and, towards the end, activate the object adapter and call wait-
ForShutdown.

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 17.1.

Figure 17.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass a null parent.) Thus, the statement

        DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 17.1:

        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryI root = new DirectoryI("/", null); 
 
        // Create a file called "README" in the root directory 
        // 
        File file = new FileI("README", root); 
        string[] text; 
        text = new string[]{ "This file system contains " 
                             + "a collection of poetry." }; 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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        try { 
            file.write(text); 
        } catch (GenericError e) { 
            Console.Error.WriteLine(e.reason); 
        } 
 
        // Create a directory called "Coleridge" 
        // in the root directory 
        // 
        DirectoryI coleridge = new DirectoryI("Coleridge", root); 
 
        // Create a file called "Kubla_Khan" 
        // in the Coleridge directory 
        // 
        file = new FileI("Kubla_Khan", coleridge); 
        text = new string[]{ "In Xanadu did Kubla Khan", 
                             "A stately pleasure-dome decree:", 
                             "Where Alph, the sacred river, ran", 
                             "Through caverns measureless to man", 
                             "Down to a sunless sea." }; 
        try { 
            file.write(text); 
        } catch (GenericError e) { 
            Console.Error.WriteLine(e.reason); 
        }

We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        string[] text; 
        text = new string[]{ "This file system contains " 
                             + "a collection of poetry." }; 
        try { 
            file.write(text); 
        } catch (GenericError e) { 
            Console.Error.WriteLine(e.reason); 
        }

Recall from Section 14.7.3 that Slice sequences by default map to C# arrays. The 
Slice type Lines is simply an array of strings; we add a line of text to our README 
file by initializing the text array to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:



472 Developing a File System Server in C#

            file.write(text);

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary C# method call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 17.1.

17.2.2 The FileI Servant Class
Our FileI servant class has the following basic structure:

using Filesystem; 
using System; 
 
public class FileI : FileDisp_ 
{ 
    // Constructor and operations here... 
 
    public static Ice.ObjectAdapter _adapter; 
    private string _name; 
    private DirectoryI _parent; 
    private string[] _lines; 
}

The class has a number of data members:

• _adapter

This static member stores a reference to the single object adapter we use in our 
server.

• _name

This member stores the name of the file incarnated by the servant.

• _parent

This member stores the reference to the servant for the file’s parent directory.

• _lines

This member holds the contents of the file.

The _name and _parent data members are initialized by the constructor:
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    public FileI(string name, DirectoryI parent) 
    { 
        _name = name; 
        _parent = parent; 
 
        Debug.Assert(_parent != null); 
 
        // Create an identity 
        // 
        Ice.Identity myID 
            = Ice.Util.stringToIdentity(Ice.Util.generateUUID()); 
 
        // Add the identity to the object adapter 
        // 
        _adapter.add(this, myID); 
 
        // Create a proxy for the new node and 
        // add it as a child to the parent 
        // 
        NodePrx thisNode = NodePrxHelper.uncheckedCast( 
                                _adapter.createProxy(myID)); 
        _parent.addChild(thisNode); 
    }

After initializing the _name and _parent members, the code verifies that the 
reference to the parent is not null because every file must have a parent directory. 
The constructor then generates an identity for the file by calling 
Ice.Util.generateUUID and adds itself to the servant map by calling 
ObjectAdapter.add. Finally, the constructor creates a proxy for this file and 
calls the addChild method on its parent directory. addChild is a helper func-
tion that a child directory or file calls to add itself to the list of descendant nodes 
of its parent directory. We will see the implementation of this function on 
page 475.

The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

    // Slice Node::name() operation 
 
    public override string name(Ice.Current current) 
    { 
        return _name; 
    } 
 
    // Slice File::read() operation 
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    public override string[] read(Ice.Current current) 
    { 
        return _lines; 
    } 
 
    // Slice File::write() operation 
 
    public override void write(string[] text, Ice.Current current) 
    { 
        _lines = text; 
    }

The name method is inherited from the generated Node interface (which is a base 
interface of the _FileDisp class from which FileI is derived). It simply 
returns the value of the _name member.

The read and write methods are inherited from the generated File inter-
face (which is a base interface of the _FileDisp class from which FileI is 
derived) and simply return and set the _lines member.

17.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

using Filesystem; 
using System; 
using System.Collections; 
 
public class DirectoryI : DirectoryDisp_ 
{ 
    // Constructor and operations here... 
 
    public static Ice.ObjectAdapter _adapter; 
    private string _name; 
    private DirectoryI _parent; 
    private ArrayList _contents = new ArrayList(); 
}

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds a null reference.) In addition, we have a _contents data member that 
stores the list of child directories. These data members are initialized by the 
constructor:
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    public DirectoryI(string name, DirectoryI parent) 
    { 
        _name = name; 
        _parent = parent; 
 
        // Create an identity. The 
        // parent has the fixed identity "RootDir" 
        // 
        Ice.Identity myID = Ice.Util.stringToIdentity( 
                                _parent != null 
                                    ? Ice.Util.generateUUID() 
                                    : "RootDir"); 
 
        // Add the identity to the object adapter 
        // 
        _adapter.add(this, myID); 
 
        // Create a proxy for the new node and 
        // add it as a child to the parent 
        // 
        NodePrx thisNode = NodePrxHelper.uncheckedCast( 
                                _adapter.createProxy(myID)); 
        if (_parent != null) 
            _parent.addChild(thisNode); 
    }

The constructor creates an identity for the new directory by calling 
Ice.Util.generateUUID. (For the root directory, we use the fixed identity 
"RootDir".) The servant adds itself to the servant map by calling Object-
Adapter.add and then creates a proxy to itself and passes it to the addChild 
helper function.

addChild simply adds the passed reference to the _contents list:

    public void addChild(NodePrx child) 
    { 
        _contents.Add(child); 
    }

The remainder of the operations, name and list, are trivial:

    public override string name(Ice.Current current) 
    { 
        return _name; 
    } 
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    public override NodePrx[] list(Ice.Current current) 
    { 
        return (NodePrx[])_contents.ToArray(typeof(NodePrx)); 
    }

Note that the _contents member is of type System.Collec-
tions.ArrayList, which is convenient for the implementation of the 
addChild method. However, this requires us to convert the list into a C# array in 
order to return it from the list operation.

17.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe. We discuss 
thread safety in Section 30.9.



Part III.D
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Chapter 18
Client-Side Slice-to-Visual Basic 
Mapping

18.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Visual Basic (VB) mapping (see 
Chapter 8 for the server-side mapping). One part of the client-side VB mapping 
concerns itself with rules for representing each Slice data type as a corresponding 
VB type; we cover these rules in Section 18.3 to Section 18.10. Another part of 
the mapping deals with how clients can invoke operations, pass and receive 
parameters, and handle exceptions. These topics are covered in Section 18.11 to 
Section 18.13. Slice classes have the characteristics of both data types and inter-
faces and are covered in Section 18.14.

18.2 Introduction

The client-side Slice-to-VB mapping defines how Slice data types are translated to 
VB types, and how clients invoke operations, pass parameters, and handle errors. 
Much of the VB mapping is intuitive. For example, Slice dictionaries map to a VB 
class that derives from System.Collections.DictionaryBase, so there 
is little you have learn in order to use Slice dictionaries in VB.

The VB and C# mappings are binary compatible, that is, compiling a Slice 
definition with slice2vb and slice2cs results in generated code that, when 
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compiled, provides binary compatible APIs. This allows you to freely mix both 
languages in your application.

The VB API to the Ice run time is fully thread-safe. Obviously, you must still 
synchronize access to data from different threads. For example, if you have two 
threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 18.10 to 
Section 18.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the VB mapping, you should 
need no more than the Slice definition of your application and knowledge of the 
VB mapping rules. In particular, looking through the generated code in order to 
discern how to use the VB mapping is likely to be inefficient, due to the amount of 
detail. Of course, occasionally, you may want to refer to the generated code to 
confirm a detail of the mapping, but we recommend that you otherwise use the 
material presented here to see how to write your client-side code.

18.3 Mapping for Identifiers

Slice identifiers map to an identical VB identifier. For example, the Slice identifier 
Clock becomes the VB identifier Clock. If a Slice identifier is the same as a VB 
keyword, the corresponding VB identifier is an escaped identifier (an identifier 
surrounded with []). For example, the Slice identifier while is mapped as 
[while].1

The Slice-to-VB compiler generates classes that inherit from interfaces or 
base classes in the .NET framework. These interfaces and classes introduce a 
number of methods into derived classes. To avoid name clashes between Slice 
identifiers that happen to be the same as an inherited method, such identifiers are 

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such Slice identifiers as much 
as possible.
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prefixed by ice_ and suffixed with _ in the generated code. For example, the 
Slice identifier Equals maps to the VB identifier ice_Equals_ if it would clash 
with an inherited Equals. The complete list of identifiers that are so changed is:

Note that Slice identifiers in this list are translated to the corresponding VB identi-
fier only where necessary. For example, structures do not derive from IClone-
able, so if a Slice structure contains a member named Clone, the corresponding 
VB structure’s member is named Clone as well. On the other hand, classes do 
derive from ICloneable, so, if a Slice class contains a member named Clone, 
the corresponding VB class’s member is named ice_Clone_.

Also note that, for the purpose of prefixing, Slice identifiers are case-insensi-
tive, that is, both Clone and clone are escaped and map to ice_Clone_ and 
ice_clone_, respectively. (Of course, as far as Visual Basic is concerned, 
ice_Clone_ and ice_clone_ are the same identifier because VB identifiers 
are case-insensitive.)

18.4 Mapping for Modules

Slice modules map to VB namespaces with the same name as the Slice module. 
The mapping preserves the nesting of the Slice definitions. For example:

module M1 { 
    // Definitions for M1 here... 
    module M2 { 
        // Definitions for M2 here... 
    }; 
}; 
 
// ... 
 
module M1 {     // Reopen M1 
    // More definitions for M1 here... 
};

This definition maps to the corresponding VB definitions:

Clone Equals Finalize
GetBaseException GetHashCode GetObjectData
GetType MemberwiseClone ReferenceEquals
ToString checkedCast uncheckedCast
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Namespace M1 
 
    ' Definitions for M1 here... 
 
    Namespace M2 
 
        ' Definitions for M2 here... 
 
    End Namespace 
 
End Namespace 
 
Namespace M1 
 
    ' More definitions for M1 here... 
 
End Namespace

If a Slice module is reopened, the corresponding VB namespace is reopened as 
well.

18.5 The Ice Namespace

All of the APIs for the Ice run time are nested in the Ice namespace, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice namespace are generated from Slice definitions; other parts of the Ice 
namespace provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice namespace 
throughout the remainder of the book.
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18.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to VB types as shown in Table 18.1.

18.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

18.7.1 Mapping for Enumerations
Enumerations map to the corresponding enumeration in VB. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated VB definition is analogous:

Table 18.1. Mapping of Slice built-in types to VB.

Slice VB

bool Boolean

byte Byte

short Short

int Integer

long Long

float Single

double Double

string String
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Public Enum Fruit 
    Apple 
    Pear 
    Orange 
End Enum

18.7.2 Mapping for Structures
Ice for Visual Basic supports two different mappings for structures. By default, 
Slice structures map to VB structures if they (recursively) contain only value 
types. If a Slice structure (recursively) contains a string, proxy, class, sequence, or 
dictionary member, it maps to a VB class. A metadata directive (see Section 4.17) 
allows you to force the mapping to a VB class for Slice structures that contain 
only value types.

In addition, for either mapping, you can control whether Slice data members 
are mapped to fields or to properties (see page 487).

Structure Mapping for Structures

Consider the following structure:

struct Point { 
    double x; 
    double y; 
};

This structure consist of only value types and so, by default, maps to a VB struc-
ture:

Public Structure Point 
 
    Public x As Double 
    Public y As Double 
 
    Public Sub New(ByVal x As Double, ByVal y As Double) 
 
    Public Overrides Function GetHashCode() As Integer 
    Public Overloads Overrides Function Equals( _ 
                    ByVal other As Object) As Boolean 
 
End Structure

For each data member in the Slice definition, the VB structure contains a corre-
sponding public data member of the same name.



18.7 Mapping for User-Defined Types 485

The generated constructor accepts one argument for each structure member, in 
the order in which they are defined in the Slice definition. This allows you to 
construct and initialize a structure in a single statement:

Dim p As Point = New Point(5.1, 7.8)

The structure overrides the GetHashCode and Equals methods to allow you to 
use it as the key type of a dictionary. (Note that the shared two-argument version 
of Equals is in herited from System.Object.) Two structures are equal if 
(recursively) all their data members are equal. Otherwise, they are not equal. For 
structures that contain reference types. Equals performs a deep comparison; that 
is, reference types, such as strings and dictionaries, are compared for value 
equality, not reference equality.

Class Mapping for Structures

The mapping for Slice structures to VB structures provides value semantics. 
Usually, this is appropriate, but there are situations where you may want to change 
this:

• If you use structures as members of a collection, each access to an element of 
the collection incurs the cost of boxing or unboxing. Depending on your situa-
tion, the performance penalty may be noticeable.

• On occasion, it is useful to be able to assign Nothing to a structure, for 
example, to support “not there” semantics (such as when implementing 
parameters that are conceptually optional).

To allow you to choose the correct performance and functionality trade-off, the 
Slice-to-VB compiler provides an alternative mapping of structures to classes, for 
example:

["clr:class"] struct Point { 
    double x; 
    double y; 
};

The "clr:class" metadata directive instructs the Slice-to-VB compiler to 
generate a mapping to a VB class for this structure. The generated code is iden-
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tical, except that the keyword struct is replaced by the keyword class2 and 
that the class also inherits from ICloneable:

Public Class Point 
    Implements _System.ICloneable 
 
    Public x As Double 
    Public y As Double 
 
    Public Sub New() 
    Public Sub New(ByVal x As Double, ByVal y As Double) 
 
    Function Clone() As Object Implements _System.ICloneable.Clone 
 
    Public Overrides Function GetHashCode() As Integer 
    Public Overloads Overrides Function Equals( _ 
                                ByVal other As Object) As Boolean 
 
End Class

The Clone method performs a shallow memberwise copy, and the comparison 
methods have the usual semantics (they perform value comparison).

Note that you can influence the mapping for structures only at the point of 
definition of a structure, that is, for a particular structure type, you must decide 
whether you want to use the structure or the class mapping. (You cannot override 
the structure mapping elsewhere, for example, for individual structure members or 
operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a 
member of reference type, it is automatically mapped to a VB class. (The 
compiler behaves as if you had explicitly specified the “clr:class” metadata 
directive for the structure.)

Here is our Employee structure from Section 4.9.4 once more:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};

2. Some of the generated marshaling code differs for the class mapping of structures, but this is 
irrelevant to application code.
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The structure contains two strings, which are reference types, so the Slice-to-VB 
compiler generates a VB class for this structure:

Public Structure Employee 
 
    Public number As Long 
    Public firstName As String 
    Public lastName As String 
 
    Public Sub New(ByVal number As Long, _ 
                   ByVal firstName As String, _ 
                   ByVal lastName As String) 
 
    Public Overrides Function GetHashCode() As Integer 
 
    Public Overloads Overrides Function Equals( _ 
                            ByVal other As Object) As Boolean 
 
End Structure

Property Mapping for Structures

You can instruct the compiler to emit property definitions instead of public data 
members. For example:

["clr:property"] struct Point { 
    double x; 
    double y; 
};

["clr:property"] struct Point { 
    double x; 
    double y; 
};

The “clr:property” metadata directive causes the compiler to generate a prop-
erty for each Slice data member:

Public Structure Point 
 
    Private x_prop As Double 
    Public Property x As Double 
        Get 
            Return x_prop 
        End Get 
        Set 
            x_prop = Value 
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        End Set 
    End Property 
 
    Private y_prop As Double 
    Public Property y As Double 
        Get 
            Return y_prop 
        End Get 
        Set 
            y_prop = Value 
        End Set 
    End Property 
 
    ' Other methods here... 
 
End Structure

Note that the properties are not overridable because VB structures cannot have 
overridable properties. However, if you apply the “clr:property” directive to a 
structure that contains a member of reference type, or if you combine the 
“clr:property” and “clr:class” directives, the generated properties are over-
ridable. For example:

["clr:property", "clr:class"] 
struct Point { 
    double x; 
    double y; 
};

This generates the following code:

Public Class Point 
    Implements System.ICloneable 
 
    Private x_prop As Double 
    Public Overridable Property x As Double 
        Get 
            Return x_prop 
        End Get 
        Set 
            x_prop = Value 
        End Set 
    End Property 
 
    Private y_prop As Double 
    Public Overridable Property y As Double 
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        Get 
            Return y_prop 
        End Get 
        Set 
            y_prop = Value 
        End Set 
    End Property 
 
    ' Other methods here... 
 
End Structure

18.7.3 Mapping for Sequences
Ice for Visual Basic supports two different mappings for sequences. By default, 
sequences are mapped to arrays. A metadata directive (see Section 4.17) allows 
you to instead map sequences to classes that are derived from 
System.Collections.CollectionBase.

Array Mapping for Sequences

By default, the Slice-to-VB compiler maps sequences to arrays. Interestingly, no 
code is generated in this case; you simply define an array of elements to model the 
Slice sequence. For example:

sequence<Fruit> FruitPlatter;

Given this definition, to create a sequence containing an apple and an orange, you 
could write:

Dim fp() As Fruit = New Fruit() { Fruit.Apple, Fruit.Orange }

Or, alternatively:

Dim fp() As Fruit = New Fruit(1) 
fp(0) = Fruit.Apple 
fp(1) = Fruit.Orange

The array mapping for sequences is both simple and efficient, especially for 
sequences of value types because accessing array elements does not require 
boxing and unboxing.

CollectionBase Mapping for Sequences

The mapping of sequences to arrays is simple, but has the disadvantage that the 
number of elements in the sequence is fixed when you instantiate the array. This 
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makes the array mapping useless in situations where you need to grow and shrink 
a sequence on demand.3 To allow you to choose the correct feature trade-off, the 
Slice-to-VB compiler provides an alternative mapping, for example:

["clr:collection"] sequence<Fruit> FruitPlatter;

The "clr:collection" metadata directive instructs the Slice-to-VB compiler to 
generate a mapping to a VB class that derives from System.Collec-
tions.CollectionBase:

Public Class FruitPlatter 
    Inherits System.Collections.CollectionBase 
    Implements System.ICloneable 
 
    Public Sub New() 
    Public Sub New(ByVal capacity As Integer) 
    Public Sub New(ByVal a As Fruit()) 
 
    Public Sub CopyTo(ByVal a As Fruit()) 
    Public Sub CopyTo(ByVal a As Fruit(), _ 
                      ByVal i As Integer) 
    Public Sub CopyTo(ByVal i As Integer, _ 
                      ByVal a As Fruit(), _ 
                      ByVal ai As Integer, _ 
                      ByVal c As Integer) 
    Public Function ToArray() As Fruit() 
 
    Public Sub AddRange(ByVal s As FruitPlatter) 
    Public Sub AddRange(ByVal a As Fruit()) 
 
    Default Property Item(ByVal index As Integer) As Fruit 
        Get 
        Set 
 
    Public Function Add(ByVal value As Fruit) As Integer 
    Public Function IndexOf(ByVal value As Fruit) As Integer 
    Public Sub Insert(ByVal index As Integer, _ 
                      ByVal value As Fruit) 
    Public Sub Remove(ByVal value As Fruit) 
    Public Function Contains(ByVal value As Fruit) As Boolean 
 

3. You can resize an array with ReDim; however, ReDim does not permit you to arbitrarily resize 
multi-dimensional arrays and therefore does not provide a general solution.



18.7 Mapping for User-Defined Types 491

    Property Capacity As Integer 
        Get 
        Set 
 
    Public Overridable Sub TrimToSize() 
 
    Public Overloads Overridable Sub Sort() 
    Public Overloads Overridable Sub Sort(ByVal comparer _ 
        As _System.Collections.IComparer) 
    Public Overloads Overridable Sub Sort(_ 
        ByVal index As Integer, ByVal count As Integer, _ 
        ByVal Comparer As _System.Collections.IComparer) 
    Public Sub Reverse() 
    Public Overridable Sub Reverse( _ 
        ByVal index As Integer, ByVal count As Integer) 
 
    Public Overridable Function BinarySearch( _ 
        ByVal value As M.Fruit) As Integer 
    Public Overridable Function BinarySearch( _ 
        ByVal value As M.Fruit, _ 
        ByVal comparer As _System.Collections.IComparer) _ 
        As Integer 
    Public Overridable Function BinarySearch( _ 
        ByVal index As Integer, _ 
        ByVal count As Integer, _ 
        ByVal value As M.Fruit, _ 
        ByVal comparer As _System.Collections.IComparer) _ 
        As Integer 
 
    Public Overridable Sub InsertRange( _ 
        ByVal index As Integer, ByVal c As FruitPlatter) 
    Public Overridable Sub InsertRange( _ 
        ByVal index As Integer, ByVal c As M.Fruit()) 
 
    Public Overridable Sub RemoveRange( _ 
        ByVal index As Integer, ByVal count As Integer) 
    Public Overridable Function GetRange( _ 
        ByVal index As Integer, ByVal count As Integer) _ 
        As FruitPlatter 
 
    Public Overridable Sub SetRange( _ 
        ByVal index As Integer, ByVal c As FruitPlatter) 
    Public Overridable Sub SetRange( _ 
        ByVal index As Integer, ByVal c As M.Fruit()) 
 
    Public Overridable Function LastIndexOf( _ 
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        ByVal value As M.Fruit) As Integer 
    Public Overridable Function LastIndexOf( _ 
        ByVal value As M.Fruit, ByVal startIndex As Integer) _ 
        As Integer 
    Public Overridable Function LastIndexOf( _ 
        ByVal value As M.Fruit, _ 
        ByVal startIndex As Integer, _ 
        ByVal count As Integer) As Integer 
 
    Public Shared Function Repeat( _ 
        ByVal value As M.Fruit, ByVal count As Integer) _ 
        As FruitPlatter 
 
    Function Clone() As Object Implements System.ICloneable.Clone 
 
    Public Overrides Function GetHashCode() As Integer 
 
    Public Overloads Overrides Function Equals( _ 
                            ByVal other As Object) As Boolean 
 
    Public Overloads Shared Function Equals( _ 
                            ByVal lhs As FruitPlatter, _ 
                            ByVal rhs As FruitPlatter) As Boolean 
 
    ' ... 
 
End Class

The generated FruitPlatter class provides implementations of the indexer 
(Get and Set methods), and the inherited Add, IndexOf, Insert, Remove, 
and Contains methods. (The CollectionBase base class provides imple-
mentations of yet more methods, such as RemoveAt and Clear.) To make 
sequences easier to use, the Slice-to-VB compiler adds a number of additional 
properties and methods:

• Sub New() 
Sub New(ByVal capacity As Integer) 
Sub New(ByVal a As Fruit())

Apart from calling the default constructor, you can also specify an initial 
capacity for the sequence or, using the array constructor, initialize a sequence 
from an array.

• Sub CopyTo(ByVal a As Fruit()) 
Sub CopyTo(ByVal a As Fruit(), _ 
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           ByVal i As Integer) 
Sub CopyTo(ByVal i As Integer, _ 
           ByVal a As Fruit(), _ 
           ByVal ai As Integer, _ 
           ByVal c As Integer)

These methods copy the contents of a sequence into an array. The semantics 
are the same as for the corresponding methods on System.Collec-
tions.ArrayList.

• Function ToArray() As Fruit()

The ToArray method returns the contents of the sequence as an array.

• Sub AddRange(ByVal s As FruitPlatter) 
Sub AddRange(ByVal a As Fruit())

The AddRange methods append the contents of a sequence or an array to the 
current sequence, respectively.

• Property Capacity As Integer 
    Get 
    Set

This property controls the capacity of the sequence. Its semantics are as for 
System.Collections.ArrayList.

• Overridable Sub TrimToSize()

This method sets the capacity of the sequence to the actual number of 
elements.

• Overridable Sub Sort() 
Overridable Sub Sort(comparer As _ 
    System.Collections.IComparer) 
Overridable Sub Sort( _ 
    ByVal index As Integer, _ 
    ByVal count As Integer, _ 
    ByVal comparer As System.Collections.IComparer)

These methods sort the sequence.

• Overridable Sub Reverse() 
Overridable Sub Reverse( _ 
    ByVal index As Integer, _ 
    ByVal count As Integer)

These methods reverse the order of elements of the sequence.
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• Overridable Function BinarySearch( _ 
    ByVal value As Fruit) As Integer 
Overridable Function BinarySearch( _ 
    ByVal value As Fruit, _ 
    ByVal comparer As System.Collections.IComparer)_ 
    As Integer 
Overridable Function BinarySearch( _ 
    ByVal index As Integer, _ 
    ByVal count As Integer, _ 
    ByVal value As Fruit, _ 
    ByVal comparer As System.Collections.IComparer)_ 
    As Integer

The methods perform a binary search on the sequence, with semantics as for 
System.Collections.ArrayList.

• Overridable Sub InsertRange( _ 
    ByVal index As Integer, _ 
    ByVal c As FruitPlatter) 
Overridable Sub InsertRange( _ 
    ByVal index As Integer, _ 
    ByVal c As Fruit())

These methods insert a range of values into the sequence starting at the given 
index.

• Overridable Sub RemoveRange( _ 
    ByVal index As Integer, ByVal count As Integer)

This method removes count elements, starting at the given index.

• Overridable Function GetRange( _ 
    ByVal index As Integer, _ 
    ByVal count As Integer) As FruitPlatter

This method returns a subrange of the sequence. Note that, unlike 
System.Collections.ArrayList.GetRange, this method returns 
an independent copy of the subrange instead of a view on the underlying 
sequence.

• Overridable Sub SetRange( _ 
    ByVal index As Integer, ByVal c As FruitPlatter) 
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Overridable Sub SetRange( _ 
    ByVal index As Integer, ByVal c As Fruit())

These methods copy the provided sequence over a range of elements in the 
target sequence, starting at the provided index, with semantics as for 
System.Collections.ArrayList

• Overridable Function LastIndexOf( _ 
    ByVal value As Fruit) As Integer 
Overridable Function LastIndexOf( _ 
    ByVal value As Fruit, _ 
    ByVal startIndex As Integer) As Integer 
Overridable Function LastIndexOf( _ 
    ByVal value As Fruit, _ 
    ByVal startIndex As Integer, _ 
    ByVal count As Integer) As Integer

These methods search for the provided element and return its last occurence in 
the sequence, as for 
System.Collections.ArrayList.LastIndexOf.

• Shared Function Repeat( _ 
    ByVal value As Fruit, ByVal count As Integer) _ 
    As FruitPlatter

This method returns a sequence with count elements that are initialized to 
value.

Note that all these methods perform a shallow copy, that is, if you have a sequence 
whose elements have reference type, what is copied are the references, not the 
objects denoted by those references.

The generated class also provides the usual GetHashCode and Equals 
methods. (Two sequences are equal if they have the same number of elements and 
all elements in corresponding positions are equal.)

The Clone method performs a shallow copy.
The class also implements the inherited IsFixedSize, IsReadOnly, and 

IsSynchronized properties (which return False), and the inherited 
SyncRoot property (which returns this).

Creating a sequence containing an apple and an orange is simply a matter of 
writing:

Dim fp() As FruitPlatter = New FruitPlatter 
fp.Add(Fruit.Apple) 
fp.Add(Fruit.Orange)



496 Client-Side Slice-to-Visual Basic Mapping

Which Mapping to Choose?

Note that you can influence the mapping for sequences only at the point of defini-
tion of a sequence, that is, you must decide up front whether you want to use the 
CollectionBase or the array mapping for a particular sequence type. (You 
cannot override the sequence mapping elsewhere, for example, for individual 
structure members or operation parameters.)

The convenience of the CollectionBase mapping is not without its cost: 
sequences of value types (such as a sequence of int) are considerably slower for 
insertion and removal of elements than arrays, due to the cost of boxing and 
unboxing of the values. In practice, the array mapping for sequences is likely to 
yield a performance gain if the element type is a value type. For example, if you 
are using a sequence<byte> to model buffers for transmission of (large) binary 
data, the array mapping is likely to be considerably faster.

Multi-Dimensional Sequences

Slice permits you to define sequences of sequences, for example:

enum Fruit { Apple, Orange, Pear }; 
["clr:collection"] sequence<Fruit> FruitPlatter; 
["clr:collection"] sequence<FruitPlatter> Cornucopia;

If we use these definitions as shown, the generated code for the Cornucopia 
sequence (with some details removed for clarity) looks as follows:

Public Class Cornucopia 
    Inherits System.Collections.CollectionBase 
    Implements System.ICloneable 
 
    Default Property Item(ByVal index As Integer) As FruitPlatter 
        Get 
        Set 
 
    Public Function Add(ByVal value As FruitPlatter) As Integer 
    Public Function IndexOf(ByVal value As FruitPlatter) _ 
                        As Integer 
    Public Sub Insert(ByVal index As Integer, _ 
                      ByVal value As FruitPlatter) 
    Public Sub Remove(ByVal value As FruitPlatter) 
    Public Function Contains(ByVal value As FruitPlatter) _ 
                        As Boolean 
 
    ' ... 
End Class
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As you can see, the Cornucopia class deals with elements of type Fruit-
Platter, as you would expect.

Now let us modify the definition to change the mapping of FruitPlatter to 
an array:

enum Fruit { Apple, Orange, Pear }; 
sequence<Fruit> FruitPlatter; 
["clr:collection"] sequence<FruitPlatter> Cornucopia;

With this definition, the generated code for Cornucopia looks as follows (again, 
with some details removed for clarity):

Public Class Cornucopia 
    Inherits System.Collections.CollectionBase 
    Implements System.ICloneable 
 
    Public Function Add(ByVal value As Fruit()) As Integer 
 
    Public Function IndexOf(ByVal value As Fruit()) As Integer 
    Public Sub Insert(ByVal index As Integer, _ 
                      ByVal value As Fruit()) 
    Public Sub Remove(ByVal value As Fruit()) 
    Public Function Contains(ByVal value As Fruit()) _ 
                        As Boolean 
 
    ' ... 
End Class

As you can see, the generated code now no longer mentions the type Fruit-
Platter anywhere and deals with the elements of Cornucopia as an array of 
Fruit instead.

Of course, we could also change the metadata directive to make the Cornu-
copia sequence an array, and use the CollectionBase mapping for Fruit-
Platter. In that case, the compiler does not generate any definitions for 
Cornucopia at all—there is no need to generate anything because the application 
code now has to treat Cornucopia as an array of FruitPlatter throughout.

18.8 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;
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The Slice-to-VB compiler maps the dictionary to a class with the same name:

Public Class EmployeeMap 
    Inherits System.Collections.DictionaryBase 
    Implements System.ICloneable 
 
    Default Property Item(ByVal key As Long) As Employee 
        Get 
        Set 
 
    ReadOnly Property Keys As System.Collections.ICollection 
        Get 
 
    ReadOnly Property Values As System.Collections.ICollection 
        Get 
 
    Public Sub AddRange(ByVal d As EmployeeMap) 
 
    Public Sub Add(ByVal key As Long, ByVal value As Employee) 
    Public Sub Remove(ByVal key As Long) 
    Public Function Contains(ByVal key As Long) 
 
    Function Clone() As Object Implements System.ICloneable.Clone 
 
    Public Overrides Function GetHashCode() As Integer 
 
    Public Overloads Overrides Function Equals( _ 
                            ByVal other As Object) As Boolean 
 
    Public Overloads Shared Function Equals( _ 
                            ByVal lhs As EmployeeMap, _ 
                            ByVal rhs As EmployeeMap) As Boolean 
 
    ' ... 
End Class

Note that the generated EmployeeMap class inherits from DictionaryBase, 
so it follows the standard conventions of the .NET framework. Apart from 
methods inherited from DictionaryBase, the class provides an AddRange 
method that allows you to append the contents of one dictionary to another. If the 
target dictionary contains a key that is also in the source dictionary, the target 
dictionary’s value is preserved. For example:
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Dim e1 As Employee = New Employee 
e1.number = 42 
e1.firstName = "Herb" 
e1.lastName = "Sutter" 
 
Dim em1 As EmployeeMap = New EmployeeMap 
em(42) = e 
 
Dim e2 As Employee = New Employee 
e2.number = 42 
e2.firstName = "Stan" 
e2.lastName = "Lipmann" 
 
Dim em2 As EmployeeMap = New EmployeeMap 
em(42) = e2 
 
' Add contents of em2 to em1 
' 
em1.AddRange(em2) 
 
' Equal keys preserve the original value 
' 
Debug.Assert(em1(42).firstName.Equals("Herb"))

The generated class also provides the usual GetHashCode and Equals 
methods. (Two dictionaries are equal if they contain the same number of entries 
and, for each entry, the key and value are the same.)

The Clone method performs a shallow copy.
The class also implements the inherited IsFixedSize, IsReadOnly, and 

IsSynchronized properties (which return False), and the inherited 
SyncRoot property (which returns this).

18.9 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
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const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

Public NotInheritable Class AppendByDefault 
    Public Const value As Boolean = True 
End Class 
 
Public NotInheritable Class LowerNibble 
    Public Const value As Byte = 15 
End Class 
 
Public NotInheritable Class Advice 
    Public Const value As String = "Don't Panic!" 
End Class 
 
Public NotInheritable Class TheAnswer 
    Public Const value As Short = 42S 
End Class 
 
Public NotInheritable Class PI 
    Public Const value As Double = 3.1416R 
End Class 
 
Public Enum Fruit 
    Apple 
    Pear 
    Orange 
End Enum 
 
Public NotInheritable Class FavoriteFruit 
    Public Const value As Fruit = Fruit.Pear 
End Class

As you can see, each Slice constant is mapped to a class with the same name as 
the constant. The class contains a member named value that holds the value of 
the constant.4

4. The mapping to classes instead of to plain constants is necessary because VB does not permit 
constant definitions at global or namespace scope.
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18.10 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 18.1

Figure 18.1. Inheritance structure for exceptions.

The ancestor of all exceptions is System.ApplicationException. 
Derived from that is Ice.Exception, which provides the definitions for a 
number of constructors. Ice.LocalException and Ice.UserException 
are derived from Ice.Exception and form the base for all run-time and user 
exceptions.

The constructors defined in Ice.Exception have the following signatures:

Public MustInherit Class Exception 
    Inherits System.ApplicationException 
 
    Public Sub New() 
    Public Sub New(ByVal msg As String) 
    Public Sub New(ByVal ex As System.Exception) 
    Public Sub New(ByVal msg As String, _ 
                   ByVal ex As System.Exception) 
End Class

Each concrete derived exception class implements these constructors. The 
constructors initialize the Message and InnerException properties of 

Ice.LocalException Ice.UserException

Ice.Exception

Specific Run-Time Exceptions... Specific User Exceptions...

System.ApplicationException
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ApplicationException. (The default constructor initializes the Message 
property to the name of the exception.)

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 109 once more:

exception GenericError { 
    string reason; 
}; 
exception BadTimeVal extends GenericError {}; 
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

Public Class GenericError 
    Inherits Ice.UserException 
 
    Public reason As String 
 
    Public Sub New() 
    Public Sub New(ByVal msg As String) 
    Public Sub New(ByVal ex As System.Exception) 
    Public Sub New(ByVal msg As String, _ 
                   ByVal ex As System.Exception) 
 
    ' GetHashCode and comparison methods defined here, 
    ' as well as mapping-internal methods. 
End Class 
 
Public Class BadTimeVal 
    Inherits GenericError 
 
    Public Sub New() 
    Public Sub New(ByVal msg As String) 
    Public Sub New(ByVal ex As System.Exception) 
    Public Sub New(ByVal msg As String, _ 
                   ByVal ex As System.Exception) 
 
    ' GetHashCode and comparison methods defined here, 
    ' as well as mapping-internal methods. 
End Class 
 
Public Class BadZoneName 
    Inherits GenericError 
 
    Public Sub New() 
    Public Sub New(ByVal msg As String) 
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    Public Sub New(ByVal ex As System.Exception) 
    Public Sub New(ByVal msg As String, _ 
                   ByVal ex As System.Exception) 
 
    ' GetHashCode and comparison methods defined here, 
    ' as well as mapping-internal methods. 
End Class

Each Slice exception is mapped to a VB class with the same name. For each 
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice.LocalException, and you can catch all Ice excep-
tions with a handler for Ice.Exception.

All exceptions also provide the usual GetHashCode and Equals methods.
The generated exception classes also contain other member functions that are 

not shown here; these member functions are internal to the VB mapping and are 
not meant to be called by application code.

18.11 Mapping for Interfaces

On the client side, Slice interfaces map to VB interfaces with member functions 
that correspond to the operations on those interfaces. Consider the following 
simple interface:

interface Simple { 
    void op(); 
};

The Slice compiler generates the following definition for use by the client:
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Public Interface SimplePrx 
    Inherits Ice.ObjectPrx 
 
    Sub op() 
    Sub op(ByVal __context As Ice.Context) 
 
End Interface

As you can see, the compiler generates a proxy interface SimplePrx. In general, 
the generated name is <interface-name>Prx. If an interface is nested in a 
module M, the generated interface is part of namespace M, so the fully-qualified 
name is M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simple interface in a server and is known as a 
proxy instance. All the details about the server-side object, such as its address, 
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a member function of 
the same name. For the preceding example, we find that the operation op has been 
mapped to the method op. Also note that op is overloaded: the second version of 
op has a parameter __context of type Ice.Context. This parameter is for 
use by the Ice run time to store information about how to deliver a request. You 
normally do not need to use it. (We examine the __context parameter in detail 
in Chapter 30. The parameter is also used by IceStorm—see Chapter 42.)

Because all the <interface-name>Prx types are interfaces, you cannot 
instantiate an object of such a type. Instead, proxy instances are always instanti-
ated on behalf of the client by the Ice run time, so client code never has any need 
to instantiate a proxy directly.The proxy references handed out by the Ice run time 
are always of type <interface-name>Prx; the concrete implementation of 
the interface is part of the Ice run time and does not concern application code.

18.11.1 The Ice.ObjectPrx Interface
All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

Namespace Ice 
 
    Public Interface ObjectPrx 
        Function ice_getIdentity() As Identity 
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        Function ice_getHash() As Boolean 
        Function ice_isA(string __id) As Boolean 
        Function ice_id() As String 
        Sub ice_ping() 
 
 
        // Defined in a helper class: 
        // 
        Function GetHashCode() As Integer 
        Function Equals(object __r) As Boolean 
        Shared Function Equals(Ice.ObjectPrx __lhs, Ice.ObjectPrx 
__rhs) As Boolean 
 
        ' ... 
    End Interface 
 
End Namespace

Note that the GetHashCode and Equals methods are not actually defined in 
Ice.ObjectPrx, but in a helper class that becomes a base class of an instanti-
ated proxy. However, this is simply an internal detail of the VB mapping—
conceptually, these methods belong with Ice.ObjectPrx, so we discuss them 
here.

The methods behave as follows:

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

Dim o1 As Ice.ObjectPrx = ... 
Dim o2 As Ice.ObjectPrx = ... 
Dim i1 As Ice.Identity = o1.ice_getIdentity() 
Dim i2 As Ice.Identity = o2.ice_getIdentity() 
 
If i1.Equals(i2) Then 
    ' o1 and o2 denote the same object 
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Else 
    ' o1 and o2 denote different objects 
End If

• ice_getHash

This method returns a hash key for the proxy. (It is a synonym for GetHash-
Code.)

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

Ice.ObjectPrx o = ...; 
If Not o Is Nothing AndAlso o.ice_isA("::Printer") Then 
    ' o denotes a Printer object 
Else 
    ' o denotes some other type of object 
End If

Note that we attempt to invoke the ice_isA method only if the proxy is not 
Nothing to avoid getting a NullReferenceException if the proxy is 
Nothing.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be ::Base, or it might something more derived, such as ::Derived.

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExis-
tException or ConnectTimeoutException.

• Equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
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that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, Equals 
returns False even though the proxies denote the same object.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call and also provide access to an 
object’s facets; we discuss these methods in Chapter 30 and XREF.

18.11.2 Proxy Helpers
For each Slice interface, apart from the proxy interface, the Slice-to-VB compiler 
creates a helper class: for an interface Simple, the name of the generated helper 
class is SimplePrxHelper.5 The helper class contains two methods of interest:

Public Class SimplePrxHelper 
    Inherits Ice.ObjectPrxHelperBase 
    Implements SimplePrx 
 
    Public Shared Function checkedCast( _ 
                                ByVal b As Ice.ObjectPrx) _ 
                            As SimplePrx 
    Public Shared Function checkedCast( _ 
                                ByVal b As Ice.ObjectPrx), _ 
                                ByVal ctx As Ice.Context) 
                            As SimplePrx 
    Public Shared Function uncheckedCast( _ 
                                ByVal B As Ice.ObjectPrx, _ 
                                ByVal f As String) _ 
                            As SimplePrx 
    ' ... 
 
End Class

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a reference to a proxy of 
type SimplePrx; otherwise, if the passed proxy denotes an object of a different 
type (or if the passed proxy is Nothing), the cast returns Nothing.

5. You can ignore the ObjectPrxHelperBase base class—it exists for mapping-internal 
purposes.
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Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

Dim obj As Ice.ObjectPrx = ...  ' Get a proxy from somewhere... 
 
Dim simple As SimplePrx = SimplePrxHelper.checkedCast(obj) 
If Not simple Is Nothing Then 
    ' Object supports the Simple interface... 
Else 
    ' Object is not of type Simple... 
End If

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of an object in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException. (This also explains the need 
for the helper class: the Ice run time must contact the server, so we cannot use a 
VB down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process { 
    void launch(int stackSize, int dataSize); 
}; 
 
// ... 
 
interface Rocket { 
    void launch(float xCoord, float yCoord); 
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:
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Dim obj As Ice.ObjectPrx = ...                   ' Get proxy... 
Dim process As ProcessPrx _ 
    = ProcessPrxHelper.uncheckedCast(obj)        ' No worries... 
process.launch(40, 60)                           ' Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or 
an uncheckedCast to down-cast a proxy. If you use a VB cast, the behavior is 
undefined.

18.11.3 Object Identity and Proxy Comparison
As mentioned on page 506, proxies provide an Equals operation. Proxy compar-
ison with Equals uses all of the information in a proxy for the comparison. This 
means that not only the object identity must match for a comparison to succeed, 
but other details inside the proxy, such as the protocol and endpoint information, 
must be the same. In other words, comparison with Equals tests for proxy iden-
tity, not object identity. A common mistake is to write code along the following 
lines:

Dim p1 As Ice.ObjectPrx = ...        ' Get a proxy... 
Dim p2 As Ice.ObjectPrx = ...        ' Get another proxy... 
 
If p1.Equals(p2) Then 
    ' p1 and p2 denote different objects       ' WRONG! 
Else 
    ' p1 and p2 denote the same object         ' Correct 
End If

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
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may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with Equals, we know that the two proxies denote the 
same object (because they are identical in all respects); however, if two proxies 
compare unequal with Equals, we know absolutely nothing: the proxies may or 
may not denote the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice.Util class:

Public NotInheritable Class Util 
    Public Shared Function proxyIdentityCompare( _ 
                                ByVal lhs As ObjectPrx, _ 
                                ByVal rhs As ObjectPrx) As Integer 
 
    Public Shared Function proxyIdentityAndFacetCompare( _ 
                                ByVal lhs As ObjectPrx, _ 
                                ByVal rhs As ObjectPrx) As Integer 
    ' ... 
End Class

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

Dim p1 As Ice.ObjectPrx = ...        ' Get a proxy... 
Dim p2 As Ice.ObjectPrx = ...        ' Get another proxy... 
 
If Ice.Util.proxyIdentityCompare(p1, p2) <> 0 Then 
    ' p1 and p2 denote different objects       ' Correct 
Else 
    ' p1 and p2 denote the same object         ' Correct 
End If

The function returns 0 if the identities are equal, −1 p1 is less than p2, and 1 if p1 
is greater than p2. (The comparison uses name as the major and category as 
the minor sort key.)

The proxyIdentityAndFacetCompare performs the same function, 
but compares both the identity and the facet name (see Chapter 32).

The VB mapping also provides two helper classes in the Ice namespace that 
allow you to insert proxies into hashtables or ordered collections, based on the 
identity, or the identity plus the facet name:

Public Class proxyIdentityKey 
    Implements System.Collections.IHashCodeProvider, _ 
               System.Collections.IComparer 
 



18.12 Mapping for Operations 511

    Public Function Compare(ByVal x As Object, ByVal y As Object) 
_ 
      As Integer _ 
      Implements System.Collections.IComparer.Compare 
 
    Public Overloads Function GetHashCode(ByVal obj As Object) _ 
      As Integer _ 
      Implements System.Collections.IHashCodeProvider.GetHashCode 
 
    ' ... 
End Class

Note these classes derive from IHashCodeProvider and IComparer, so 
they can be used for both hash tables and ordered collections.

18.12 Mapping for Operations

As we saw in Section 18.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy. For example, here is part of the definitions for 
our file system from Section 5.4:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

Dim node As NodePrx = ...         ' Initialize proxy 
Dim name As String = node.name()  ' Get name via RPC

This illustrates the typical pattern for receiving return values: return values are 
returned by reference for complex types, and by value for simple types (such as 
int or double).

18.12.1 Normal, idempotent, and nonmutating Operations
You can add an idempotent or nonmutating qualifier to a Slice operation. As far 
as the signature for the corresponding proxy methods is concerned, neither idem-



512 Client-Side Slice-to-Visual Basic Mapping

potent nor nonmutating have any effect. For example, consider the following 
interface:

interface Example { 
                string op1(); 
    idempotent  string op2(); 
    nonmutating string op3(); 
};

The proxy interface for this is:

Public Interface ExamplePrx 
    Inherits Ice.ObjectPrx 
 
    Function op1() As String 
    Function op2() As String 
    Function op3() As String 
End Interface

idempotent and nonmutating affect an aspect of call dispatch, not interface, so it 
makes sense for the three methods to look the same.

18.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the VB mapping are very simple: parameters are 
passed either by value (for value types) or by reference (for reference types). 
Semantically, the two ways of passing parameters are identical: it is guaranteed 
that the value of a parameter will not be changed by the invocation (with some 
caveats—see XREF).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
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    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServer* proxy); 
};

The Slice compiler generates the following proxy for this definition:

Public Interface ClientToServerPrx 
    Inherits Ice.ObjectPrx 
 
    Sub op1(ByVal i As Integer, _ 
            ByVal f As float, _ 
            ByVal b As Boolean, _ 
            ByVal s As String) 
 
    Sub op2(ByVal ns As NumberAndString, _ 
            ByVal ss As StringSeq, _ 
            ByVal st As StringTable) 
 
    Sub op3(ByVal proxy As ClientToServerPrx) 
End Interface

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

Dim p As ClientToServerPrx = ...        ' Get proxy... 
 
p.op1(42, 3.14F, True, "Hello world!")  ' Pass simple literals 
 
Dim i As Integer = 42 
Dim f As Single f = 3.14F; 
Dim b As Boolean = True 
Dim s As String = "Hello world!" 
p.op1(i, f, b, s)                       ' Pass simple variables 
 
Dim ns As NumberAndString = New NumberAndString 
ns.x = 42 
ns.str = "The Answer" 
Dim ss As StringSS = New StringSS 
ss.Add("Hello world!") 
Dim st As StringTable = New StringTable 
st(0) = ns 
p.op2(ns, ss, st)                       ' Pass complex variables 
 
p.op3(p)                                ' Pass proxy
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out-Parameters

Slice out parameters simply map to ByRef parameters.6

Here is the same Slice definition we saw on page 512 once more, but this time 
with all parameters being passed in the out direction:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ServerToClient { 
    void op1(out int i, out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 
             out StringSeq ss, 
             out StringTable st); 
    void op3(out ServerToClient* proxy); 
};

The Slice compiler generates the following code for this definition:

Imports System.Runtime.InteropServices 
 
Public Interface ServerToClientPrx 
    Inherits Ice.ObjectPrx 
 
    Sub op1(<Out()> ByRef i As Integer, _ 
            <Out()> ByRef f As Single, _ 
            <Out()> ByRef b As Boolean, _ 
            <Out()> ByRef s As String) 
 
    Sub op1(<Out()> ByRef i As Integer, _ 
            <Out()> ByRef f As Single, _ 
            <Out()> ByRef b As Boolean, _ 
            <Out()> ByRef s As String, _ 
            ByVal __context As Ice.Context) 
 

6. These parameters use System.Runtime.Interopservices.OutAttribute in 
order to preserve binary compatibility with the C# mapping, which maps Slice out parameters to 
C# out parameters.
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    Sub op2(<Out()> ByRef ns As M.NumberAndString, _ 
            <Out()> ByRef ss As String(), _ 
            <Out()> ByRef st As M.StringTable) 
 
    Sub op2(<Out()> ByRef ns As M.NumberAndString, _ 
            <Out()> ByRef ss As String(), _ 
            <Out()> ByRef st As M.StringTable, _ 
            ByVal __context As Ice.Context) 
 
    Sub op3(<Out()> ByRef proxy As M.ServerToClientPrx) 
 
    Sub op3(<Out()> ByRef proxy As M.ServerToClientPrx, _ 
            ByVal __context As Ice.Context) 
 
End Interface

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

Dim p As ClientToServerPrx = ... ' Get proxy... 
 
Dim i As Integer 
Dim f As Single 
Dim b As Boolean 
Dim s As String 
p.op1(i, f, b, s) 
 
Dim ns As NumberAndString 
Dim ss As StringSeq 
Dim st As StringTable 
p.op2(out ns, out ss, out st) 
 
Dim stc As ServerToClientPrx 
p.op3(out stc); 
 
System.Console.WriteLine(i)      ' Show one of the values

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
proxies, sequences (if mapped to CollectionBase), dictionaries, strings, and 
structures (if mapped to classes) can be Nothing:

• For proxies, a VB Nothing reference denotes the null proxy. The null proxy 
is a dedicated value that indicates that a proxy points “nowhere” (denotes no 
object).
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• Sequences and dictionaries cannot be null, but can be empty. To make life 
with these types easier, whenever you pass a VB Nothing reference as a 
parameter or return value of type sequence or dictionary, the Ice run time 
automatically sends an empty sequence or dictionary to the receiver.

• VB strings can be Nothing, but Slice strings cannot (because Slice strings 
do not support the concept of a null string). Whenever you pass a VB 
Nothing string as a parameter or return value, the Ice run time automatically 
sends an empty string to the receiver.

• Structures can be null if you use the CollectionBase mapping. If you 
pass a VB Nothing reference to such a structure as a parameter or return 
value, the Ice run time automatically sends a structure whose elements are 
default initialized. This means that all proxy members are initialized to 
Nothing, sequence and dictionary members are initialized to empty collec-
tions, strings are initialized to the empty string, and members that have a value 
type are initialized to their default values.

This behavior is useful as a convenience feature: especially for deeply-nested data 
types, members that are structures, sequences, dictionaries, or strings automati-
cally arrive as an empty value at the receiving end. This saves you having to 
explicitly initialize, for example, every string element in a large sequence before 
sending it in order to avoid NullReferenceExceptions. Note that using 
Nothing parameters in this way does not create null semantics for sequences, 
dictionaries, or strings. As far as the object model is concerned, these do not exist 
(only empty sequences, dictionaries, and strings do). For example, sending a string 
as a Nothing reference or as an empty string makes no difference to the receiver: 
either way, the receiver sees an empty string.

18.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 18.10 on 
page 501) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 18.10 on page 501). Suppose we have the following 
simple interface:
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exception Tantrum { 
    string reason; 
}; 
 
interface Child { 
    void askToCleanUp() throws Tantrum; 
};

Slice exceptions are thrown as VB exceptions, so you can simply enclose one or 
more operation invocations in a Try–Catch block:

Dim child As ChildPrx = ...   ' Get child proxy... 
 
Try 
    child.askToCleanUp() 
Catch t As Tantrum 
    System.Console.Write("The child says: ") 
    System.Console.WriteLine(t.reason) 
End Try

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

Module Client 
 
    Private Sub run() 
        Dim child As ChildPrx = ...  ' Get child proxy... 
        Try 
            child.askToCleanUp() 
        Catch t As Tantrum 
            System.Console.Write("The child says: ") 
            System.Console.WriteLine(t.reason) 
            child.scold()            ' Recover from error... 
        End Try 
        child.praise()               ' Give positive feedback... 
    End Sub 
 
    Public Sub Main(ByVal args() As String) 
        Try 
            ' ... 
            run() 
            ' ... 
        Catch e As Ice.Exception 
            System.Console.WriteLine(e) 
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        End Try 
    End Sub 
 
End Module

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in XREF.)

Note that the ToString method of exceptions prints the name of the excep-
tion, any inner exceptions, and the stack trace. Of course, you can be more selec-
tive in the way exceptions are displayed. For example, e.Message contains the 
error message (if any) for the exception, and e.GetType().Name returns the 
(unscoped) name of an exception.

Exceptions and out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may still have its original value or 
may have been changed by the operation’s implementation in the target object. In 
other words, for out-parameters, Ice provides the weak exception guarantee [21] 
but does not provide the strong exception guarantee.7

18.14 Mapping for Classes

Slice classes are mapped to VB classes with the same name. By default, the gener-
ated class contains a public data member for each Slice data member (just as for 
structures and exceptions), and a member function for each operation.

Note that classes also support the “clr:property” metadata directive, so you 
can generate classes with overridable properties instead of data members. (See 
page 487 for details on “clr:property”.)

Consider the following class definition:

7. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.
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class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 -59 
    string format();    // Return time as hh:mm:ss 
};

The Slice compiler generates the following code for this definition:

Public Interface TimeOfDayOperations_ 
    Function format(ByVal __current As Ice.Current) As String 
End Interface 
 
Public Interface TimeOfDayOperationsNC_ 
    Function format() As String 
End Interface 
 
Public MustInherit Class TimeOfDay 
    Inherits Ice.ObjectImpl 
    Implements TimeOfDayOperations_, TimeOfDayOperationsNC_ 
 
    Public hour As Short 
    Public minute As Short 
    Public second As Short 
 
    Public Sub New() 
    End Sub 
 
    Public Sub New(ByVal hour As Short, _ 
                   ByVal minute As Short, _ 
                   ByVal second As Short) 
        Me.hour = hour 
        Me.minute = minute 
        Me.second = second 
    End Sub 
 
    Public Function format() As String _ 
            Implements TimeOfDayOperationsNC_.format 
        Return format(Ice.ObjectImpl.defaultCurrent) 
    End Function 
 
    Public MustOverride Function format(_ 
            ByVal __current As Ice.Current) As String _ 
            Implements TimeOfDayOperations_.format 
End Class
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There are a number of things to note about the generated code:

1. The compiler generates “operations interfaces” called 
TimeOfDayOperations_ and TimeOfDayOperationsNC_. These 
interfaces contain a method for each Slice operation of the class.

2. The generated class TimeOfDay inherits (indirectly) from Ice.Object. 
This means that all classes implicitly inherit from Ice.Object, which is the 
ultimate ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a 
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from 
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

18.14.1 Operations Interfaces
The methods in the <interface-name>Operations_ interface have an 
additional trailing parameter of type Ice.Current, whereas the methods in the 
<interface-name>OperationsNC_ interface lack this additional trailing 
parameter. The methods without the Current parameter simply forward to the 
methods with a Current parameter, supplying a default Current. For now, 
you can ignore this parameter and pretend it does not exist. (We look at it in more 
detail in Section 30.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the <interface-name>Operations_ and <inter-
face-name>OperationsNC_ interfaces.

18.14.2 Inheritance from Ice.Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 18.2, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inherit-
ance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
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expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 18.2. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions

Namespace Ice 
 
    Public Interface Object 
 
        Function ice_getHash() As Integer 
 
        Function ice_isA() As Boolean 
        Function ice_isA(ByVal s As String) As Boolean 
 
        Sub ice_ping() 
        Sub ice_ping(ByVal current As Ice.Current) 
 
        Function ice_ids() As String() 
        Function ice_ids(ByVal current As Ice.Current) As String() 
 
        Function ice_id() As String 
        Function ice_id(ByVal current As Ice.Current) 
 
        Sub ice_preMarshal() 
        Sub ice_postUnmarshal() 
 
    End Interface 
 
End Namespace

The member functions of Ice.Object behave as follows:

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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• ice_getHash

This function returns a hash value for the class, allowing you to easily place 
classes into hash tables. The implementation returns the value of 
System.Object.GetHashCode.

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

Note that the generated class does not override GetHashCode and Equals. 
This means that classes are compared using shallow reference equality, not value 
equality (as is used for structures).

The class also provides a Clone method (whose implementation is inherited 
from Ice.ObjectImpl); the Clone method returns a shallow memberwise 
copy.

18.14.3 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for 
each data member in the Slice definition, the generated class contains a corre-
sponding public data member.
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18.14.4 Operations of Classes
Operations on classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:

Public Class TimeOfDayI  
    Inherits TimeOfDay 
 
    Public Overrides Function format( _ 
                        ByVal current As Ice.Current) _ 
                        As String 
        Return hour.ToString("D2") & ":" _ 
               & minute.ToString("D2") & ":" _ 
               & second.ToString("D2") 
    End Function 
 
End Class

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time { 
    TimeOfDay get(); 
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
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    local interface Communicator { 
        void addObjectFactory(ObjectFactory factory, string id); 
        ObjectFactory findObjectFactory(string id); 
        // ... 
    }; 
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

Public Class ObjectFactory 
    Inherits Ice.LocalObjectImpl 
    Implements Ice.ObjectFactory 
 
    Public Function create(ByVal type As String) As Object 
        If type.Equals("::M::TimeOfDay") Then 
            Return New TimeOfDayI 
        End If 
        System.Diagnostics.Debug.Assert(False) 
        Return Nothing 
    End Function 
 
    Public Sub destroy() 
        ' Nothing to do 
    End Sub 
 
End Class

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it is "::M::TimeOfDay", it 
instantiates and returns a TimeOfDayI object. For other type IDs, it asserts 
because it does not know how to instantiate other types of objects.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Dim ice As Ice.Communicator = ... 
ic.addObjectFactory(New ObjectFactory, "::M::TimeOfDay")
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Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance, which returns a TimeOfDayI instance to the Ice run time.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

Inheritance from LocalObject

Note that the implementation of the factory in the previous example extends 
Ice.LocalObjectImpl. The object factory, being a local object, inherits a 
number of operations from Ice.LocalObject, such as ice_getHash (see 
page 506). The Ice.LocalObjectImpl class provides implementations for 
these operations, so you do not need to implement them yourself.

In general, all local interfaces inherit from Ice.LocalObject, and all 
implementations of local interfaces, such as an object factory or servant locator 
(see Section 30.7) must inherit from Ice.LocalObjectImpl.

18.14.5 Class Constructors
The generated class contains both a default constructor, and a constructor that 
accepts one argument for each member of the class. This allows you to create and 
initialize a class in a single statement, for example:

Dim tod As TimeOfDayI = New TimeOfDay(14, 45, 00) ' 2:45pm
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TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument of all of the members 
of the class, including members of the base class(es). For example, consider the 
the definition from Section 4.11.2 once more:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
}; 
 
class DateTime extends TimeOfDay { 
    short day;          // 1 - 31 
    short month;        // 1 - 12 
    short year;         // 1753 onwards 
};

The constructors for the generated classes are as follows:

Public Class TimeOfDay 
    Inherits Ice.ObjectImpl 
 
    Public Sub New() 
    End Sub 
 
    Public Sub New(ByVal hour As Short, _ 
                   ByVal minute As Short, _ 
                   ByVal second As Short) 
        Me.hour = hour 
        Me.minute = minute 
        Me.second = second 
    End Sub 
 
    ' ... 
End Class 
 
Public Class DateTime 
    Inherits M.TimeOfDay 
 
    Public Sub New() 
        MyBase.New() 
    End Sub 
 
    Public Sub New(ByVal hour As Short, _ 
                   ByVal minute As Short, _ 
                   ByVal second As Short, _ 
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                   ByVal day As Short, _ 
                   ByVal month As Short, _ 
                   ByVal year As Short) 
        MyBase.New(hour, minute, second) 
        Me.day = day 
        Me.month = month 
        Me.year = year 
    End Sub 
 
    ' ... 
End Class

In other words, if you want to instantiate and initialize a DateTime instance, you 
must either use the default constructor or provide data for all of the data members 
of the instance, including data members of any base classes.

18.15 VB-Specific Metadata Directives

The slice2vb compiler supports metadata directives that allow you inject VB 
attribute specifications into the generated code. The metadata directive is 
vb:attribute:. For example:

["vb:attribute:System.Serializable"] 
struct Point { 
    double x; 
    double y; 
};

This results in the following code being generated for S:

<System.Serializable> 
Public Structure Point 
    Public x As Double 
    Public y As Double 
    ' ... 
End Structure

You can apply this metadata directive to any slice construct, such as structure, 
operation, or parameter definitions.

You can use this directive also at global level. For example:

[["vb:attribute:assembly: AssemblyDescription(\"My assembly\")"]]
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This results in the following code being inserted following any imports statements 
and preceding any definitions:

<assembly: AssemblyDescription("My assembly")>

18.16 slice2vb Command-Line Options

The Slice-to-VB compiler, slice2vb, offers the following command-line 
options in addition to the standard options described in Section 4.19:

• --tie

Generate tie classes (see Section 16.7).

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --impl-tie

Generate sample implementation files using ties (see Section 16.7). This 
option will not overwrite an existing file.

• --checksum

Generate checksums for Slice definitions.

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

18.17 Using Slice Checksums

As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2vb, the --checksum option causes the 
compiler to generate checksums in each VB source file that are added to a 
member of the Ice.SliceChecksums class:

Namespace Ice 
    Public NotInheritable Class SliceChecksums 
        Public Readonly Shared checksums As SliceChecksumDict  
    End Class 
End Namespace
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The checksums map is initialized automatically prior to first use; no action is 
required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the Equals function. However, this is not feasible if it is 
possible that the server might be linked with more Slice definitions than the client. 
A more general solution is to iterate over the local checksums as demonstrated 
below:

Dim serverChecksums As Ice.SliceChecksumDict = ... 
For Each e As System.Collections.DictionaryEntry _ 
        In Ice.SliceChecksums.checksums 
    Dim checksum As String = serverChecksums(e.Key) 
    If checksum Is Nothing Then 
        ' No match found for type id! 
    ElseIf Not checksum.Equals(e.Value) Then 
        ' Checksum mismatch! 
    End If 
Next

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 19
Developing a File System Client in 
Visual Basic

19.1 Chapter Overview

In this chapter, we present the source code for a VB client that accesses the file 
system we developed in Chapter 5 (see Chapter 21 for the corresponding server).

19.2 The VB Client

We now have seen enough of the client-side VB mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
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        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

Imports Microsoft.VisualBasic 
Imports System 
Imports FileSystem 
 
Module Client 
 
    ' Recursively print the contents of directory "dir" 
    ' in tree fashion. For files, show the contents of 
    ' each file. The "depth" parameter is the current 
    ' nesting level (for indentation). 
 
    Sub listRecursive(ByVal dir As DirectoryPrx, _ 
                      ByVal depth As Integer) 
        depth += 1 
        Dim indent As String = New String(Chr(9), depth) 
 
        Dim contents As NodePrx() = dir.list() 
 
        For Each node As NodePrx In contents 
            Dim subdir As DirectoryPrx _ 
                        = DirectoryPrxHelper.checkedCast(node) 
            Dim file As FilePrx _ 
                        = FilePrxHelper.uncheckedCast(node) 
            Console.Write(indent & node.name()) 
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            If Not subdir Is Nothing Then 
                Console.WriteLine(" (directory):") 
            Else 
                Console.WriteLine(" (file):") 
            End If 
            If Not subdir Is Nothing Then 
                listRecursive(subdir, depth) 
            Else 
                Dim text As String() = file.read() 
                For j As Integer = 0 To text.Length - 1 
                    Console.WriteLine(indent & "    " & text(j)) 
                Next 
            End If 
        Next 
    End Sub 
 
    Public Sub Main(ByVal args() As String) 
        Dim status As Integer = 0 
        Dim ic As Ice.Communicator = Nothing 
        Try 
            ' Create a communicator 
            ' 
            ic = Ice.Util.initialize(args) 
 
            ' Create a proxy for the root directory 
            ' 
            Dim obj As Ice.ObjectPrx _ 
                    = ic.stringToProxy("RootDir:default -p 10000") 
 
            ' Down-cast the proxy to a Directory proxy 
            ' 
            Dim rootDir As DirectoryPrx _ 
                    = DirectoryPrxHelper.checkedCast(obj) 
 
            ' Recursively list the contents of the root directory 
            ' 
            Console.WriteLine("Contents of root directory:") 
            listRecursive(rootDir, 0) 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        If Not ic Is Nothing Then 
            ' Clean up 
            ' 
            Try 
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                ic.destroy() 
            Catch e As Exception 
                Console.Error.WriteLine(e) 
                status = 1 
            End Try 
        End If 
        Environment.Exit(status) 
    End Sub 
 
End Module

The Client module defines two functions: listRecursive, which is a 
helper function to print the contents of the file system, and Main, which is the 
main program. Let us look at Main first:

1. The structure of the code in Main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:
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• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 19.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 
                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 36 and XREF.

19.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the VB code hardly differs 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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from the code you would write for an ordinary VB program. This is one of the 
biggest advantages of using Ice: accessing a remote object is as easy as accessing 
an ordinary, local VB object. This allows you to put your effort where you should, 
namely, into developing your application logic instead of having to struggle with 
arcane networking APIs. As we will see in Chapter 17, this is true for the server 
side as well, meaning that you can develop distributed applications easily and effi-
ciently.
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Chapter 20
Server-Side Slice-to-Visual Basic 
Mapping

20.1 Chapter Overview

In this chapter, we present the server-side Slice-to-VB mapping (see Chapter 18 
for the client-side mapping). Section 20.3 discusses how to initialize and finalize 
the server-side run time, sections 20.4 to 20.7 show how to implement interfaces 
and operations, and Section 20.8 discusses how to register objects with the server-
side Ice run time.

20.2 Introduction

The mapping for Slice data types to VB is identical on the client side and server 
side. This means that everything in Chapter 14 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.
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20.3 The Server-Side Main Method

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.Util.initialize before you can do anything else in your 
server. Ice.Util.initialize returns a reference to an instance of an 
Ice.Communicator:

Imports System 
 
Module Server 
 
    Public Sub Main(ByVal args() As String) 
        Dim status As Integer = 0 
        Dim communicator As Ice.Communicator = Nothing 
        Try 
            communicator = Ice.Util.initialize(args) 
            ' ... 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        ' ... 
    End Sub 
 
End module

Ice.Util.initialize accepts the argument vector that is passed to Main 
by the operating system. The method scans the argument vector for any 
command-line options that are relevant to the Ice run time; any such options are 
removed from the argument vector so, when Ice.Util.initialize returns, 
the only options and arguments remaining are those that concern your application. 
If anything goes wrong during initialization, initialize throws an exception.

Before leaving your Main method, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation invocations that may still be running to 
complete. In addition, destroy ensures that any outstanding threads are joined 
with and reclaims a number of operating system resources, such as file descriptors 
and memory. Never allow your Main method to terminate without calling 
destroy first; doing so has undefined behavior.

The general shape of our server-side Main method is therefore as follows:
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Imports System 
 
Module Server 
 
    Public Sub Main(ByVal args() As String) 
 
        Dim status As Integer = 0 
        Dim communicator As Ice.Communicator = Nothing 
        Try 
            communicator = Ice.Util.initialize(args) 
            ' ... 
        Catch e As Exception 
            Console.Error.WriteLine(e) 
            status = 1 
        End Try 
        If Not communicator Is Nothing Then 
            Try 
                communicator.destroy() 
            Catch e As Exception 
                Console.Error.WriteLine(e) 
                status = 1 
            End Try 
        End If 
        Environment.Exit(status) 
    End Sub 
 
End module

Note that the code places the call to Ice.Util.initialize into a try block 
and takes care to return the correct exit status to the operating system. Also note 
that an attempt to destroy the communicator is made only if the initialization 
succeeded.

20.3.1 The Ice.Application Class
The preceding structure for the Main method is so common that Ice offers a class, 
Ice.Application, that encapsulates all the correct initialization and finaliza-
tion activities. The synopsis of the class is as follows (with some detail omitted for 
now):

Namespace Ice 
 
    Public Mustinherit Class Application 
 
        Public MustOverride Function run( _ 
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                        ByVal args() As String) As Integer 
 
        Public Sub New() 
 
        Public Function main(ByVal args() As String) As Integer 
        Public Function main(ByVal args() As String, _ 
                             ByVal configFile As String) _ 
                                                As Integer 
 
        Public Shared Function appName() As String 
 
        Public Shared Function communicator() _ 
                                    As Ice.Communicator 
 
    End Class 
 
End Namespace

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in Main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

Imports System 
 
Module Server 
 
    Public Class Server 
        Inherits Ice.Application 
 
        Public Overrides Function run(ByVal args As String()) _ 
                                                As Integer 
 
            ' Server code here... 
 
            Return 0 
        End Function 
 
    End Class 
 
    Public Sub Main(ByVal args As String()) 
        Dim app As Server = New Server 
        Environment.Exit(app.main(args)) 
    End Sub 
 
End Module
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The Application.main method does the following:

1. It installs an exception handler for System.Exception. If your code fails 
to handle an exception, Application.main prints the name of the excep-
tion and a stack trace on Console.Error before returning with a non-zero 
return value.

2. It initializes (by calling Ice.Util.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling he static communicator accessor.

3. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName method. You 
can get at the application name from anywhere in your code by calling 
Ice.Application.appName (which is usually required for error 
messages).

5. It creates an IceUtil.CtrlCHandler that properly destroys the commu-
nicator.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception. 
We recommend that all your programs use this class; doing so makes your life 
easier. In addition Ice.Application also provides features for signal 
handling and configuration that you do not have to implement yourself when you 
use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
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such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice.Application encapsulates the 
platform-independent signal handling capabilities provided by the class 
IceUtil.CtrlCHandler (see Section 29.11). This allows you to cleanly shut 
down on receipt of a signal and to use the same source code regardless of the 
underlying operating system and VB run time:

Namespace Ice 
 
    Public Mustinherit Class Application 
 
        ' ... 
 
        Public Shared Sub destroyOnInterrupt() 
        Public Shared Sub shutdownOnInterrupt() 
        Public Shared Sub ignoreInterrupt() 
        Public Shared Sub holdInterrupt() 
        Public Shared Sub releaseInterrupt() 
 
        Public Shared Function interrupted() As Boolean 
 
    End Class 
 
End Namespace

The methods behave as follows:

• destroyOnInterrupt

This method installs a handler that destroys the communicator if it is inter-
rupted. This is the default behavior.

• shutdownOnInterrupt

This method installs a handler that shuts down the communicator if it is inter-
rupted.

• ignoreInterrupt

This method causes signals to be ignored.

• holdInterrupt

This method temporarily blocks signal delivery.
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• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns true if a signal caused the communicator to shut down, 
false otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server Main method requires no change to ensure that the 
program terminates cleanly on receipt of a signal. However, we add a diagnostic to 
report the occurrence, so our run method now looks like:

Imports System 
 
Module Server 
 
    Public Class Server 
        Inherits Ice.Application 
 
        Public Overrides Function run(ByVal args As String()) _ 
                                                As Integer 
 
            ' Server code here... 
 
            If interrupted() Then 
                Console.Error.WriteLine(appName() & _ 
                                        ": terminating") 
            End If 
 
            Return 0 
        End Function 
 
    End Class 
 
    Public Sub Main(ByVal args As String()) 
        Dim app As Server = New Server 
        Environment.Exit(app.main(args)) 
    End Sub 
 
End Module
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Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main method of Ice.Application is overloaded; the second version allows 
you to specify the name of a configuration file that will be processed during 
initialization. We discuss Ice properties in more detail in Chapter 28.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

20.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.

20.4.1 Skeleton Classes
On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has an 
abstract method for each operation on the corresponding interface. For example, 
consider the Slice definition for the Node interface we defined in Chapter 5 once 
more:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The Slice compiler generates the following definition for this interface:
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Namespace FileSystem 
 
    Public Interface NodeOperations_ 
        Function name(ByVal __current As Ice.Current) As String 
    End Interface 
 
    Public Interface NodeOperationsNC_ 
        Function name() As String 
    End Interface 
 
    Public Interface Node 
        Inherits Ice.Object, NodeOperations_, NodeOperationsNC_ 
    End Interface 
 
    Public MustInherit class _NodeDisp 
        Inherits Ice.ObjectImpl 
        Implements Node 
 
        Public Function name() As String _ 
                Implements NodeOperationsNC_.name 
            Return name(Ice.ObjectImpl.defaultCurrent) 
        End Function 
 
        Public MustOverride Function name( _ 
                                ByVal __current As Ice.Current) _ 
                                As String _ 
                                Implements NodeOperations_.name 
 
        ' Mapping-internal code here... 
 
    End Class 
 
End Namespace

The important points to note here are:

• As for the client side, Slice modules are mapped to VB namespaces with the 
same name, so the skeleton class definitions are part of the Filesystem 
namespace.

• For each Slice interface <interface-name>, the compiler generates VB inter-
faces <interface-name>Operations_ and 
<interface-name>OperationsNC_ (NodeOperations_ and 
NodeOperationsNC_ in this example). These interfaces contain a method 
for each operation in the Slice interface. (You can ignore the Ice.Current 
parameter for the time being—we discuss it in detail in Section 30.6.)
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• For each Slice interface <interface-name>, the compiler generates a VB 
interface <interface-name> (Node in this example). That interface 
extends both Ice.Object and the two operations interfaces.

• For each Slice interface <interface-name>, the compiler generates an 
abstract class <interface-name>Disp_ (NodeDisp_ in this example). 
This abstract class is the actual skeleton class; it is the base class from which 
you derive your servant class.

20.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

Imports Filesystem 
 
Public Class NodeI 
    Inherits NodeDisp_ 
 
    Public Sub New(ByVal name As String) 
        _name = name 
    End Sub 
 
    Public Overloads Overrides Function name( _ 
                ByVal current As Ice.Current) As String 
        Return _name 
    End Function 
 
    Private _name As String 
 
End Class

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.) Note that NodeI extends NodeDisp_, that is, it 
derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the abstract name method that it inherits from its skeleton. This makes 
the servant class a concrete class that can be instantiated. You can add other 
methods and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
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constructor. (Obviously, the constructor initializes the _name member and the 
name method returns its value.)

Normal, idempotent, and nonmutating Operations

Whether an operation is an ordinary operation, or an idempotent or nonmutating 
operation has no influence on the way the operation is mapped. To illustrate this, 
consider the following interface:

interface Example { 
                void normalOp(); 
    idempotent  void idempotentOp(); 
    nonmutating void nonmutatingOp(); 
};

The operations class for this interface looks like this:

Public Interface ExampleOperations_ 
    Sub normalOp(ByVal current As Ice.Current) 
    Sub idempotentOp(ByVal current As Ice.Current) 
    Sub nonmutatingOp(ByVal current As Ice.Current) 
End Interface

Note that the signatures of the methods are unaffected by the idempotent and 
nonmutating qualifiers because VB has no notion of const-correness (whereas, in 
C++, the nonmutating qualifier generates a C++ const member function).

20.5 Parameter Passing

For each parameter of a Slice operation, the VB mapping generates a corre-
sponding parameter for the corresponding method in the 
<interface-name>Operations_ interface. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name method of 
the NodeOperations_ interface has a single parameter of type 
Ice.Current. We explain the purpose of this parameter in Section 30.6 and 
will ignore it for now.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:
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module M { 
    interface Example { 
        string op(string sin, out string sout); 
    }; 
};

The generated method for op looks as follows:

Namespace M 
 
    Public Interface ExampleOperations_ 
 
        Function op(ByVal sin As String, _ 
                    <_System.Runtime.InteropServices.Out()> _ 
                            ByRef sout As String, _ 
                    ByVal __current As Ice.Current) As String 
 
    End Interface 
 
End Namespace

As you can see, there are no surprises here.1 For example, we could implement op 
as follows:

Imports System 
 
Public Class ExampleI 
    Inherits M.ExampleDisp_ 
 
    Function op(ByVal sin As String, _ 
                ByRef sout As String, _ 
                ByVal __current As Ice.Current) As String 
 
        Console.WriteLine(sin)  ' In parameters are initialized 
        sout = "Hello World!"   ' Assign out param 
        Return "Done" 
    End Function 
 
End Class

1. Out-parameters use System.Runtime.Interopservices.OutAttribute in order 
to preserve binary compatibility with the C# mapping, which maps Slice out parameters to C# 
out parameters.
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This code is in no way different from what you would normally write if you were 
to pass strings to and from a method; the fact that remote procedure calls are 
involved does not affect your code in any way. The same is true for parameters of 
other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal VB rules and do not require special-purpose API calls.

20.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

Public Overloads Overrides Sub write( _ 
                                ByVal text As String(), _ 
                                ByVal current As Ice.Current) 
    Try 
        ' Try to write file contents here... 
    Catch ex As System.Exception 
        Dim e As GenericError = New GenericError( _ 
                                "cannot write file", ex) 
        e.reason = "Exception during write operation" 
        Throw e 
    End Try 
End Sub

Note that, for this example, we have supplied the optional second parameter to the 
GenericError constructor (see Section 14.10). This parameter sets the 
InnerException member of System.Exception and preserves the orig-
inal cause of the error for later diagnosis.

If you throw an arbitrary VBrun-time exception (such as an InvalidCas-
tException), the Ice run time catches the exception and then returns an 
UnknownException to the client. Similarly, if you throw an “impossible” user 
exception (a user exception that is not listed in the exception specification of the 
operation), the client receives an UnknownUserException.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.2 For that reason, you should never 

2. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 32.
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throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

20.7 Tie Classes

The mapping to skeleton classes we saw in Section 20.4 requires the servant class 
to inherit from its skeleton class. Occasionally, this creates a problem: some class 
libraries require you to inherit from a base class in order to access functionality 
provided by the library; because VB does not support multiple implementation 
inheritance, this means that you cannot use such a class library to implement your 
servants because your servants cannot inherit from both the library class and the 
skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write 
servants that replaces inheritance with delegation. This approach is supported by 
tie classes. The idea is that, instead of inheriting from the skeleton class, you 
simply create a class (known as an implementation class or delegate class) that 
contains methods corresponding to the operations of an interface. You use the 
--tie option with the slice2cs compiler to create a tie class. For example, 
for the Node interface we saw in Section 20.4.1, the --tie option causes the 
compiler to create exactly the same code as we saw previously, but to also emit an 
additional tie class. For an interface <interface-name>, the generated tie class 
has the name <interface-name>Tie_:

Namespace Filesystem 
 
    public class NodeTie_ 
        Inherits NodeDisp_ 
        Implements Ice.TieBase 
 
        Public Sub New() 
        End Sub 
 
        Public Sub New(ByVal del As NodeOperations_) 
            _ice_delegate = del 
        End Sub 
 
        Public Function ice_delegate() As Object _ 
                Implements Ice.TieBase.ice_delegate 
            Return _ice_delegate 
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        End Function 
 
        Public Sub ice_delegate(ByVal del As Object) _ 
                Implements Ice.TieBase.ice_delegate 
            _ice_delegate = CType(del, NodeOperations_) 
        End Sub 
 
        Public Overrides Function ice_getHash() As Integer 
            Return GetHashCode() 
        End Function 
 
        Public Overrides Function GetHashCode() As Integer 
            If _ice_delegate Is Nothing Then 
                Return 0 
            Else 
                Return CType(_ice_delegate, Object).GetHashCode() 
            End If 
        End Function 
 
        Public Overloads Overrides Function Equals( _ 
                                ByVal rhs As Object) As Boolean 
            If Object.ReferenceEquals(Me, rhs) Then 
                Return true 
            End If 
            If Not TypeOf rhs Is NodeTie_ Then 
                Return False 
            End If 
            If _ice_delegate Is Nothing Then 
                Return CType(rhs, NodeTie_)._ice_delegate _ 
                                            Is Nothing 
            End If 
            Return CType(_ice_delegate, Object). _ 
                        Equals(CType(rhs, NodeTie_)._ice_delegate) 
        End Function 
 
        Public Overloads Overrides Function name( _ 
                        ByVal __current As Ice.Current) As String 
            Return _ice_delegate.name(__current) 
        End Function 
 
        Private _ice_delegate As NodeOperations_ 
    End Class

This looks a lot worse than it is: in essence, the generated tie class is simply a 
servant class (it extends NodeDisp_) that delegates each invocation of a method 
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that corresponds to a Slice operation to your implementation class (see 
Figure 20.1).

Figure 20.1. A skeleton class, tie class, and implementation class.

The Ice.TieBase interface defines the ice_delegate methods that allow 
you to get and set the delegate.

Given this machinery, we can create an implementation class for our Node 
interface as follows:

Imports Filesystem 
 
Public Class NodeI 
    Implements NodeOperations_ 
 
    Public Sub New(ByVal name As String) 
        _name = name 
    End Sub 
 
    Public Function name(ByVal current As Ice.Current) _ 
                As String Implements NodeOperations_.name 
        Return _name 
    End Function 
 
    Private _name As String 
 
End Class

Note that this class is very similar to our previous implementation but, instead of 
inheriting from NodeDisp_, the class implements the NodeOperations_ 
interface (which means that you are now free to extend any other class to support 
your implementation).

To create a servant, you instantiate your implementation class and the tie class, 
passing a reference to the implementation instance to the tie constructor:

Dim fred As NodeI = New NodeI("Fred") ' Create implementation 
Dim servant As NodeTie_ = New NodeTie_(fred) ' Create tie

NodeTie_

NodeDisp_
«interface»

NodeI

Skeleton 
Class

Tie 
Class

Implementation 
Class

NodeOperations_
«interface»
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Alternatively, you can also default-construct the tie class and later set its delegate 
instance by calling ice_delegate:

Dim servant As NodeTie_ = New NodeTie_() ' Create tie 
' ... 
Dim fred As NodeI = New NodeI("Fred") ' Create implementation 
' ... 
servant.ice_delegate(fred) ' Set delegate

When using tie classes, it is important to remember that the tie instance is the 
servant, not your delegate. Furthermore, you must not use a tie instance to incar-
nate (see Section 20.8) an Ice object until the tie has a delegate. Once you have set 
the delegate, you must not change it for the lifetime of the tie; otherwise, unde-
fined behavior results.

You should use the tie approach only if you need to, that is, if you need to 
extend some base class in order to implement your servants: using the tie 
approach is more costly in terms of memory because each Ice object is incarnated 
by two VB objects instead of one, the tie and the delegate. In addition, call 
dispatch for ties is marginally slower than for ordinary servants because the tie 
forwards each operation to the delegate, that is, each operation invocation requires 
two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the dele-
gate back to the tie. If you need to navigate back to the tie from the delegate, you 
can store a reference to the tie in a member of the delegate. (The reference can, for 
example, be initialized by the constructor of the delegate.)

20.8 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 20.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.
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20.8.1 Instantiating a Servant
Instantiating a servant means to allocate an instance:

Dim servant As Node = New NodeI

This code creates a new NodeI instance and assigns its address to a reference of 
type Node. This works because NodeI is derived from Node, so a Node refer-
ence can refer to an instance of type NodeI. However, if we want to invoke a 
method of the NodeI class at this point, we must use a NodeI reference:

Dim servant As NodeI = New NodeI("Fred")

Whether you use a Node or a NodeI reference depends purely on whether you 
want to invoke a method of the NodeI class: if not, a Node reference works just 
as well as a NodeI reference.

20.8.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
    // ... 
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 30.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Dim id As Ice.Identity = New Ice.Identity 
id.name = "Fred" ' Not unique, but good enough for now

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See XREF for further discussion.



20.8 Object Incarnation 555

20.8.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter.add(servant, id)

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
method on the servant.

Assuming that the object adapter is in the active state (see Section 30.4), client 
requests are dispatched to the servant as soon as you call add.

20.8.4 UUIDs as Identities
As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs 
(Universally Unique Identifiers) [14] as identities. The Ice.Util package 
contains a helper function to create such identities:

Module Example 
 
    Public Sub Main(ByVal args As String()) 
        System.Console.WriteLine(Ice.Util.generateUUID()) 
    End Sub 
 
End Module

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to generate-
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UUID creates a string that differs from all previous ones.4 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

_adapter.addWithUUID(New NodeI("Fred"))

20.8.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

Dim proxy As NodePrx = NodePrxHelper.uncheckedCast( _ 
    _adapter.addWithUUID(New NodeI("Fred")))

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

4. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice { 
    local interface ObjectAdapter { 
        Object* createProxy(Identity id); 
        // ... 
    }; 
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Dim id As Ice.Identity = New Ice.Identity 
id.name = Ice.Util.generateUUUID() 
Dim o As Ice.ObjectPrx = _adapter.createProxy(id)

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to 
a client and the client invokes an operation on the proxy, the client will receive an 
ObjectNotExistException. (We examine these life cycle issues in more detail in 
XREF.)

20.9 Summary

This chapter presented the server-side VB mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanisms to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 30), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any VB mapping rules 
beyond those we described here.
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Chapter 21
Developing a File System Server in 
Visual Basic

21.1 Chapter Overview

In this chapter, we present the source code for a VB server that implements the file 
system we developed in Chapter 5 (see Chapter 19 for the corresponding client). 
The code we present here is fully functional, apart from the required interlocking 
for threads. (We examine threading issues in detail in Section 30.9.)

21.2 Implementing a File System Server

We have now seen enough of the server-side VB mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5.3 before studying the source 
code.)

Our server is composed of three source files:

• Server.vb

This file contains the server main program.

• DirectoryI.vb

This file contains the implementation for the Directory servants.
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• FileI.vb

This file contains the implementation for the File servants.

21.2.1 The Server Main Program
Our server main program, in the file Server.vb, uses the Ice.Applica-
tion class we discussed in Section 16.3.1. The run method installs a signal 
hander, creates an object adapter, instantiates a few servants for the directories and 
files in the file system, and then activates the adapter. This leads to a Main func-
tion as follows:

Imports System 
Imports FileSystem 
 
Module Server 
 
    Public Class Server 
        Inherits Ice.Application 
 
        Public Overrides Function run(ByVal args As String()) _ 
                                    As Integer 
            ' Terminate cleanly on receipt of a signal 
            ' 
            shutdownOnInterrupt() 
 
            ' Create an object adapter (stored in the _adapter 
            ' static members) 
            ' 
            Dim adapter As Ice.ObjectAdapter = _ 
                communicator().createObjectAdapterWithEndpoints( _ 
                        "SimpleFilesystem", "default -p 10000") 
            DirectoryI._adapter = adapter 
            FileI._adapter = adapter 
 
            ' Create the root directory (with name "/" 
            ' and no parent) 
            ' 
            Dim root As DirectoryI = New DirectoryI("/", Nothing) 
 
            ' Create a file called "README" in the root directory 
            ' 
            Dim file As FileI = New FileI("README", root) 
            Dim text As String() = New String() _ 
                {"This file system contains " _ 
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                 & "a collection of poetry."} 
            Try 
                file.write(text) 
            Catch e As GenericError 
                Console.Error.WriteLine(e.reason) 
            End Try 
 
            ' Create a directory called "Coleridge" 
            ' in the root directory 
            ' 
            Dim coleridge As DirectoryI = _ 
                New DirectoryI("Coleridge", root) 
 
            ' Create a file called "Kubla_Khan" 
            ' in the Coleridge directory 
            ' 
            file = New FileI("Kubla_Khan", coleridge) 
            text = New String() {"In Xanadu did Kubla Khan", _ 
            "A stately pleasure-dome decree:", _ 
            "Where Alph, the sacred river, ran", _ 
            "Through caverns measureless to man", _ 
            "Down to a sunless sea."} 
            Try 
                file.write(text) 
            Catch e As GenericError 
                Console.Error.WriteLine(e.reason) 
            End Try 
 
            ' All objects are created, allow client requests now 
            ' 
            adapter.activate() 
 
            ' Wait until we are done 
            ' 
            communicator().waitForShutdown() 
 
            If interrupted() Then 
                Console.Error.WriteLine(appName() _ 
                                & ": terminating") 
            End If 
 
            Return 0 
        End Function 
 
    End Class 
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    Public Sub Main(ByVal args As String()) 
        Dim app As Server = New Server 
        Environment.Exit(app.Main(args)) 
    End Sub 
 
End Module

The code uses an Imports statement for the the Filesystem namespace. This 
avoids having to continuously use fully-qualified identifiers with a File-
system. prefix.

The next part of the source code is the definition of the Server class, which 
derives from Ice.Application and contains the main application logic in its 
run method. Much of this code is boiler plate that we saw previously: we create 
an object adapter, and, towards the end, activate the object adapter and call wait-
ForShutdown.

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 21.1.

Figure 21.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass a Nothing parent.) Thus, the statement

            Dim root As DirectoryI = New DirectoryI("/", Nothing)

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 21.1:

            ' Create the root directory (with name 
            ' "/" and no parent) 
            ' 
            Dim root As DirectoryI = New DirectoryI("/", Nothing) 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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            ' Create a file called "README" in the root directory 
            ' 
            Dim file As FileI = New FileI("README", root) 
            Dim text As String() = New String() _ 
                {"This file system contains " _ 
                 & "a collection of poetry."} 
            Try 
                file.write(text) 
            Catch e As GenericError 
                Console.Error.WriteLine(e.reason) 
            End Try 
 
            ' Create a directory called "Coleridge" 
            ' in the root directory 
            ' 
            Dim coleridge As DirectoryI = _ 
                New DirectoryI("Coleridge", root) 
 
            ' Create a file called "Kubla_Khan" 
            ' in the Coleridge directory 
            ' 
            file = New FileI("Kubla_Khan", coleridge) 
            text = New String() {"In Xanadu did Kubla Khan", _ 
            "A stately pleasure-dome decree:", _ 
            "Where Alph, the sacred river, ran", _ 
            "Through caverns measureless to man", _ 
            "Down to a sunless sea."} 
            Try 
                file.write(text) 
            Catch e As GenericError 
                Console.Error.WriteLine(e.reason) 
            End Try

We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

            Dim text As String() = New String() _ 
                {"This file system contains " _ 
                 & "a collection of poetry."} 
            Try 
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                file.write(text) 
            Catch e As GenericError 
                Console.Error.WriteLine(e.reason) 
            End Try

Recall from Section 18.7.3 that Slice sequences by default map to VB arrays. The 
Slice type Lines is simply an array of strings; we add a line of text to our README 
file by initializing the text array to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

                file.write(text)

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary VB method call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 21.1.

21.2.2 The FileI Servant Class
Our FileI servant class has the following basic structure:

Imports System 
Imports System.Diagnostics 
Imports Filesystem 
 
Public Class FileI 
    Inherits FileDisp_ 
 
    ' Constructor and operations here... 
 
    Public Shared _adapter As Ice.ObjectAdapter 
    Private _name As String 
    Private _parent As DirectoryI 
    Private _lines As String() 
 
End Class

The class has a number of data members:
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• _adapter

This static member stores a reference to the single object adapter we use in our 
server.

• _name

This member stores the name of the file incarnated by the servant.

• _parent

This member stores the reference to the servant for the file’s parent directory.

• _lines

This member holds the contents of the file.

The _name and _parent data members are initialized by the constructor:

    Public Sub New(ByVal name As String, _ 
                   ByVal parent As DirectoryI) 
        _name = name 
        _parent = parent 
 
        Debug.Assert(Not _parent Is Nothing) 
 
        ' Create an identity 
        ' 
        Dim myId As Ice.Identity = _ 
                Ice.Util.stringToIdentity(Ice.Util.generateUUID()) 
 
        ' Add the identity to the object adapter 
        ' 
        _adapter.add(Me, myId) 
 
        ' Create a proxy for the new node and 
        ' add it as a child to the parent 
        ' 
        Dim thisNode As NodePrx _ 
                = NodePrxHelper.uncheckedCast( _ 
                        _adapter.createProxy(myId)) 
        _parent.addChild(thisNode) 
    End Sub

After initializing the _name and _parent members, the code verifies that the 
reference to the parent is not Nothing because every file must have a parent 
directory. The constructor then generates an identity for the file by calling 
Ice.Util.generateUUID and adds itself to the servant map by calling 
ObjectAdapter.add. Finally, the constructor creates a proxy for this file and 
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calls the addChild method on its parent directory. addChild is a helper func-
tion that a child directory or file calls to add itself to the list of descendant nodes 
of its parent directory. We will see the implementation of this function on 
page 568.

The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

    ' Slice Node::name() operation 
 
    Public Overloads Overrides Function name( _ 
                ByVal current As Ice.Current) As String 
        Return _name 
    End Function 
 
    ' Slice File::read() operation 
 
    Public Overloads Overrides Function read( _ 
                ByVal current As Ice.Current) As String() 
        Return _lines 
    End Function 
 
    ' Slice File::write() operation 
 
    Public Overloads Overrides Sub write( _ 
                ByVal text As String(), _ 
                ByVal current As Ice.Current) 
        _lines = text 
    End Sub

The name method is inherited from the generated Node interface (which is a base 
interface of the _FileDisp class from which FileI is derived). It simply 
returns the value of the _name member.

The read and write methods are inherited from the generated File inter-
face (which is a base interface of the _FileDisp class from which FileI is 
derived) and simply return and set the _lines member.

21.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

Imports System 
Imports System.Collections 
Imports Filesystem 
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Public Class DirectoryI 
    Inherits DirectoryDisp_ 
 
    ' Constructor and operations here... 
 
    Public Shared _adapter As Ice.ObjectAdapter 
    Private _name As String 
    Private _parent As DirectoryI 
    Private _contents As ArrayList = New ArrayList 
 
End Class

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds a Nothing reference.) In addition, we have a _contents data member 
that stores the list of child directories. These data members are initialized by the 
constructor:

    Public Sub New(ByVal name As String, _ 
                   ByVal parent As DirectoryI) 
        _name = name 
        _parent = parent 
 
        ' Create an identity. The 
        ' parent has the fixed identity "RootDir" 
        ' 
        Dim myId As Ice.Identity 
        If Not _parent Is Nothing Then 
            myId = Ice.Util.stringToIdentity( _ 
                        Ice.Util.generateUUID()) 
        Else 
            myId = Ice.Util.stringToIdentity("RootDir") 
        End If 
 
        ' Add the identity to the object adapter 
        ' 
        _adapter.add(Me, myId) 
 
        ' Create a proxy for the new node and 
        ' add it as a child to the parent 
        ' 
        Dim thisNode As NodePrx _ 
                = NodePrxHelper.uncheckedCast( _ 
                        _adapter.createProxy(myId)) 
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        If Not _parent Is Nothing Then 
            _parent.addChild(thisNode) 
        End If 
    End Sub

The constructor creates an identity for the new directory by calling 
Ice.Util.generateUUID. (For the root directory, we use the fixed identity 
"RootDir".) The servant adds itself to the servant map by calling Object-
Adapter.add and then creates a proxy to itself and passes it to the addChild 
helper function.

addChild simply adds the passed reference to the _contents list:

    Public Sub addChild(ByVal child As NodePrx) 
        _contents.Add(child) 
    End Sub

The remainder of the operations, name and list, are trivial:

    Public Overloads Overrides Function name( _ 
                        ByVal current As Ice.Current) As String 
        Return _name 
    End Function 
 
    Public Overloads Overrides Function list( _ 
                        ByVal current As Ice.Current) As NodePrx() 
        Return CType(_contents.ToArray( _ 
                        GetType(NodePrx)), NodePrx()) 
    End Function

Note that the _contents member is of type System.Collec-
tions.ArrayList, which is convenient for the implementation of the 
addChild method. However, this requires us to convert the list into a VB array 
in order to return it from the list operation.

21.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.
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Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe. We discuss 
thread safety in Section 30.9.
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Chapter 22
Client-Side Slice-to-Python Mapping

22.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Python mapping (see 
Chapter 24 for the server-side mapping). One part of the client-side Python 
mapping concerns itself with rules for representing each Slice data type as a corre-
sponding Python type; we cover these rules in Section 22.3 to Section 22.10. 
Another part of the mapping deals with how clients can invoke operations, pass 
and receive parameters, and handle exceptions. These topics are covered in 
Section 22.11 to Section 22.13. Slice classes have the characteristics of both data 
types and interfaces and are covered in Section 22.14. Code generation issues are 
discussed in Section 22.15, while Section 22.16 addresses the use of Slice check-
sums.

22.2 Introduction

The client-side Slice-to-Python mapping defines how Slice data types are trans-
lated to Python types, and how clients invoke operations, pass parameters, and 
handle errors. Much of the Python mapping is intuitive. For example, Slice 
sequences map to Python lists, so there is essentially nothing new you have learn 
in order to use Slice sequences in Python.
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The Python API to the Ice run time is fully thread-safe. Obviously, you must 
still synchronize access to data from different threads. For example, if you have 
two threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 22.11 to 
Section 22.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Python mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the Python mapping rules. In particular, looking through the generated code in 
order to discern how to use the Python mapping is likely to be inefficient, due to 
the amount of detail. Of course, occasionally, you may want to refer to the gener-
ated code to confirm a detail of the mapping, but we recommend that you other-
wise use the material presented here to see how to write your client-side code.

22.3 Mapping for Identifiers

Slice identifiers map to an identical Python identifier. For example, the Slice iden-
tifier Clock becomes the Python identifier Clock. There is one exception to this 
rule: if a Slice identifier is the same as a Python keyword, the corresponding 
Python identifier is prefixed with an underscore. For example, the Slice identifier 
while is mapped as _while.1

The mapping does not modify a Slice identifier that matches the name of a 
Python built-in function because it can always be accessed by its fully-qualified 
name. For example, the built-in function hash can also be accessed as 
__builtin__.hash.

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such identifiers as much as 
possible.
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22.4 Mapping for Modules

Slice modules map to Python modules with the same name as the Slice module. 
The mapping preserves the nesting of the Slice definitions. See Section 22.15.2 
for information about the mapping’s use of Python packages.

22.5 The Ice Module

All of the APIs for the Ice run time are nested in the Ice module, to avoid clashes 
with definitions for other libraries or applications. Some of the contents of the 
Ice module are generated from Slice definitions; other parts of the Ice module 
provide special-purpose definitions that do not have a corresponding Slice defini-
tion. We will incrementally cover the contents of the Ice module throughout the 
remainder of the book.

22.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to Python types as shown in Table 22.1.

Table 22.1. Mapping of Slice built-in types to Python.

Slice Python

bool bool

byte int

short int

int int

long long

float double

double double
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Although Python supports arbitrary precision in its integer types, the Ice run time 
validates integer values to ensure they have valid ranges for their declared Slice 
types.

22.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

22.7.1 Mapping for Enumerations
Python does not have an enumerated type, so the Slice enumerations are emulated 
using a Python class: the name of the Slice enumeration becomes the name of the 
Python class; for each enumerator, the class contains an attribute with the same 
name as the enumerator. For example:

enum Fruit { Apple, Pear, Orange };

The generated Python class looks as follows:

class Fruit(object): 
    def __init__(self, val): 
        assert(val >= 0 and val < 3) 
        self.value = val 
 
    # ... 
 
Fruit.Apple = Fruit(0) 
Fruit.Pear = Fruit(1) 
Fruit.Orange = Fruit(2)

string string

Table 22.1. Mapping of Slice built-in types to Python.

Slice Python
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Each instance of the class has a value attribute providing the integer value of the 
enumerator. Note that the generated class also defines a number of Python special 
methods, such as __str__ and __cmp__, which we have not shown.

Given the above definitions, we can use enumerated values as follows:

f1 = Fruit.Apple 
f2 = Fruit.Orange 
 
if f1 == Fruit.Apple:                # Compare with constant 
    # ... 
 
if f1 == f2:                         # Compare two enums 
    # ... 
 
if f2.value == Fruit.Apple.value:    # Use integer values 
    # ... 
elif f2.value == Fruit.Pear.value: 
    # ... 
elif f2.value == Fruit.Orange.value: 
    # ...

As you can see, the generated class enables natural use of enumerated values. The 
Fruit class attributes are preinitialized enumerators that you can use for initial-
ization and comparison. You may also instantiate an enumerator explicitly by 
passing its integer value to the constructor, but you must make sure that the passed 
value is within the range of the enumeration; failure to do so will result in an 
assertion failure:

favoriteFruit = Fruit(4) # Assertion failure!

22.7.2 Mapping for Structures
Slice structures map to Python classes with the same name. For each Slice data 
member, the Python class contains a corresponding attribute. For example, here is 
our Employee structure from Section 4.9.4 once more:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};

The Python mapping generates the following definition for this structure:
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class Employee(object): 
    def __init__(self, number=0, firstName='', lastName=''): 
        self.number = number 
        self.firstName = firstName 
        self.lastName = lastName

The constructor initializes each of the attributes to a default value appropriate for 
its type.

22.7.3 Mapping for Sequences
Slice sequences map to Python lists. This means that the Python mapping does not 
generate a separate named type for a Slice sequence. It also means that you can 
take advantage of all the list functionality provided by Python. For example:

sequence<Fruit> FruitPlatter;

We can use the FruitPlatter sequence as shown below:

platter = [ Fruit.Apple, Fruit.Pear ] 
assert(len(platter) == 2) 
platter.append(Fruit.Orange)

The Python mapping also allows a sender to use a tuple instead of a list, but the 
receiver always receives a list.

The Ice run time validates the elements of a sequence to ensure that they are 
compatible with the declared type; a ValueError exception is raised if an 
incompatible type is encountered.

22.7.4 Mapping for Dictionaries
Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

As for sequences, the Python mapping does not create a separate named type for 
this definition. Instead, all dictionaries are simply instances of Python’s dictionary 
type. For example:

em = {} 
 
e = Employee() 
e.number = 31 
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e.firstName = "James" 
e.lastName = "Gosling" 
 
em[e.number] = e

The Ice run time validates the elements of a dictionary to ensure that they are 
compatible with the declared type; a ValueError exception is raised if an 
incompatible type is encountered.

22.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

The generated definitions for these constants are shown below:

AppendByDefault = True 
LowerNibble = 15 
Advice = "Don't Panic!" 
TheAnswer = 42 
PI = 3.1416 
FavoriteFruit = Fruit.Pear

As you can see, each Slice constant is mapped to a Python attribute with the same 
name as the constant.
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22.9 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 22.1

Figure 22.1. Inheritance structure for Ice exceptions.

The ancestor of all exceptions is exceptions.Exception, from which 
Ice.Exception is derived. Ice.LocalException and Ice.UserEx-
ception are derived from Ice.Exception and form the base for all run-time 
and user exceptions.

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 109 once more:

exception GenericError { 
    string reason; 
}; 
exception BadTimeVal extends GenericError {}; 
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError(Ice.UserException): 
    def __init__(self, reason=''): 
        self.reason = reason 
 
    def ice_name(self): 
        # ... 

Ice.LocalException Ice.UserException

Ice.Exception

Specific Run-Time Exceptions... Specific User Exceptions...

exceptions.Exception
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    def __str__(self): 
        # ... 
 
class BadTimeVal(GenericError): 
    def __init__(self, reason=''): 
        GenericError.__init__(self, reason) 
 
    def ice_name(self): 
        # ... 
 
    def __str__(self): 
        # ... 
 
class BadZoneName(GenericError): 
    def __init__(self, reason=''): 
        GenericError.__init__(self, reason) 
 
    def ice_name(self): 
        # ... 
 
    def __str__(self): 
        # ...

Each Slice exception is mapped to a Python class with the same name. The inher-
itance structure of the Slice exceptions is preserved for the generated classes, so 
BadTimeVal and BadZoneName inherit from GenericError.

Each exception member corresponds to an attribute of the instance, which the 
constructor initializes to a default value appropriate for its type. Although BadTi-
meVal and BadZoneName do not declare data members, their constructors still 
accept a value for the inherited data member reason in order to pass it to the 
constructor of the base exception GenericError.

Each exception also defines the ice_name method to return the name of the 
exception, and the special method __str__ to return a stringified representation 
of the exception and its members.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice.LocalException, and you can catch all Ice excep-
tions with a handler for Ice.Exception.
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22.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice.LocalException (which, in turn, derives from Ice.Exception).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 106. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice.LocalException

This is the root of the inheritance tree for run-time exceptions.

• Ice.UserException

This is the root of the inheritance tree for user exceptions.

• Ice.TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice.ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining exceptions by category; 
the fine-grained error handling offered by the remainder of the hierarchy is of 
interest mainly in the implementation of the Ice run time. However, there is one 
exception you will probably be interested in specifically: Ice.ObjectNotEx-
istException. This exception is raised if a client invokes an operation on an 
Ice object that no longer exists. In other words, the client holds a dangling refer-
ence to an object that probably existed some time in the past but has since been 
permanently destroyed.

22.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a method on a local class instance that represents the remote 
object. This makes the mapping easy and intuitive to use because, for all intents 
and purposes (apart from error semantics), making a remote procedure call is no 
different from making a local procedure call.
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22.11.1 Proxy Classes
On the client side, Slice interfaces map to Python classes with methods that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

interface Simple { 
    void op(); 
};

The Python mapping generates the following definition for use by the client:

class SimplePrx(Ice.ObjectPrx): 
    def op(self, _ctx=None): 
        # ... 
 
    # ...

In the client’s address space, an instance of SimplePrx is the local ambassador 
for a remote instance of the Simple interface in a server and is known as a proxy 
instance. All the details about the server-side object, such as its address, what 
protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a method of the same 
name. In the preceding example, we find that the operation op has been mapped to 
the method op. Note that op accepts an optional trailing parameter _ctx repre-
senting the operation context. This parameter is a Python dictionary for use by the 
Ice run time to store information about how to deliver a request. You normally do 
not need to use it. (We examine the context parameter in detail in Chapter 30. The 
parameter is also used by IceStorm—see Chapter 42.)

Proxy instances are always created on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly.

22.11.2 The Ice.ObjectPrx Class
All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

class ObjectPrx(object): 
    def equals(self, other): 
    def ice_getIdentity(self): 
    def ice_getHash(self): 
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    def ice_isA(self, id): 
    def ice_id(self): 
    def ice_ping(self): 
    # ...

The methods behave as follows:

• equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

proxy1 = ... 
proxy2 = ... 
id1 = proxy1.ice_getIdentity() 
id2 = proxy2.ice_getIdentity() 
 
if id1 == id2: 
    # proxy1 and proxy2 denote the same object 
else: 
    # proxy1 and proxy2 denote different objects

• ice_getHash

This method returns an integer hash key for the proxy.

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
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For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

proxy = ... 
if proxy != None and proxy.ice_isA("::Printer"): 
    # proxy denotes a Printer object 
else: 
    # proxy denotes some other type of object

Note that we are testing whether the proxy is None before attempting to 
invoke the ice_isA method. This avoids getting a run-time error if the proxy 
is None.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be "::Base", or it might be something more derived, such as 
"::Derived".

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExis-
tException or ConnectTimeoutException.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call. (We discuss these methods in 
Chapter 30.)

22.11.3 Casting Proxies
The Python mapping for a proxy also generates two static methods:

class SimplePrx(Ice.ObjectPrx): 
    # ... 
 
    def checkedCast(proxy, facet=''): 
        # ... 
    checkedCast = staticmethod(checkedCast) 
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    def uncheckedCast(proxy, facet=''): 
        # ... 
    uncheckedCast = staticmethod(uncheckedCast)

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a reference to a proxy of 
type SimplePrx; otherwise, if the passed proxy denotes an object of a different 
type (or if the passed proxy is None), the cast returns None.

The method names checkedCast and uncheckedCast are reserved for 
use in proxies. If a Slice interface defines an operation with either of those names, 
the mapping escapes the name in the generated proxy by prepending an under-
score. For example, an interface that defines an operation named checkedCast is 
mapped to a proxy with a method named _checkedCast.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

obj = ...       # Get a proxy from somewhere... 
 
simple = SimplePrx.checkedCast(obj) 
if simple != None: 
    # Object supports the Simple interface... 
else: 
    # Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of a proxy in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException.

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:
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interface Process { 
    void launch(int stackSize, int dataSize); 
}; 
 
// ... 
 
interface Rocket { 
    void launch(float xCoord, float yCoord); 
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

obj = ...                               # Get proxy... 
process = ProcessPrx.uncheckedCast(obj) # No worries... 
process.launch(40, 60)                  # Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

22.12 Mapping for Operations

As we saw in Section 22.11, for each operation on an interface, the proxy class 
contains a corresponding method with the same name. To invoke an operation, 
you call it via the proxy. For example, here is part of the definitions for our file 
system from Section 5.4:

module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};
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The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

node = ...          # Initialize proxy 
name = node.name()  # Get name via RPC

22.12.1 Normal, idempotent, and nonmutating Operations
You can add an idempotent or nonmutating qualifier to a Slice operation. As far 
as the signature for the corresponding proxy methods is concerned, neither idem-
potent nor nonmutating have any effect. For example, consider the following 
interface:

interface Example { 
                string op1(); 
    idempotent  string op2(); 
    nonmutating string op3(); 
};

The proxy class for this is:

class ExamplePrx(Ice.ObjectPrx): 
    def op1(self, _ctx=None): 
        # ... 
 
    def op2(self, _ctx=None): 
        # ... 
 
    def op3(self, _ctx=None): 
        # ...

idempotent and nonmutating affect an aspect of call dispatch, not interface, so it 
makes sense for the three methods to look the same.

22.12.2 Passing Parameters

In Parameters

All parameters are passed by reference in the Python mapping; it is guaranteed 
that the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from 
client to server:
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struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
    void op1(int i, float f, bool b, string s); 
    void op2(NumberAndString ns, StringSeq ss, StringTable st); 
    void op3(ClientToServer* proxy); 
};

The Slice compiler generates the following proxy for this definition:

class ClientToServerPrx(Ice.ObjectPrx): 
    def op1(self, i, f, b, s, _ctx=None): 
        # ... 
 
    def op2(self, ns, ss, st, _ctx=None): 
        # ... 
 
    def op3(self, proxy, _ctx=None): 
        # ...

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

p = ...                                 # Get proxy... 
 
p.op1(42, 3.14f, true, "Hello world!")  # Pass simple literals 
 
i = 42 
f = 3.14f 
b = True 
s = "Hello world!" 
p.op1(i, f, b, s)                       # Pass simple variables 
 
ns = NumberAndString() 
ns.x = 42 
ns.str = "The Answer" 
ss = [ "Hello world!" ] 
st = {} 
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st[0] = ns 
p.op2(ns, ss, st)                       # Pass complex variables 
 
p.op3(p)                                # Pass proxy

Out Parameters

As in Java, Python functions do not support reference arguments. That is, it is not 
possible to pass an uninitialized variable to a Python function in order to have its 
value initialized by the function. The Java mapping (see Section 10.12.2) over-
comes this limitation with the use of “holder classes” that represent each out 
parameter. The Python mapping takes a different approach, one that is more 
natural for Python users.

The semantics of out parameters in the Python mapping depend on whether 
the operation returns one value or multiple values. An operation returns multiple 
values when it has declared multiple out parameters, or when it has declared a 
non-void return type and at least one out parameter.

If an operation returns multiple values, the client receives them in the form of 
a result tuple. A non-void return value, if any, is always the first element in the 
result tuple, followed by the out parameters in the order of declaration.

If an operation returns only one value, the client receives the value itself.
Here is the same Slice definition we saw on page 588 once more, but this time 

with all parameters being passed in the out direction:

struct NumberAndString { 
    int x; 
    string str; 
}; 
 
sequence<string> StringSeq; 
 
dictionary<long, StringSeq> StringTable; 
 
interface ClientToServer { 
    int op1(out float f, out bool b, out string s); 
    void op2(out NumberAndString ns, 
             out StringSeq ss, 
             out StringTable st); 
    void op3(out ClientToServer* proxy); 
};

The Python mapping generates the following code for this definition:
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class ClientToServerPrx(Ice.ObjectPrx): 
    def op1(self, _ctx=None): 
        # ... 
 
    def op2(self, _ctx=None): 
        # ... 
 
    def op3(self, _ctx=None): 
        # ...

Given a proxy to a ServerToClient interface, the client code can receive the 
results as in the following example:

p = ...              # Get proxy... 
i, f, b, s = p.op1() 
ns, ss, st = p.op2() 
stcp = p.op3()

The operations have no in parameters, therefore no arguments are passed to the 
proxy methods. Since op1 and op2 return multiple values, their result tuples are 
unpacked into separate values, whereas the return value of op3 requires no 
unpacking.

Parameter Type Mismatches

Although the Python compiler cannot check the types of arguments passed to a 
function, the Ice run time does perform validation on the arguments to a proxy 
invocation and reports any type mismatches as a ValueError exception.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
proxies, sequences, dictionaries, and strings all can be null:

• For proxies, a value of None denotes the null proxy. The null proxy is a dedi-
cated value that indicates that a proxy points “nowhere” (denotes no object).

• Sequences and dictionaries cannot be null, but can be empty. To make life 
with these types easier, whenever you pass None as a parameter or return 
value of type sequence or dictionary, the Ice run time automatically sends an 
empty sequence or dictionary to the receiver.

• Slice strings cannot be null, but can be empty. Whenever you pass None as a 
parameter or return value, the Ice run time automatically sends an empty 
string to the receiver.
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This behavior is useful as a convenience feature: especially for deeply-nested data 
types, members that are sequences, dictionaries, or strings automatically arrive as 
an empty value at the receiving end. This saves you having to explicitly initialize, 
for example, every string element in a large sequence before sending it in order to 
avoid a run-time error. Note that using null parameters in this way does not create 
null semantics for sequences, dictionaries, or strings. As far as the object model is 
concerned, these do not exist (only empty sequences, dictionaries, and strings do). 
For example, it makes no difference to the receiver whether you send a string as 
None or as an empty string: either way, the receiver sees an empty string.

22.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 22.10) 
and, if the operation has an exception specification, may also throw user excep-
tions (see Section 22.9). Suppose we have the following simple interface:

exception Tantrum { 
    string reason; 
}; 
 
interface Child { 
    void askToCleanUp() throws Tantrum; 
};

Slice exceptions are thrown as Python exceptions, so you can simply enclose one 
or more operation invocations in a try–except block:

child = ...        # Get child proxy... 
 
try: 
    child.askToCleanUp() 
except Tantrum, t: 
    print "The child says:", t.reason

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will 
usually be handled by exception handlers higher in the hierarchy. For example:

import traceback, Ice 
 
def run(): 
    child = ...        # Get child proxy... 
    try: 
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        child.askToCleanUp() 
    except Tantrum, t: 
        print "The child says:", t.reason 
        child.scold()  # Recover from error... 
    child.praise()     # Give positive feedback... 
 
try: 
    # ... 
    run() 
    # ... 
except Ice.Exception: 
    traceback.print_exc()

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

22.14 Mapping for Classes

Slice classes are mapped to Python classes with the same name. The generated 
class contains an attribute for each Slice data member (just as for structures and 
exceptions). Consider the following class definition:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 -59 
    string format();    // Return time as hh:mm:ss 
};

The Python mapping generates the following code for this definition:

class TimeOfDay(Ice.Object): 
    def __init__(self, hour=0, minute=0, second=0): 
        # ... 
        self.hour = hour 
        self.minute = minute 
        self.second = second 
 
    # ... 
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    # 
    # Operation signatures. 
    # 
    # def format(self, current=None):

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice.Object. This means 
that all classes implicitly inherit from Ice.Object, which is the ultimate 
ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

2. The constructor defines an attribute for each Slice data member.

3. A comment summarizes the method signatures for each Slice operation.

There is quite a bit to discuss here, so we will look at each item in turn.

22.14.1 Inheritance from Ice.Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 22.2, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inherit-
ance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 22.2. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

class Object(object): 
    def ice_isA(self, id, current=None): 
        # ... 
 
    def ice_ping(self, current=None): 

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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        # ... 
 
    def ice_ids(self, current=None): 
        # ... 
 
    def ice_id(self, current=None): 
        # ... 
 
    def ice_preMarshal(self): 
        # ... 
 
    def ice_postUnmarshal(self): 
        # ...

The member functions of Ice.Object behave as follows:

• ice_isA

This method returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This method returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This method returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this method prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this method after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.
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22.14.2 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for 
each data member in the Slice definition, the generated class contains a corre-
sponding attribute.

22.14.3 Operations of Classes
Operations on classes are mapped to methods in the generated class. This means 
that, if a class contains operations (such as the format operation of our TimeOfDay 
class), you must provide an implementation of the operation in a class that is 
derived from the generated class. For example:

class TimeOfDayI(TimeOfDay): 
    def __init__(self, hour=0, minute=0, second=0): 
        TimeOfDay.__init__(self, hour, minute, second) 
 
    def format(self, current=None): 
        return "%02d:%02d:%02d" %\ 
            (self.hour, self.minute, self.second)

A Slice class such as TimeOfDay that declares or inherits an operation is inherently 
abstract. Python does not support the notion of abstract classes or abstract 
methods, therefore the mapping merely summarizes the required method signa-
tures in a comment for your convenience. Furthermore, the mapping generates 
code in the constructor of an abstract class to prevent it from being instantiated 
directly; any attempt to do so raises a RuntimeError exception.

You may notice that the mapping for an operation adds an optional trailing 
parameter named current. For now, you can ignore this parameter and pretend 
it does not exist. (We look at it in more detail in Section 30.6.)

22.14.4 Class Factories
Having created a class such as this, we have an implementation and we can instan-
tiate the TimeOfDayI class, but we cannot receive it as the return value or as an 
out-parameter from an operation invocation. To see why, consider the following 
simple interface:

interface Time { 
    TimeOfDay get(); 
};
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When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice { 
    local interface ObjectFactory { 
        Object create(string type); 
        void destroy(); 
    }; 
 
    local interface Communicator { 
        void addObjectFactory(ObjectFactory factory, string id); 
        ObjectFactory findObjectFactory(string id); 
        // ... 
    }; 
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory(Ice.ObjectFactory): 
    def create(self, type): 
        if type == "::M::TimeOfDay": 
            return TimeOfDayI() 
        assert(False) 
        return None 
 
    def destroy(self): 
        # Nothing to do 
        pass

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it is "::M::TimeOfDay", it 
instantiates and returns a TimeOfDayI object. For other type IDs, it asserts 
because it does not know how to instantiate other types of objects.
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Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

ic = ...   # Get Communicator... 
ic.addObjectFactory(ObjectFactory(), "::M::TimeOfDay")

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

22.15 Code Generation

The Python mapping supports two forms of code generation: dynamic and static.

22.15.1 Dynamic Code Generation
Using dynamic code generation, Slice files are “loaded” at run time and dynami-
cally translated into Python code, which is immediately compiled and available 
for use by the application. This is accomplished using the Ice.loadSlice 
function, as shown in the following example:
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Ice.loadSlice("Color.ice") 
import M 
 
print "My favorite color is", M.Color.blue

For this example, we assume that Color.ice contains the following definitions:

module M { 
    enum Color { red, green, blue }; 
};

The code imports module M after the Slice file is loaded because module M is not 
defined until the Slice definitions have been translated into Python.

Ice.loadSlice Options

The Ice.loadSlice function behaves like a Slice compiler in that it accepts 
command-line arguments for specifying preprocessor options and controlling 
code generation. The arguments must include at least one Slice file.

The function has the following Python definition:

def Ice.loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, cmd, 
which must be a string. The optional second argument can be used to pass addi-
tional command-line arguments as a list; this is useful when the caller already has 
the arguments in list form. The function always returns None.

For example, the following calls to Ice.loadSlice are functionally equiv-
alent:

Ice.loadSlice("-I/opt/IcePy/slice Color.ice") 
Ice.loadSlice("-I/opt/IcePy/slice", ["Color.ice"]) 
Ice.loadSlice("", ["-I/opt/IcePy/slice", "Color.ice"])

In addition to the standard compiler options described in Section 4.19, 
Ice.loadSlice also supports the following command-line options:

• --all

Generate code for all Slice definitions, including those from included files.

• --checksum

Generate checksums for Slice definitions. See Section 22.16 for more infor-
mation.
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Loading Multiple Files

You can specify as many Slice files as necessary in a single invocation of 
Ice.loadSlice, as shown below:

Ice.loadSlice("Syscall.ice Process.ice")

Alternatively, you can call Ice.loadSlice several times:

Ice.loadSlice("Syscall.ice") 
Ice.loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of Ice.loadSlice 
generates Python code only for the named file. For example, suppose 
Syscall.ice includes Process.ice as follows:

// Syscall.ice 
#include <Process.ice> 
...

If you call Ice.loadSlice("-I. Syscall.ice"), Python code is not 
generated for the Slice definitions in Process.ice or for any definitions that 
may be included by Process.ice. If you also need code to be generated for 
included files, one solution is to load them individually in subsequent calls to 
Ice.loadSlice. However, it is much simpler, not to mention more efficient, 
to use the --all option instead:

Ice.loadSlice("--all -I. Syscall.ice")

When you specify --all, Ice.loadSlice generates Python code for all Slice 
definitions included directly or indirectly from the named Slice files.

There is no harm in loading a Slice file multiple times, aside from the addi-
tional overhead associated with code generation. For example, this situation could 
arise when you need to load multiple top-level Slice files that happen to include a 
common subset of nested files. Suppose that we need to load both 
Syscall.ice and Kernel.ice, both of which include Process.ice. The 
simplest way to load both files is with a single call to Ice.loadSlice:

Ice.loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for 
Process.ice, the generated code is structured so that the interpreter ignores 
duplicate definitions. We could have avoided generating unnecessary code with 
the following sequence of steps:

Ice.loadSlice("--all -I. Syscall.ice") 
Ice.loadSlice("-I. Kernel.ice")
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In more complex cases, however, it can be difficult or impossible to completely 
avoid this situation, and the overhead of code generation is usually not significant 
enough to justify such an effort.

22.15.2 Static Code Generation
You should be familiar with static code generation if you have used other Slice 
language mappings, such as C++ or Java. Using static code generation, the Slice 
compiler slice2py (see Section 22.15.4) generates Python code from your 
Slice definitions.

Compiler Output

For each Slice file X.ice, slice2py generates Python code into a file named 
X_ice.py2 in the output directory. The default output directory is the current 
working directory, but a different directory can be specified using the --
output-dir option.

In addition to the generated file, slice2py creates a Python package for 
each Slice module it encounters. A Python package is nothing more than a subdi-
rectory that contains a file with a special name (__init__.py). This file is 
executed automatically by Python when a program first imports the package. It is 
created by slice2py and must not be edited manually. Inside the file is Python 
code to import the generated files that contain definitions in the Slice module of 
interest.

For example, the Slice files Process.ice and Syscall.ice both define 
types in the Slice module OS. First we present Process.ice:

module OS { 
    interface Process { 
        void kill(); 
    }; 
};

And here is Syscall.ice:

2. Using the filename X.py would create problems if X.ice defined a module named X, therefore 
the suffix _ice is appended to the name of the generated file.
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#include <Process.ice> 
module OS { 
    interface Syscall { 
        Process getProcess(int pid); 
    }; 
};

Next, we translate these files using the Slice compiler:

> slice2py -I. Process.ice Syscall.ice

If we list the contents of the output directory, we see the following entries:

OS/ 
Process_ice.py 
Syscall_ice.py

The subdirectory OS is the Python package that slice2py created for the Slice 
module OS. Inside this directory is the special file __init__.py that contains 
the following statements:

import Process_ice 
import Syscall_ice

Now when a Python program executes import OS, the two files 
Process_ice.py and Syscall_ice.py are implicitly imported.

Subsequent invocations of slice2py for Slice files that also contain defini-
tions in the OS module result in additional import statements being added to 
OS/__init__.py. Be aware, however, that import statements may persist in 
__init__.py files after a Slice file is renamed or becomes obsolete. This situa-
tion may manifest itself as a run-time error if the interpreter can no longer locate 
the generated file while attempting to import the package. It may also cause more 
subtle problems, if an obsolete generated file is still present and being loaded 
unintentionally. In general, it is advisable to remove the package directory and 
regenerate it whenever the set of Slice files changes.

A Python program may also import a generated file explicitly, using a state-
ment such as import Process_ice. Typically, however, it is more conve-
nient to import the Python module once, rather than importing potentially several 
individual files that comprise the module, especially when you consider that the 
program must still import the module explicitly in order to make its definitions 
available. For example, it is much simpler to state

import OS

rather than the following alternative:
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import Process_ice 
import Syscall_ice 
import OS

In situations where a Python package is unnecessary or undesirable, the --no-
package option can be specified to prevent the creation of a package. In this 
case, the application must import the generated file(s) explicitly, as shown above.

Include Files

It is important to understand how slice2py handles include files. In the absence 
of the --all option, the compiler does not generate Python code for Slice defini-
tions in included files. Rather, the compiler translates Slice #include state-
ments into Python import statements in the following manner:

1. Determine the full pathname of the include file.

2. Create the shortest possible relative pathname for the include file by iterating 
over each of the include directories (specified using the -I option) and 
removing the leading directory from the include file if possible.

For example, if the full pathname of an include file is 
/opt/App/slice/OS/Process.ice, and we specified the options -
I/opt/App and -I/opt/App/slice, then the shortest relative pathname 
is OS/Process.ice after removing /opt/App/slice.

3. Replace any slashes with underscores, remove the .ice extension, and 
append _ice. Continuing our example from the previous step, the translated 
import statement becomes

import OS_Process_ice

There is a potential problem here that must be addressed. The generated import 
statement shown above expects to find the file OS_Process_ice.py some-
where in Python’s search path. However, slice2py uses a different default 
name, Process_ice.py, when it compiles Process.ice. To resolve this 
issue, we must use the --prefix option when compiling Process.ice:

> slice2py --prefix OS_ Process.ice

The --prefix option causes the compiler to prepend the specified prefix to the 
name of each generated file. When executed, the above command creates the 
desired filename: OS_Process_ice.py.

It should be apparent by now that generating Python code for a complex Ice 
application requires a bit of planning. In particular, it is imperative that you be 
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consistent in your use of #include statements, include directories, and --
prefix options to ensure that the correct filenames are used at all times.

Of course, these precautionary steps are only necessary when you are 
compiling Slice files individually. An alternative is to use the --all option and 
generate Python code for all of your Slice definitions into one Python source file. 
If you do not have a suitable Slice file that includes all necessary Slice definitions, 
you could write a “master” Slice file specifically for this purpose.

22.15.3 Static Versus Dynamic Code Generation
There are several issues to consider when evaluating your requirements for code 
generation.

Application Considerations

The requirements of your application generally dictate whether you should use 
dynamic or static code generation. Dynamic code generation is convenient for a 
number of reasons:

• it avoids the intermediate compilation step required by static code generation

• it makes the application more compact because the application requires only 
the Slice files, not the assortment of files and directories produced by static 
code generation

• it reduces complexity, which is especially helpful during testing, or when 
writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

• when an application uses a large number of Slice definitions and the startup 
delay must be minimized

• when it is not feasible to deploy Slice files with the application

• when a number of applications share the same Slice files

• when Python code is required in order to utilize third-party Python tools.

Mixing Static and Dynamic Generation

Using a combination of static and dynamic translation in an application can 
produce unexpected results. For example, consider a situation where a dynami-
cally-translated Slice file includes another Slice file that was statically translated:



22.15 Code Generation 605

// Slice 
#include <Glacier2/Session.ice> 
 
module App { 
    interface SessionFactory { 
        Glacier2::Session* createSession(); 
    }; 
};

The Slice file Session.ice is statically translated, as are all of the Slice files 
included with the Ice run time.

Assuming the above definitions are saved in App.ice, let’s execute a simple 
Python script:

# Python 
import Ice 
Ice.loadSlice("-I/opt/Ice/slice App.ice") 
 
import Glacier2 
class MyVerifier(Glacier2.PermissionsVerifier): # Error 
    def checkPermissions(self, userId, password): 
        return (True, "")

The code looks reasonable, but running it produces the following error:

'module' object has no attribute 'PermissionsVerifier'

Normally, importing the Glacier2 module as we have done here would load all of 
the Python code generated for the Glacier2 Slice files. However, since App.ice 
has already included a subset of the Glacier2 definitions, the Python interpreter 
ignores any subsequent requests to import the entire module, and therefore the 
PermissionsVerifier type is not present.

One way to address this problem is to import the statically-translated modules 
first, prior to loading Slice files dynamically:

# Python 
import Ice, Glacier2 # Import Glacier2 before App.ice is loaded 
Ice.loadSlice("-I/opt/Ice/slice App.ice") 
 
class MyVerifier(Glacier2.PermissionsVerifier): # OK 
    def checkPermissions(self, userId, password): 
        return (True, "")

The disadvantage of this approach in a non-trivial application is that it breaks 
encapsulation, forcing one Python module to know what other modules are doing. 
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For example, suppose we place our PermissionsVerifier implementation 
in a module named verifier.py:

# Python 
import Glacier2 
class MyVerifier(Glacier2.PermissionsVerifier): 
    def checkPermissions(self, userId, password): 
        return (True, "")

Now that the use of Glacier2 definitions is encapsulated in verifier.py, we 
would like to remove references to Glacier2 from the main script:

# Python 
import Ice 
Ice.loadSlice("-I/opt/Ice/slice App.ice") 
... 
import verifier # Error 
v = verifier.MyVerifier()

Unfortunately, executing this script produces the same error as before. To fix it, 
we have to break the verifier module’s encapsulation and import the 
Glacier2 module in the main script because we know that the verifier 
module requires it:

# Python 
import Ice, Glacier2 
Ice.loadSlice("-I/opt/Ice/slice App.ice") 
... 
import verifier # OK 
v = verifier.MyVerifier()

Although breaking encapsulation in this way might offend our sense of good 
design, it is a relatively minor issue.

Another solution is to import the necessary submodules explicitly. We can 
safely remove the Glacier2 reference from our main script after rewriting veri-
fier.py as shown below:

# Python 
import Glacier2_PermissionsVerifier_ice 
import Glacier2 
class MyVerifier(Glacier2.PermissionsVerifier): 
    def checkPermissions(self, userId, password): 
        return (True, "")

Using the rules defined in Section 22.15.2, we can derive the name of the module 
containing the code generated for PermissionsVerifier.ice and import it 
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directly. We need a second import statement to make the Glacier2 definitions 
accessible in this module.

22.15.4 slice2py Command-Line Options
The Slice-to-Python compiler, slice2py, offers the following command-line 
options in addition to the standard options described in Section 4.19:

• --all

Generate code for all Slice definitions, including those from included files.

• --no-package

Do not generate Python packages for the Slice definitions. See Section 22.15.2 
for more information.

• --checksum

Generate checksums for Slice definitions.

• --prefix PREFIX

Use PREFIX as the prefix for generated filenames. See Section 22.15.2 for 
more information.

22.15.5 Packages
By default, the scope of a Slice definition determines the module of its mapped 
Python construct (see Section 22.4 for more information on the module mapping). 
There are times, however, when applications require greater control over the pack-
aging of generated Python code. For example, consider the following Slice defini-
tions:

module sys { 
    interface Process { 
        // ... 
    }; 
};

Other language mappings can use these Slice definitions as shown, but they 
present a problem for the Python mapping: the top-level Slice module sys 
conflicts with Python’s predefined module sys. A Python application executing 
the statement import sys would import whichever module the interpreter 
happens to locate first in its search path.
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A workaround for this problem is to modify the Slice definitions so that the 
top-level module no longer conflicts with a predefined Python module, but that 
may not be feasible in certain situations. For example, the application may already 
be deployed using other language mappings, in which case the impact of modi-
fying the Slice definitions could represent an unacceptable expense.

The Python mapping could have addressed this issue by considering the 
names of predefined modules to be reserved, in which case the Slice module sys 
would be mapped to the Python module _sys. However, the likelihood of a name 
conflict is relatively low to justify such a solution, therefore the mapping supports 
a different approach: global metadata (see Section 4.17) can be used to enclose 
generated code in a Python package. Our modified Slice definitions demonstrate 
this feature:

[["python:package:zeroc"]] 
module sys { 
    interface Process { 
        // ... 
    }; 
};

The global metadata directive python:package:zeroc causes the mapping 
to generate all of the code resulting from definitions in this Slice file into the 
Python package zeroc. The net effect is the same as if we had enclosed our Slice 
definitions in the module zeroc: the Slice module sys is mapped to the Python 
module zeroc.sys. However, by using metadata we have not affected the 
semantics of the Slice definitions, nor have we affected other language mappings.

22.16 Using Slice Checksums

As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2py, the --checksum option causes the 
compiler to generate code that adds checksums to the dictionary 
Ice.sliceChecksums. The checksums are installed automatically when the 
Python code is first imported; no action is required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the comparison operator. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:
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serverChecksums = ... 
for i in Ice.sliceChecksums: 
    if not serverChecksums.has_key(i): 
        # No match found for type id! 
    elif Ice.sliceChecksums[i] != serverChecksums[i]: 
        # Checksum mismatch!

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 23
Developing a File System Client in 
Python

23.1 Chapter Overview

In this chapter, we present the source code for a Python client that accesses the file 
system we developed in Chapter 5 (see Chapter 25 for the corresponding server).

23.2 The Python Client

We now have seen enough of the client-side Python mapping to develop a 
complete client to access our remote file system. For reference, here is the Slice 
definition once more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
  
    interface File extends Node {  
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        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

import sys, traceback, Ice, Filesystem 
 
# Recursively print the contents of directory "dir" 
# in tree fashion. For files, show the contents of 
# each file. The "depth" parameter is the current 
# nesting level (for indentation). 
 
def listRecursive(dir, depth): 
    indent = '' 
    depth = depth + 1 
    for i in range(depth): 
        indent = indent + '\t' 
 
    contents = dir.list() 
 
    for node in contents: 
        subdir = Filesystem.DirectoryPrx.checkedCast(node) 
        file = Filesystem.FilePrx.uncheckedCast(node) 
        print indent + node.name(), 
        if subdir: 
            print "(directory):" 
            listRecursive(subdir, depth) 
        else: 
            print "(file):" 
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            text = file.read() 
            for line in text: 
                print indent + "\t" + line 
 
status = 0 
ic = None 
try: 
    # Create a communicator 
    # 
    ic = Ice.initialize(sys.argv) 
 
    # Create a proxy for the root directory 
    # 
    obj = ic.stringToProxy("RootDir:default -p 10000") 
 
    # Down-cast the proxy to a Directory proxy 
    # 
    rootDir = Filesystem.DirectoryPrx.checkedCast(obj) 
 
    # Recursively list the contents of the root directory 
    # 
    print "Contents of root directory:" 
    listRecursive(rootDir, 0) 
except: 
    traceback.print_exc() 
    status = 1 
 
if ic: 
    # Clean up 
    # 
    try: 
        ic.destroy() 
    except: 
        traceback.print_exc() 
        status = 1 
 
sys.exit(status)

The program first defines the listRecursive function, which is a helper func-
tion to print the contents of the file system, and the main program follows. Let us 
look at the main program first:

1. The structure of the code follows what we saw in XREF. After initializing the 
run time, the client creates a proxy to the root directory of the file system. For 
this example, we assume that the server runs on the local host and listens using 
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the default protocol (TCP/IP) at port 10000. The object identity of the root 
directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of a two files and a a directory 
as follows:

Figure 23.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 
                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 36 and XREF.

23.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Python code hardly 
differs from the code you would write for an ordinary Python program. This is one 
of the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local Python object. This allows you to put your effort 
where you should, namely, into developing your application logic instead of 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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having to struggle with arcane networking APIs. As we will see in Chapter 25, 
this is true for the server side as well, meaning that you can develop distributed 
applications easily and efficiently.
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Chapter 24
Server-Side Slice-to-Python 
Mapping

24.1 Chapter Overview

In this chapter, we present the server-side Slice-to-Python mapping (see 
Chapter 22 for the client-side mapping). Section 24.3 discusses how to initialize 
and finalize the server-side run time, sections 24.4 to 24.6 show how to implement 
interfaces and operations, and Section 24.7 discusses how to register objects with 
the server-side Ice run time.

24.2 Introduction

The mapping for Slice data types to Python is identical on the client side and 
server side. This means that everything in Chapter 22 also applies to the server 
side. However, for the server side, there are a few additional things you need to 
know, specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.
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24.3 The Server-Side main Program

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.initialize before you can do anything else in your server. 
Ice.initialize returns a reference to an instance of an Ice.Communicator:

import sys, traceback, Ice 
 
status = 0 
ic = None 
try: 
    ic = Ice.initialize(sys.argv) 
    # ... 
except: 
    traceback.print_exc() 
    status = 1 
 
# ...

Ice.initialize accepts the argument list that is passed to the program by the 
operating system. The function scans the argument list for any command-line 
options that are relevant to the Ice run time; any such options are removed from 
the argument list so, when Ice.initialize returns, the only options and 
arguments remaining are those that concern your application. If anything goes 
wrong during initialization, initialize throws an exception.

Before leaving your program, you must call Communicator::destroy. The 
destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation invocations that may still be running to complete. 
In addition, destroy ensures that any outstanding threads are joined with and 
reclaims a number of operating system resources, such as file descriptors and 
memory. Never allow your program to terminate without calling destroy first; 
doing so has undefined behavior.

The general shape of our server-side program is therefore as follows:

import sys, traceback, Ice 
 
status = 0 
ic = None 
try: 
    ic = Ice.initialize(sys.argv) 
    # ... 
except: 



24.3 The Server-Side main Program 619

    traceback.print_exc() 
    status = 1 
 
if ic: 
    try: 
        ic.destroy() 
    except: 
        traceback.print_exc() 
        status = 1 
 
sys.exit(status)

Note that the code places the call to Ice.initialize into a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

24.3.1 The Ice.Application Class
The preceding program structure is so common that Ice offers a class, 
Ice.Application, that encapsulates all the correct initialization and finaliza-
tion activities. The synopsis of the class is as follows (with some detail omitted for 
now):

class Application(object): 
 
    def __init__(self): 
 
    def main(self, args, configFile=None): 
 
    def run(self, args): 
 
    def appName(): 
        # ... 
    appName = staticmethod(appName) 
 
    def communicator(): 
        # ... 
    communicator = staticmethod(communicator)

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in your main program goes into run instead. Using 
Ice.Application, our program looks as follows:
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import sys, Ice 
 
class Server(Ice.Application): 
    def run(self, args): 
        # Server code here... 
        return 0 
 
app = Server() 
status = app.main(sys.argv) 
sys.exit(status)

The Application.main function does the following:

1. It installs an exception handler. If your code fails to handle an exception, 
Application.main prints the exception information before returning 
with a non-zero return value.

2. It initializes (by calling Ice.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator accessor.

3. It scans the argument list for options that are relevant to the Ice run time and 
removes any such options. The argument list that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName member 
function. The return value from this call is the first element of the argument 
vector passed to Application.main, so you can get at this name from 
anywhere in your code by calling Ice.Application.appName (which is 
usually required for error messages).

5. It installs a signal handler that properly shuts down the communicator.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception 
or signal. We recommend that all your programs use this class; doing so makes 
your life easier. In addition Ice.Application also provides features for 
signal handling and configuration that you do not have to implement yourself 
when you use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
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Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions or signals.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice.Application encapsulates 
Python’s signal handling capabilities, allowing you to cleanly shut down on 
receipt of a signal:

class Application(object): 
    # ... 
    def destroyOnInterrupt(): 
        # ... 
    destroyOnInterrupt = staticmethod(destroyOnInterrupt) 
 
    def shutdownOnInterrupt(): 
        # ... 
    shutdownOnInterrupt = staticmethod(shutdownOnInterrupt) 
 
    def ignoreInterrupt(): 
        # ... 
    ignoreInterrupt = staticmethod(ignoreInterrupt) 
 
    def holdInterrupt(): 
        # ... 
    holdInterrupt = staticmethod(holdInterrupt) 
 
    def releaseInterrupt(): 
        # ... 
    releaseInterrupt = staticmethod(releaseInterrupt) 
 
    def interrupted(): 
        # ... 
    interrupted = staticmethod(interrupted)

These static methods behave as follows:
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• destroyOnInterrupt

This method installs a signal handler that destroys the communicator if it is 
interrupted. This is the default behavior.

• shutdownOnInterrupt

This method installs a signal handler that shuts down the communicator if it is 
interrupted.

• ignoreInterrupt

This method causes signals to be ignored.

• holdInterrupt

This method temporarily blocks signal delivery.

• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns True if a signal caused the communicator to shut down, 
False otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server program requires no change to ensure that the 
program terminates cleanly on receipt of a signal. However, we add a diagnostic to 
report the occurrence of a signal, so our program now looks like:

import sys, Ice 
 
class MyApplication(Ice.Application): 
    def run(self, args): 
 
        # Server code here... 
 
        if self.interrupted(): 
            print self.appName() + ": terminating" 
 
        return 0 
 
app = MyApplication() 
status = app.main(sys.argv) 
sys.exit(status)
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Note that, if your server is interrupted by a signal, the Ice run time waits for all cur-
rently executing operations to finish. This means that an operation that updates per-
sistent state cannot be interrupted in the middle of what it was doing and cause 
partial update problems.

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main method of Ice.Application accepts an optional second parameter 
allowing you to specify the name of a configuration file that will be processed 
during initialization. We discuss Ice properties in more detail in Chapter 28.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

24.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.

24.4.1 Skeleton Classes
On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is an abstract base class 
from which you derive your servant class and define a method for each operation 
on the corresponding interface. For example, consider the Slice definition for the 
Node interface we defined in Chapter 5 once more:
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module Filesystem { 
    interface Node { 
        nonmutating string name(); 
    }; 
    // ... 
};

The Python mapping generates the following definition for this interface:

class Node(Ice.Object): 
    def __init__(self): 
        # ... 
 
    # 
    # Operation signatures. 
    # 
    # def name(self, current=None):

The important points to note here are:

• As for the client side, Slice modules are mapped to Python modules with the 
same name, so the skeleton class definitions are part of the Filesystem 
module.

• The name of the skeleton class is the same as the name of the Slice interface 
(Node).

• The skeleton class contains a comment summarizing the method signature of 
each operation in the Slice interface.

• The skeleton class is an abstract base class because its constructor prevents 
direct instantiation of the class.

• The skeleton class inherits from Ice.Object (which forms the root of the 
Ice object hierarchy).

24.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

import Filesystem 
 
class NodeI(Filesystem.Node): 
    def __init__(self, name): 
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        self._name = name 
 
    def name(self, current=None): 
        return self._name

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can choose any name you prefer 
for your servant classes.) Note that NodeI extends Filesystem.Node, that is, 
it derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the name method that is defined in the Node interface. This makes the 
servant class a concrete class that can be instantiated. You can add other member 
functions and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
constructor. (Obviously, the constructor initializes the _name member and the 
name function returns its value.)

Normal, idempotent, and nonmutating Operations

Whether an operation is an ordinary operation, or an idempotent or nonmutating 
operation has no influence on the way the operation is mapped. To illustrate this, 
consider the following interface:

interface Example { 
                void normalOp(); 
    idempotent  void idempotentOp(); 
    nonmutating void nonmutatingOp(); 
};

The mapping for this interface is shown below:

class Example(Ice.Object): 
    # ... 
 
    # 
    # Operation signatures. 
    # 
    # def normalOp(self, current=None): 
    # def idempotentOp(self, current=None): 
    # def nonmutatingOp(self, current=None):

Note that the signatures of the methods are unaffected by the idempotent and 
nonmutating qualifiers. (In C++, the nonmutating qualifier generates a C++ 
const member function.)
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24.5 Parameter Passing

For each in parameter of a Slice operation, the Python mapping generates a corre-
sponding parameter for the corresponding method. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name method in a 
Python servant has a current parameter. We explain the purpose of this param-
eter in Section 30.6 and will ignore it for now.

An operation returning multiple values1 returns them in a tuple consisting of a 
non-void return value, if any, followed by the out parameters in the order of 
declaration. An operation returning only one value simply returns the value itself.

To illustrate these rules, consider the following interface that passes string 
parameters in all possible directions:

interface Example { 
    string op1(string sin); 
    void op2(string sin, out string sout); 
    string op3(string sin, out string sout); 
};

The generated skeleton class for this interface looks as follows:

class Example(Ice.Object): 
    def __init__(self): 
        # ... 
 
    # 
    # Operation signatures. 
    # 
    # def op1(self, sin, current=None): 
    # def op2(self, sin, current=None): 
    # def op3(self, sin, current=None):

The signatures of the Python methods are identical because they all accept a single 
in parameter, but their implementations differ in the way they return values. For 
example, we could implement the operations as follows:

1. An operation returns multiple values when it declares multiple out parameters, or when it 
declares a non-void return type and at least one out parameter.
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class ExampleI(Example): 
    def op1(self, sin, current=None): 
        print sin             # In params are initialized 
        return "Done"         # Return value 
 
    def op2(self, sin, current=None): 
        print sin             # In params are initialized 
        return "Hello World!" # Out parameter 
 
    def op3(self, sin, current=None): 
        print sin             # In params are initialized 
        return ("Done", "Hello World!")

Notice that op1 and op2 return their string values directly, whereas op3 returns a 
tuple consisting of the return value followed by the out parameter.

This code is in no way different from what you would normally write if you 
were to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal Python rules and do not require special-purpose API 
calls.

24.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

class FileI(Filesystem.File): 
    # ... 
 
    def write(self, text, current=None): 
        # Try to write the file contents here... 
        # Assume we are out of space... 
        if error: 
            e = Filesystem.GenericError() 
            e.reason = "file too large" 
            raise e

The mapping for exceptions (see Section 22.9) generates a constructor that 
accepts values for data members, so we can simplify this example by changing our 
raise statement to the following:



628 Server-Side Slice-to-Python Mapping

class FileI(Filesystem.File): 
    # ... 
 
    def write(self, text, current=None): 
        # Try to write the file contents here... 
        # Assume we are out of space... 
        if error: 
            raise Filesystem.GenericError("file too large")

If you throw an arbitrary Python run-time exception, the Ice run time catches the 
exception and then returns an UnknownException to the client. Similarly, if you 
throw an “impossible” user exception (a user exception that is not listed in the 
exception specification of the operation), the client receives an UnknownUserEx-
ception.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.2 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

24.7 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 24.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

2. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 32.
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24.7.1 Instantiating a Servant
Instantiating a servant means to allocate an instance:

servant = NodeI("Fred")

This statement creates a new NodeI instance and assigns its reference to the vari-
able servant.

24.7.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:

module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
    // ... 
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 30.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

id = Ice.Identity() 
id.name = "Fred" # Not unique, but good enough for now

Note that the mapping for structures (see Section 22.7.2) allows us to write the 
following equivalent code:

id = Ice.Identity("Fred") # Not unique, but good enough for now

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See XREF for further discussion.
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24.7.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the adapter vari-
able, we can write:

adapter.add(servant, id)

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
member function on the servant.

Assuming that the object adapter is in the active state (see Section 30.4), client 
requests are dispatched to the servant as soon as you call add.

24.7.4 UUIDs as Identities
As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs 
(Universally Unique Identifiers) [14] as identities. The Ice.generateUUID 
function creates such identities:

import Ice 
print Ice.generateUUID()

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to generate-
UUID creates a string that differs from all previous ones.4 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
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map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

adapter.addWithUUID(NodeI("Fred"))

24.7.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

proxy = adapter.addWithUUID(NodeI("Fred")) 
nodeProxy = Filesystem.NodePrx.uncheckedCast(proxy) 
 
# Pass nodeProxy to client...

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

4. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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module Ice { 
    local interface ObjectAdapter { 
        Object* createProxy(Identity id); 
        // ... 
    }; 
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

id = Ice.Identity() 
id.name = Ice.generateUUID() 
proxy = adapter.createProxy(id)

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to 
a client and the client invokes an operation on the proxy, the client will receive an 
ObjectNotExistException. (We examine these life cycle issues in more detail in 
XREF.)

24.8 Summary

This chapter presented the server-side Python mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 30), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any Python mapping 
rules beyond those we described here.
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Chapter 25
Developing a File System Server in 
Python

25.1 Chapter Overview

In this chapter, we present the source code for a fully-functional Python server 
that implements the file system we developed in Chapter 5 (see Chapter 23 for the 
corresponding client).

25.2 Implementing a File System Server

We have now seen enough of the server-side Python mapping to implement a 
server for the file system we developed in Chapter 5. (You may find it useful to 
review the Slice definition for our file system in Section 5 before studying the 
source code.)

Our server is implemented in a single source file, Server.py, containing 
our server’s main program as well as the definitions of our Directory and File 
servant subclasses.

25.2.1 The Server Main Program
Our server main program uses the Ice.Application class we discussed in 
Section 24.3.1. The run method installs a signal handler, creates an object 
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adapter, instantiates a few servants for the directories and files in the file system, 
and then activates the adapter. This leads to a main program as follows:

import sys, threading, Ice, Filesystem 
 
# DirectoryI servant class ... 
# FileI servant class ... 
 
class Server(Ice.Application): 
    def run(self, args): 
        # Terminate cleanly on receipt of a signal 
        # 
        self.shutdownOnInterrupt() 
 
        # Create an object adapter (stored in the _adapter 
        # static members) 
        # 
        adapter = self.communicator().\ 
                    createObjectAdapterWithEndpoints( 
                        "SimpleFilesystem", "default -p 10000") 
        DirectoryI._adapter = adapter 
        FileI._adapter = adapter 
 
        # Create the root directory (with name "/" and no parent) 
        # 
        root = DirectoryI("/", None) 
 
        # Create a file called "README" in the root directory 
        # 
        file = FileI("README", root) 
        text = [ "This file system contains a collection of " + 
                 "poetry." ] 
        try: 
            file.write(text) 
        except Filesystem.GenericError, e: 
            print e.reason 
 
        # Create a directory called "Coleridge" 
        # in the root directory 
        # 
        coleridge = DirectoryI("Coleridge", root) 
 
        # Create a file called "Kubla_Khan" 
        # in the Coleridge directory 
        # 
        file = FileI("Kubla_Khan", coleridge) 
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        text = [ "In Xanadu did Kubla Khan", 
                 "A stately pleasure-dome decree:", 
                 "Where Alph, the sacred river, ran", 
                 "Through caverns measureless to man", 
                 "Down to a sunless sea." ] 
        try: 
            file.write(text) 
        except Filesystem.GenericError, e: 
            print e.reason 
 
        # All objects are created, allow client requests now 
        # 
        adapter.activate() 
 
        # Wait until we are done 
        # 
        self.communicator().waitForShutdown() 
 
        if self.interrupted(): 
            print self.appName() + ": terminating" 
 
        return 0 
 
app = Server() 
sys.exit(app.main(sys.argv))

The code defines the Server class, which derives from Ice.Application 
and contains the main application logic in its run method. Much of this code is 
boiler plate that we saw previously: we create an object adapter, and, towards the 
end, activate the object adapter and call waitForShutdown.

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 25.1.

Figure 25.1. A small file system.

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass None.) Thus, the statement

        root = DirectoryI("/", None)

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 25.1:

        # Create the root directory (with name "/" and no parent) 
        # 
        root = DirectoryI("/", None) 
 
        # Create a file called "README" in the root directory 
        # 
        file = FileI("README", root) 
        text = [ "This file system contains a collection of " + 
                 "poetry." ] 
        try: 
            file.write(text) 
        except Filesystem.GenericError, e: 
            print e.reason 
 
        # Create a directory called "Coleridge" 
        # in the root directory 
        # 
        coleridge = DirectoryI("Coleridge", root) 
 
        # Create a file called "Kubla_Khan" 
        # in the Coleridge directory 
        # 
        file = FileI("Kubla_Khan", coleridge) 
        text = [ "In Xanadu did Kubla Khan", 
                 "A stately pleasure-dome decree:", 
                 "Where Alph, the sacred river, ran", 
                 "Through caverns measureless to man", 
                 "Down to a sunless sea." ] 
        try: 
            file.write(text) 
        except Filesystem.GenericError, e: 
            print e.reason
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We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        text = [ "This file system contains a collection of " + 
                 "poetry." ] 
        try: 
            file.write(text) 
        except Filesystem.GenericError, e: 
            print e.reason

Recall from Section 14.7.3 that Slice sequences map to Python lists. The Slice 
type Lines is simply a list of strings; we add a line of text to our README file by 
initializing the text list to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

            file.write(text)

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary Python method 
call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 25.1.

25.2.2 The FileI Servant Class
Our FileI servant class has the following basic structure:

class FileI(Filesystem.File): 
    # Constructor and operations here... 
 
    _adapter = None

The class has a number of data members:

• _adapter

This class member stores a reference to the single object adapter we use in our 
server.
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• _name

This instance member stores the name of the file incarnated by the servant.

• _parent

This instance member stores the reference to the servant for the file’s parent 
directory.

• _lines

This instance member holds the contents of the file.

The _name, _parent, and _lines data members are initialized by the 
constructor:

    def __init__(self, name, parent): 
        self._name = name 
        self._parent = parent 
        self._lines = [] 
 
        assert(self._parent != None) 
 
        # Create an identity 
        # 
        myID = Ice.stringToIdentity(Ice.generateUUID()) 
 
        # Add the identity to the object adapter 
        # 
        self._adapter.add(self, myID) 
 
        # Create a proxy for the new node and 
        # add it as a child to the parent 
        # 
        thisNode = Filesystem.NodePrx.uncheckedCast( 
                        self._adapter.createProxy(myID)) 
        self._parent.addChild(thisNode)

After initializing the instance members, the code verifies that the reference to the 
parent is not None because every file must have a parent directory. The 
constructor then generates an identity for the file by calling Ice.generate-
UUID and adds itself to the servant map by calling ObjectAdapter.add. 
Finally, the constructor creates a proxy for this file and calls the addChild 
method on its parent directory. addChild is a helper function that a child direc-
tory or file calls to add itself to the list of descendant nodes of its parent directory. 
We will see the implementation of this function on page 640.
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The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

    # Slice Node::name() operation 
 
    def name(self, current=None): 
        return self._name 
 
    # Slice File::read() operation 
 
    def read(self, current=None): 
        return self._lines 
 
    # Slice File::write() operation 
 
    def write(self, text, current=None): 
        self._lines = text

The name method is inherited from the generated Node class. It simply returns 
the value of the _name instance member.

The read and write methods are inherited from the generated File class 
and simply return and set the _lines instance member.

25.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

class DirectoryI(Filesystem.Directory): 
    # Constructor and operations here... 
 
    _adapter = None

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds None.) In addition, we have a _contents data member that stores the list 
of child directories. These data members are initialized by the constructor:

    def __init__(self, name, parent): 
        self._name = name 
        self._parent = parent 
        self._contents = [] 
 
        # Create an identity. The 
        # parent has the fixed identity "RootDir" 
        # 
        if(self._parent): 
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            myID = Ice.stringToIdentity(Ice.generateUUID()) 
        else: 
            myID = Ice.stringToIdentity("RootDir") 
 
        # Add the identity to the object adapter 
        # 
        self._adapter.add(self, myID) 
 
        # Create a proxy for the new node and 
        # add it as a child to the parent 
        # 
        thisNode = Filesystem.NodePrx.uncheckedCast( 
                        self._adapter.createProxy(myID)) 
        if self._parent: 
            self._parent.addChild(thisNode)

The constructor creates an identity for the new directory by calling Ice.gener-
ateUUID. (For the root directory, we use the fixed identity "RootDir".) The 
servant adds itself to the servant map by calling ObjectAdapter.add and 
then creates a proxy to itself and passes it to the addChild helper function.

addChild simply adds the passed reference to the _contents list:

    def addChild(self, child): 
        self._contents.append(child)

The remainder of the operations, name and list, are trivial:

    def name(self, current=None): 
        return self._name 
 
    def list(self, current=None): 
        return self._contents

25.3 Thread Safety

The server code we developed in Section 25.2 is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
we can make the read and write operations thread-safe with a few trivial 
changes to the FileI class:



25.4 Summary 641

    def __init__(self, name, parent): 
        self._name = name 
        self._parent = parent 
        self._lines = [] 
        self._mutex = threading.Lock() 
 
        # ... 
 
    def name(self, current=None): 
        return self._name 
 
    def read(self, current=None): 
        self._mutex.acquire() 
        lines = self._lines[:] # Copy the list 
        self._mutex.release() 
        return lines 
 
    def write(self, text, current=None): 
        self._mutex.acquire() 
        self._lines = text 
        self._mutex.release()

We modified the constructor to add the instance member _mutex, and then 
enclosed our read and write implementations in a critical section. (The name 
method does not require a critical section because the file’s name is immutable.)

No changes for thread safety are necessary in the DirectoryI class because 
the Directory interface, in its current form, defines no operations that modify the 
object.

25.4 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same as a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.





Part III.F

PHP Mapping





645

Chapter 26
Ice Extension for PHP

26.1 Chapter Overview

This chapter describes IcePHP, the Ice extension for the PHP scripting language. 
Section 26.2 provides an overview of IcePHP, including its design goals, capabili-
ties, and limitations. IcePHP configuration is discussed in Section 26.3, and the 
PHP language mapping is specified in Section 26.4.

26.2 Introduction

PHP is a general-purpose scripting language that is used primarily in Web devel-
opment. The PHP interpreter is typically installed as a Web server plug-in, and 
PHP itself also supports plug-ins known as “extensions.” PHP extensions, by defi-
nition, extend the interpreter’s run-time environment by adding new functions and 
data types.

The Ice extension for PHP, IcePHP, provides PHP scripts with access to Ice 
facilities. IcePHP is a thin integration layer implemented in C++ using the Ice 
C++ run-time library. This implementation technique has a number of advantages 
over a native PHP implementation of the Ice run-time:
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1. Speed

The majority of the time-consuming work involved in making remote invoca-
tions, such as marshaling and unmarshaling, is performed in compiled C++, 
instead of in interpreted PHP.

2. Integration

IcePHP is fully self-contained. Its installation is performed once as an admin-
istrative step, and scripts have no dependencies on external PHP code.

3. Reliability

By leveraging the well-tested Ice C++ run-time library, there is less likelihood 
that new bugs will be introduced into the PHP extension.

4. Flexibility

IcePHP inherits all of the flexibility provided by the Ice C++ run-time, such as 
support for SSL, protocol compression, etc.

26.2.1 Capabilities
IcePHP supplies a robust subset of the Ice run-time facilities. PHP scripts are able 
to use all of the Slice data types in a natural way (see Section 26.4), make remote 
invocations, and use all of the advanced Ice services such as routers, locators and 
protocol plug-ins.

26.2.2 Limitations
The primary design goal of IcePHP was to provide PHP scripts with a simple and 
efficient interface to the Ice run-time. To that end, the feature set supported by 
IcePHP was carefully selected to address the requirements of typical PHP applica-
tions. As a result, IcePHP does not support the following Ice features:

• Servers

Given PHP’s primary role as a scripting language for dynamic Web pages, the 
ability to implement an Ice server in PHP was deemed unnecessary for the 
majority of PHP applications.

• Asynchronous method invocation

The lack of synchronization primitives in PHP greatly reduces the utility of 
asynchronous invocations.
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• Multiple communicators

A script has access to only one instance of Ice::Communicator, and is not 
able to manually create or destroy a communicator. See Section 26.4.11 for 
more information.

26.2.3 Design
The traditional design for a language mapping requires the intermediate step of 
translating Slice definitions into the target programming language before they can 
be used in an application.

IcePHP takes a different approach, made possible by the flexibility of PHP’s 
extension interfaces. In IcePHP, no intermediate code generation step is necessary. 
Instead, the extension is configured with the application’s Slice definitions, which 
are used to drive the extension’s run-time behavior (see Section 26.3).

The Slice definitions are made available to PHP scripts as specified by the 
mapping in Section 26.4, just as if the Slice definitions had first gone through the 
traditional code-generation step and then been imported by the script.

There are several advantages to this design:

• The development process is simplified by the elimination of the intermediate 
code-generation step.

• The lack of machine-generated PHP code reduces the risk that the applica-
tion’s type definitions become outdated.

• Although PHP is a loosely-typed programming language, the Slice definitions 
enable IcePHP to validate the arguments of remote invocations.

26.3 Configuration

This section describes how to configure IcePHP, including its configuration direc-
tives and the run time functions used to activate a configuration. For installation 
instructions, please refer to the INSTALL file included in the IcePHP distribution.

26.3.1 Profiles
IcePHP allows any number of PHP applications to run independently in the same 
PHP interpreter, without risk of conflicts caused by Slice definitions that 
happened to use the same identifiers. IcePHP uses the term profile to describe an 
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application’s configuration, including its Slice definitions and Ice configuration 
properties.

26.3.2 Default Profile
A default profile is supported, which is convenient during development, or when 
only one Ice application is running in a PHP interpreter. Table 26.1 describes the 
PHP configuration directives1 for the default profile.

Here is a simple example:

ice.options="--Ice.Trace.Network=1 --Ice.Warn.Connections=1" 
ice.slice="-I/myapp/include /myapp/include/MyApp.ice"

26.3.3 Named Profiles
If a filename is specified by the ice.profiles configuration directive, the file 
is expected to have the standard INI-file format. The section names identify 

Table 26.1. PHP configuration directive for the default profile.

Name Description

ice.config Specifies the pathname of an Ice config-
uration file.

ice.options Specifies command-line options for Ice 
configuration properties. For example, 
--Ice.Trace.Network=1. This is a 
convenient alternative to an Ice configu-
ration file if only a few configuration 
properties are required.

ice.profiles Specifies the pathname of a profile con-
figuration file. See Section 26.3.3.

ice.slice Specifies preprocessor options and the 
pathnames of Slice files to be loaded.

1. These directives are typically defined in the php.ini file, but can also be defined using Web-
server specific directives.



26.3 Configuration 649

profiles, where each profile supports the ice.config, ice.options and 
ice.slice directives defined in Section 26.3.2. For example:

[Profile1] 
ice.config=/profile1/ice.cfg 
ice.slice=/profile1/App.ice 
 
[Profile2] 
ice.config=/profile2/ice.cfg 
ice.slice=/profile2/App.ice

This file defines two named profiles, Profile1 and Profile2, having sepa-
rate Ice configurations and Slice definitions.

26.3.4 Profile Functions
Two global functions are provided for profile activities:

Ice_loadProfile(/* string */ $name = null); 
Ice_dumpProfile();

The Ice_loadProfile function must be invoked by a script in order to make 
the Slice types available and to configure the script’s communicator. If no profile 
name is supplied, the default profile is loaded. A script is not allowed to load more 
than one profile.

For example, here is a script that loads Profile1 shown in Section 26.3.3:

<?php 
Ice_loadProfile("Profile1"); 
... 
?>

For troubleshooting purposes, the Ice_dumpProfile function can be called by 
a script. This function displays all of the relevant information about the profile 
loaded by the script, including the communicator’s configuration properties as 
well as the PHP mappings for all of the Slice definitions loaded by the profile.

26.3.5 Slice Semantics
The expense of parsing Slice files is incurred once, when the PHP interpreter 
initializes the IcePHP extension. For this reason, we recommend that the IcePHP 
extension be statically configured into the PHP interpreter, either by compiling the 
extension directly into the interpreter, or configuring PHP to load the extension 
dynamically at startup. For the same reason, we discourage the use of IcePHP in a 
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CGI context, in which a new PHP interpreter is created for every HTTP request. 
Furthermore, we strongly discourage scripts from dynamically loading the 
IcePHP extension using PHP’s dl function.

26.3.6 Using IceSSL
An IcePHP application can establish an SSL connection to an Ice server if it is 
properly configured to use the IceSSL plug-in. Since IcePHP uses the Ice for C++ 
run time, you should consult the C++ sections of Chapter 39 for detailed instruc-
tions on installing and configuring IceSSL.

A typical IceSSL configuration uses several properties, therefore it is often 
more convenient to define an external configuration file via the ice.config 
directive:

ice.config=/opt/MyApp/ice.cfg

The file ice.cfg might contain the configuration properties shown below:

Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.DefaultDir=/opt/MyApp/certs 
IceSSL.CertAuthFile=ca.pem 
IceSSL.CertFile=client.pem 
IceSSL.KeyFile=key.pem 
...

An IcePHP application can only use the IceSSL features that are available via 
configuration properties; the plug-in’s programmatic interface is not currently 
supported in PHP.

As a final note, you should carefully consider the security implications of 
using SSL given that all of the scripts executed by the same instance of a PHP 
interpreter share the same communicator and therefore the same IceSSL configu-
ration.

26.4 Client-Side Slice-to-PHP Mapping

This section describes the PHP mapping for Slice types.

26.4.1 Mapping for Identifiers
Slice identifiers map to PHP identifiers of the same name, unless the Slice identi-
fier conflicts with a PHP reserved word, in which case the mapped identifier is 
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prefixed with an underscore. For example, the Slice identifier echo is mapped as 
_echo.

A flattened mapping is used for identifiers defined within Slice modules 
because PHP does not have an equivalent to C++ namespaces or Java packages. 
The flattened mapping uses underscores to separate the components of a fully-
scoped name. For example, consider the following Slice definition:

module M { 
    enum E { one, two, three }; 
};

In this case, the Slice identifier M::E is flattened to the PHP identifier M_E.
Note that when checking for a conflict with a PHP reserved word, only the 

fully-scoped, flattened identifier is considered. For example, the Slice identifier 
M::function is mapped as M_function, despite the fact that function is a 
PHP reserved word. There is no need to map it as M__function (with two 
underscores) because M_function does not conflict with a PHP reserved word.

However, it is still possible for the flattened mapping to generate identifiers 
that conflict with PHP reserved words. For instance, the Slice identifier 
require::once must be mapped as _require_once in order to avoid conflict 
with the PHP reserved word require_once.

26.4.2 Mapping for Simple Built-in Types
PHP has a limited set of primitive types: boolean, integer, double, and 
string. The Slice built-in types are mapped to PHP types as shown in 
Table 26.2.

Table 26.2. Mapping of Slice built-in types to PHP.

Slice PHP

bool boolean

byte integer

short integer

int integer
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PHP’s integer type may not accommodate the range of values supported by 
Slice’s long type, therefore long values that are outside this range are mapped as 
strings. Scripts must be prepared to receive an integer or string from any operation 
that returns a long value.

26.4.3 Mapping for User-Defined Types
Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

Mapping for Enumerations

Enumerations map to a PHP class containing a constant definition for each 
enumerator. For example:

enum Fruit { Apple, Pear, Orange };

The PHP mapping is shown below:

class Fruit { 
    const Apple = 0; 
    const Pear = 1; 
    const Orange = 2; 
}

The enumerators can be accessed in PHP code as Fruit::Apple, etc.

long integer

float double

double double

string string

Table 26.2. Mapping of Slice built-in types to PHP.

Slice PHP
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Mapping for Structures

Slice structures map to PHP classes. For each Slice data member, the PHP class 
contains a variable of the same name. For example, here is our Employee structure 
from Section 4.9.4 yet again:

struct Employee { 
    long number; 
    string firstName; 
    string lastName; 
};

This structure is mapped to the following PHP class:

class Employee { 
    var $number; 
    var $firstName; 
    var $lastName; 
}

Mapping for Sequences

Slice sequences are mapped to native PHP indexed arrays. The first element of the 
Slice sequence is contained at index 0 (zero) of the PHP array, followed by the 
remaining elements in ascending index order.

Here is the definition of our FruitPlatter sequence from Section 4.9.3:

sequence<Fruit> FruitPlatter;

You can create an instance of this sequence as shown below:

// Make a small platter with one Apple and one Orange 
// 
$platter = array(Fruit::Apple, Fruit::Orange);

Mapping for Dictionaries

Slice dictionaries map to native PHP associative arrays. The PHP mapping does 
not currently support all Slice dictionary types, however, because native PHP 
associative arrays support only integer and string key types. A Slice dictionary 
whose key type is boolean, byte, short, int or long is mapped as an associative 
array with an integer key.2 A Slice dictionary with a string key type is mapped as 

2. Boolean values are treated as integers, with false equivalent to 0 (zero) and true equivalent to 1 
(one).
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associative array with a string key. All other key types cause a warning to be 
generated.

Here is the definition of our EmployeeMap from Section 4.9.4:

dictionary<long, Employee> EmployeeMap;

You can create an instance of this dictionary as shown below:

$e1 = new Employee; 
$e1->number = 42; 
$e1->firstName = "Stan"; 
$e1->lastName = "Lipmann"; 
 
$e2 = new Employee; 
$e2->number = 77; 
$e2->firstName = "Herb"; 
$e2->lastName = "Sutter"; 
 
$em = array($e1->number => $e1, $e2->number => $e2);

26.4.4 Mapping for Constants
Slice constant definitions map to corresponding calls to the PHP function 
define. Here are the constant definitions we saw in Section 4.9.5:

const bool      AppendByDefault = true; 
const byte      LowerNibble = 0x0f; 
const string    Advice = "Don't Panic!"; 
const short     TheAnswer = 42; 
const double    PI = 3.1416; 
 
enum Fruit { Apple, Pear, Orange }; 
const Fruit     FavoriteFruit = Pear;

Here are the equivalent PHP definitions for these constants:

define("AppendByDefault", true); 
define("LowerNibble", 15); 
define("Advice", "Don't Panic!"); 
define("TheAnswer", 42); 
define("PI", 3.1416); 
 
class Fruit { 
    const Apple = 0; 
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    const Pear = 1; 
    const Orange = 2; 
} 
define("FavoriteFruit", Fruit::Pear);

26.4.5 Mapping for Exceptions
A Slice exception maps to a PHP class. For each exception member, the corre-
sponding class contains a variable of the same name. All user exceptions ulti-
mately derive from Ice_UserException (which, in turn, derives from 
Ice_Exception, which derives from PHP’s base Exception class):

abstract class Ice_Exception extends Exception { 
    function __construct($message = '') { 
        ... 
    } 
} 
 
abstract class Ice_UserException extends Ice_Exception { 
    function __construct($message = '') { 
        ... 
    } 
}

The optional string argument to the constructor is passed unmodified to the 
Exception constructor.

If the exception derives from a base exception, the corresponding PHP class 
derives from the mapped class for the base exception. Otherwise, if no base excep-
tion is specified, the corresponding class derives from Ice_UserException.

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5:

exception GenericError { 
    string reason; 
}; 
exception BadTimeVal extends GenericError {}; 
exception BadZoneName extends GenericError {};

These exceptions are mapped as the following PHP classes:

class GenericError extends Ice_UserException { 
    function __construct($message = '') { 
        ... 
    } 
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    var $reason; 
} 
 
class BadTimeVal extends GenericError { 
    function __construct($message = '') { 
        ... 
    } 
} 
 
class BadZoneName extends GenericError { 
    function __construct($message = '') { 
        ... 
    } 
}

An application can catch these exceptions as shown below:

try { 
    ... 
} catch(BadZoneName $ex) { 
    // Handle BadZoneName 
} catch(GenericError $ex) { 
    // Handle GenericError 
} catch(Ice_Exception $ex) { 
    // Handle all other Ice exceptions 
    print_r($ex); 
}

26.4.6 Mapping for Run-Time Exceptions
The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice_LocalException (which, in turn, derives from Ice_Exception, 
which derives from PHP’s base Exception class):

abstract class Ice_Exception extends Exception { 
    function __construct($message = '') { 
        ... 
    } 
} 
 
abstract class Ice_LocalException extends Ice_Exception { 
    function __construct($message = '') { 
        ... 
    } 
}
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An inheritance diagram for user and run-time exceptions appears in Figure 4.4 on 
page 106. Note however that the PHP mapping only defines classes for the local 
exceptions listed below:

• Ice_LocalException

• Ice_UnknownException

• Ice_UnknownLocalException

• Ice_UnknownUserException

• Ice_RequestFailedException

• Ice_ObjectNotExistException

• Ice_FacetNotExistException

• Ice_OperationNotExistException

• Ice_ProtocolException

• Ice_MarshalException

• Ice_NoObjectFactoryException

• Ice_UnexpectedObjectException

Instances of all remaining local exceptions are converted to the class 
Ice_UnknownLocalException. The unknown member of this class 
contains a string representation of the original exception.

26.4.7 Mapping for Interfaces
A Slice interface maps to a PHP interface. Each operation in the interface maps to 
a method of the same name, as described in Section 26.4.9. The inheritance struc-
ture of the Slice interface is preserved in the PHP mapping, and all interfaces ulti-
mately derive from Ice_Object:

interface Ice_Object {};

For example, consider the following Slice definitions:

interface A { 
    void opA(); 
}; 
interface B extends A { 
    void opB(); 
};

These interfaces are mapped to PHP interfaces as shown below:
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interface A implements Ice_Object 
{ 
    function opA(); 
} 
interface B implements A 
{ 
    function opB(); 
}

26.4.8 Mapping for Classes
A Slice class maps to an abstract PHP class. Each operation in the class maps to 
an abstract method of the same name, as described in Section 26.4.9. For each 
Slice data member, the PHP class contains a variable of the same name. The inher-
itance structure of the Slice class is preserved in the PHP mapping, and all classes 
ultimately derive from Ice_ObjectImpl (which, in turn, implements 
Ice_Object):

class Ice_ObjectImpl implements Ice_Object 
{ 
}

Consider the following class definition:

class TimeOfDay { 
    short hour;         // 0 - 23 
    short minute;       // 0 - 59 
    short second;       // 0 - 59 
    string format();    // Return time as hh:mm:ss 
};

The PHP mapping for this class is shown below:

abstract class TimeOfDay extends Ice_ObjectImpl 
{ 
    var $hour; 
    var $minute; 
    var $second; 
    abstract function format(); 
}

Class Factories

Class factories are installed by invoking addObjectFactory on the communi-
cator (see Section 26.4.11). A factory must implement the interface 
Ice_ObjectFactory, defined as follows:
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interface Ice_ObjectFactory implements Ice_LocalObject 
{ 
    function create(/* string */ $id); 
    function destroy(); 
}

For example, we can define and install a factory for the TimeOfDay class as shown 
below:

class TimeOfDayI extends TimeOfDay { 
    function format() 
    { 
        return sprintf("%02d:%02d:%02d", $this->hour, 
                       $this->minute, $this->second); 
    } 
} 
 
class TimeOfDayFactory extends Ice_LocalObjectImpl 
                       implements Ice_ObjectFactory { 
    function create($id) 
    { 
        return new TimeOfDayI; 
    } 
 
    function destroy() {} 
} 
 
$ICE->addObjectFactory(new TimeOfDayFactory, "::M::TimeOfDay");

26.4.9 Mapping for Operations
Each operation defined in a Slice class or interface is mapped to a PHP function of 
the same name. Furthermore, each parameter of an operation is mapped to a PHP 
parameter of the same name, with out parameters passed by reference. Since PHP 
is a loosely-typed language, no parameter types are specified.3

Consider the following interface:

3. PHP5 introduces the notion of “type hints” that allow you to specify the formal type of object 
parameters. This would enable the Slice mapping to specify type hints for parameters of type 
struct, interface, class and proxy. Unfortunately, PHP5 does not currently allow a parameter 
defined with a type hint to receive a null value, therefore the Slice mapping does not use type 
hints for parameters.
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interface I { 
    float op(string s, out int i); 
};

The PHP mapping for this interface is shown below:

interface I { 
    function op($s, &$i); 
}

26.4.10 Mapping for Proxies
The PHP mapping for Slice proxies uses a single interface, Ice_ObjectPrx, to 
represent all proxy types.

Typed Versus Untyped Proxies

A proxy can be typed or untyped. All proxies, whether they are typed or untyped, 
support the core proxy methods described in the next section.

An untyped proxy is equivalent to the Slice type Object*. The communicator 
operation stringToProxy returns an untyped proxy, as do several of the core 
proxy methods. A script cannot invoke user-defined operations on an untyped 
proxy, nor can an untyped proxy be passed as an argument where a typed proxy is 
expected.

A typed proxy is one that has been associated with a Slice class or interface 
type. There are two ways a script can obtain a typed proxy:

1. By receiving it as the result of a remote invocation that returns a typed proxy.

2. By using the core proxy methods ice_checkedCast or 
ice_uncheckedCast.

For example, suppose our script needs to obtain a typed proxy for interface A, 
shown below:

interface A { 
    void opA(); 
};

Here are the steps our script performs:

$obj = $ICE->stringToProxy("a:tcp -p 12345"); 
$obj->opA(); // WRONG! 
$a = $obj->ice_checkedCast("::A"); 
$a->opA(); // OK
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Attempting to invoke opA on $obj would result in a fatal error, because $obj is 
an untyped proxy.

Core Proxy Methods

The Ice_ObjectPrx interface supplies the standard proxy methods described 
in Section 30.10.1, as well as two additional methods for downcasting purposes:

interface Ice_ObjectPrx { 
    /* ... standard proxy methods ... */ 
    function ice_uncheckedCast(/* string */ $type, 
                               /* string */ $facet = null); 
    function ice_checkedCast(/* string */ $type, 
                             /* string */ $facet = null); 
}

 To demonstrate the use of proxy factory methods, consider this example:

$p = $ICE->stringToProxy("a:tcp -p 12345"); 
$p = $p->ice_oneway(); 
$p = $p->ice_secure(true); 
$p = $p->ice_uncheckedCast("::A");

The script receives an untyped proxy as the return value of stringToProxy. 
Since the stringified proxy did not contain any proxy options, it is configured by 
default as a twoway, insecure proxy with no timeout. However, our goal is to 
obtain a secure oneway proxy for interface A, therefore we invoke ice_oneway, 
followed by ice_secure. At this point, we have an untyped proxy configured 
for secure oneway invocations. Finally, we call ice_uncheckedCast to obtain 
a typed proxy.4

Note that this process can be simplified by chaining the proxy factory 
methods, as shown below:

$p = $ICE->stringToProxy("a:tcp -p 12345"); 
$p = $p->ice_oneway()->ice_secure(true)->ice_uncheckedCast("::A");

The order that the proxy factory methods are invoked is usually not important, 
except in the case of ice_checkedCast and ice_uncheckedCast. For 
example, if the script above had invoked ice_uncheckedCast first, followed 
by the other factory methods, then the result would have been an untyped proxy:

4. We cannot use ice_checkedCast on a proxy configured for oneway invocations.
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$p = $ICE->stringToProxy("a:tcp -p 12345"); 
$p = $p->ice_uncheckedCast("::A"); // WRONG! 
$p = $p->ice_oneway(); 
$p = $p->ice_secure(true);

The reason for this unexpected behavior is that most of the factory methods return 
an untyped proxy, thereby discarding any type that might have been associated 
with the original proxy. By invoking ice_oneway on the typed proxy returned 
from ice_uncheckedCast, the script has lost its typed proxy.

Request Context

All remote operations on a proxy support an optional final parameter of type 
Ice::Context representing the request context. The standard PHP mapping for 
the request context is an associative array in which the keys and values are strings. 
For example, the code below illustrates how to invoke ice_ping with a request 
context:

$p = $ICE->stringToProxy("a:tcp -p 12345"); 
$ctx = array("theKey" => "theValue"); 
$p->ice_ping($ctx);

Alternatively, a script can specify a default request context using the proxy 
method ice_newContext. See Section 30.11 for more information on request 
contexts.

Identity

Certain core proxy operations use the type Ice_Identity, which is the PHP 
mapping for the Slice type Ice::Identity (see Section 30.5). This type is 
mapped using the standard rules for Slice structures, therefore it is defined as 
follows:

class Ice_Identity { 
    var $name; 
    var $category; 
}

Two communicator functions are provided for converting Ice_Identity 
values to and from a string representation. See Section 26.4.11 for details.

26.4.11 Mapping for Ice::Communicator
Since the Ice extension for PHP provides only client-side facilities, many of the 
operations provided by Ice::Communicator operations are not relevant, therefore 
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the PHP mapping supports a subset of the communicator operations. The mapping 
for Ice::Communicator is shown below:

interface Ice_Communicator { 
    function getProperty(/* string */ $name, 
                         /* string */ $def = ""); 
    function stringToProxy(/* string */ $str); 
    function proxyToString(/* Ice_ObjectPrx */ $prx); 
    function stringToIdentity(/* string */ $str); 
    function identityToString(/* Ice_Identity */ $id); 
    function addObjectFactory(/* Ice_ObjectFactory */ $factory, 
                              /* string */ $id); 
    function findObjectFactory(/* string */ $id); 
    function flushBatchRequests(); 
}

The getProperty method returns the value of a configuration property. If the 
property is not defined, the method returns the default value if one was provided, 
otherwise the method returns an empty string.

See Section 30.10.1for a description of the remaining operations.

Communicator Lifecycle

PHP scripts are not allowed to create or destroy communicators. Rather, a 
communicator is created prior to each PHP request, and is destroyed after the 
request completes.

Accessing the Communicator

The communicator instance created for a request is available to the script via the 
global variable $ICE. Scripts should not attempt to assign a different value to this 
variable. As with any global variable, scripts that need to use $ICE from within a 
function must declare the variable as global:

function printProxy($prx) { 
    global $ICE; 
 
    print $ICE->proxyToString($prx); 
}

Communicator Configuration

The profile loaded by the script determines the communicator’s configuration. 
See Section 26.3 for more information.
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Chapter 27
Developing a File System Client in 
PHP

27.1 Chapter Overview

In this chapter, we present the source code for a PHP client that accesses the file 
system we developed in Chapter 5. This client can interact with a server written in 
any of the other language mappings.

27.2 The PHP Client

We now have seen enough of the PHP mapping to develop a complete client to 
access our remote file system. For reference, here is the Slice definition once 
more:

module Filesystem {  
    interface Node {  
        nonmutating string name();  
    };  
  
    exception GenericError {  
        string reason;  
    };  
 
    sequence<string> Lines;  
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    interface File extends Node {  
        nonmutating Lines read();  
        idempotent void write(Lines text) throws GenericError;  
    };  
  
    sequence<Node*> NodeSeq;  
  
    interface Directory extends Node {  
        nonmutating NodeSeq list();  
    };  
  
    interface Filesys {  
        nonmutating Directory* getRoot();  
    };  
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

<?php 
Ice_loadProfile(); 
 
// Recursively print the contents of directory "dir" 
// in tree fashion. For files, show the contents of 
// each file. The "depth" parameter is the current 
// nesting level (for indentation). 
 
function listRecursive($dir, $depth = 0) 
{ 
    $indent = str_repeat("\t", ++$depth); 
 
    $contents = $dir->_list(); // list is a reserved word in PHP 
 
    foreach ($contents as $i) { 
        $dir = $i->ice_checkedCast("::Filesystem::Directory"); 
        $file = $i->ice_uncheckedCast("::Filesystem::File"); 
        echo $indent . $i->name() . 
            ($dir ? " (directory):" : " (file):") . "\n"; 
        if ($dir) { 
            listRecursive($dir, $depth); 
        } else { 
            $text = $file->read(); 
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            foreach ($text as $j) 
                echo $indent . "\t" . $j . "\n"; 
        } 
    } 
} 
 
try 
{ 
    // Create a proxy for the root directory 
    // 
    $base = $ICE->stringToProxy("RootDir:default -p 10000"); 
 
    // Down-cast the proxy to a Directory proxy 
    // 
    $rootDir = $base->ice_checkedCast("::Filesystem::Directory"); 
 
    // Recursively list the contents of the root directory 
    // 
    echo "Contents of root directory:\n"; 
    listRecursive($rootDir); 
} 
catch(Ice_LocalException $ex) 
{ 
    print_r($ex); 
} 
?>

The program first defines the listRecursive function, which is a helper func-
tion to print the contents of the file system, and the main program follows. Let us 
look at the main program first:

1. The client first creates a proxy to the root directory of the file system. For this 
example, we assume that the server runs on the local host and listens using the 
default protocol (TCP/IP) at port 10000. The object identity of the root direc-
tory is known to be RootDir.

2. The client down-casts the proxy to the Directory interface and passes that 
proxy to listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:
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1. The code uses ice_checkedCast to narrow the Node proxy to a Direc-
tory proxy, and uses ice_uncheckedCast to narrow the Node proxy to a 
File proxy. Exactly one of those casts will succeed, so there is no need to call 
ice_checkedCast twice: if the Node is-a Directory, the code uses the 
proxy returned by ice_checkedCast; if ice_checkedCast fails, we 
know that the Node is-a File and, therefore, ice_uncheckedCast is suffi-
cient to get a File proxy.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use ice_uncheckedCast instead of ice_checkedCast 
because ice_uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of a two files and a a directory 
as follows:

Figure 27.1. A small file system.

The output produced by client for this file system is:

Contents of root directory: 
        README (file): 
                This file system contains a collection of poetry. 
        Coleridge (directory): 
                Kubla_Khan (file): 
                        In Xanadu did Kubla Khan 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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                        A stately pleasure-dome decree: 
                        Where Alph, the sacred river, ran 
                        Through caverns measureless to man 
                        Down to a sunless sea.

Note that, so far, our client is not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 36 and XREF.

27.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the PHP code hardly 
differs from the code you would write for an ordinary PHP program. This is one of 
the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local PHP object. This allows you to put your effort where 
you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs.
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Chapter 28
Ice Properties and Configuration

28.1 Chapter Overview

Ice uses a configuration mechanism that allows you to control many aspects of the 
behavior of your Ice applications at run time, such as maximum message size, 
number of threads, or whether to produce network trace messages. The configura-
tion mechanism is not only useful to configure Ice, but you can also use it to 
provide configuration parameters to your own applications. The configuration 
mechanism is simple to use with a minimal API, yet flexible enough to cope with 
the needs of most applications.

Sections 28.2 to 28.7 describe the basics of the configuration mechanism and 
explain how to configure Ice via configuration files and command line options. 
Section 28.8 shows how you can create your own application-specific properties 
and how to access their values from within a program.

28.2 Properties

Ice and its various subsystems are configured by properties. A property is a name–
value pair, for example:

Ice.UDP.SndSize=65535
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In this example, the property name is Ice.UDP.SndSize, and the property 
value is 65535.

You can find a complete list of the properties used to configure Ice in 
Appendix C.

28.2.1 Property Categories
By convention, Ice properties use the following naming scheme:

<application>.<category>[.<sub-category>]

Note that the sub-category is optional and not used by all Ice properties.
This two- or three-part naming scheme is by convention only—if you use 

properties to configure your own applications, you can use property names with 
any number of categories.

28.2.2 Reserved Prefixes
Ice reserves properties with the prefixes Ice, IceBox, IceGrid, IcePatch2, 
IceSSL, IceStorm, Freeze, and Glacier2. You cannot use a property 
beginning with one of these prefixes to configure your own application.

28.2.3 Property Syntax
A property name consists of any number of non-white space characters, excluding 
the # and = characters. For example, the following are valid property names:

foo 
Foo 
foo.bar 
.

Note that there is no special significance to a period in a property name. (Periods 
are used to make property names more readable and are not treated specially by 
the property parser.)

The following are invalid property names:

foo bar    Illegal white space 
foo=bar    Illegal = 
foo#bar    Illegal #
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28.2.4 Value Syntax
A property value consists of any number of characters. Leading and trailing white 
space characters are ignored. Property values cannot contain a # character. The 
following are legal property values:

65535 
yes 
This is a = property value. 
../../config

The following property value is illegal:

foo # bar    Property values cannot contain a # character

28.3 Configuration Files

Properties are usually set in a configuration file. A configuration file contains a 
number of name–value pairs, with each pair on a separate line. Empty lines and 
lines consisting entirely of white space characters are ignored. The # character 
introduces a comment that extends to the end of the current line.

Here is a simple configuration file:

# Example config file for Ice 
 
Ice.MessageSizeMax = 2048    # Largest message size is 2MB 
Ice.Trace.Network=3          # Highest level of tracing for network 
Ice.Trace.Protocol=          # Disable protocol tracing

If you set the same property more than once, the last setting prevails and overrides 
any previous setting. Note that assigning nothing to a property clears that property 
(that is, sets it to the empty string).

A property that contains the empty string (such as Ice.Trace.Protocol 
in the preceding example) is indistinguishable from a property that is not 
mentioned at all. This is because the API to retrieve the property value returns the 
empty string for non-existent properties (see page 682).

For C++, Python and .NET, Ice reads the contents of a configuration file when 
you create a communicator. By default, the name of the configuration file is deter-
mined by reading the contents of the ICE_CONFIG environment variable.1 You 
can set this variable to a relative or absolute pathname of the configuration file, for 
example:
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$ ICE_CONFIG=/opt/Ice/default_config 
$ export ICE_CONFIG 
$ ./server

This causes the server to read its property settings from the configuration file in 
/opt/Ice/default_config.

Property values can include characters from non-English alphabets. The Ice 
run time expects the configuration file to use UTF-8 encoding for such characters. 
(With C++, you can specify a string converter when you read the file. See 
page 684, Section 30.3, and Section 30.21.)

28.4 Setting Properties on the Command Line

In addition to setting properties in a configuration file, you can also set properties 
on the command line, for example:

$ ./server --Ice.UDP.SndSize=65535 --IceSSL.Trace.Security=2

Any command line option that begins with -- and is followed by one of the 
reserved prefixes (see page 674) is read and converted to a property setting when 
you create a communicator. Property settings on the command line override 
settings in a configuration file. If you set the same property more than once on the 
same command line, the last setting overrides any previous ones.

For convenience, any property not explicitly set to a value is set to the value 1. 
For example,

$ ./server --Ice.Trace.Protocol

is equivalent to

$ ./server --Ice.Trace.Protocol=1

Note that this feature only applies to properties that are set on the command line, 
but not to properties that are set from a configuration file.

You can also clear a property from the command line as follows:

$ ./server --Ice.Trace.Protocol=

1. The environment variable is not read by the Java run time; with Java, you must use the 
--Ice.Config property to set the name of the configuration file (see Section 28.5).
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As for properties set from a configuration file, assigning nothing to a property 
clears that property.

28.5 The Ice.Config Property

The Ice.Config property has special meaning to the Ice run time: it determines 
the pathname of a configuration file from which to read property settings. For 
example:

$ ./server --Ice.Config=/usr/local/filesystem/config

This causes property settings to be read from the configuration file in 
/usr/local/filesystem/config.

For C++, Python, and .NET, The --Ice.Config command-line option 
overrides any setting of the ICE_CONFIG environment variable, that is, if the 
ICE_CONFIG environment variable is set and you also use the --Ice.Config 
command-line option, the configuration file specified by the ICE_CONFIG envi-
ronment variable is ignored.

If you use the --Ice.Config command-line option together with settings 
for other properties, the settings on the command line override the settings in the 
configuration file. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config \ 
> --Ice.MessageSizeMax=4096

This sets the value of the Ice.MessageSizeMax property to 4096 regardless 
of any setting of this property in /usr/local/filesystem/config. The 
placement of the --Ice.Config option on the command line has no influence 
on this precedence. For example, the following command is equivalent to the 
preceding one:

$ ./server --Ice.MessageSizeMax=4096 \ 
> --Ice.Config=/usr/local/filesystem/config

Settings of the Ice.Config property inside a configuration file are ignored, that 
is, you can set Ice.Config only on the command line.

If you use the --Ice.Config option more than once, only the last setting of 
the option is used and the preceding ones are ignored. For example:

$ ./server --Ice.Config=file1 --Ice.Config=file2

This is equivalent to using:
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$ ./server --Ice.Config=file2

You can use multiple configuration files by specifying a list of configuration file 
names, separated by commas. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config,./config

This causes property settings to be retrieved from /usr/local/file-
system/config, followed by any settings in the file config in the current 
directory; settings in ./config override settings /usr/local/file-
system/config. For C++, Python, and .NET, this mechanism also works for 
configuration files specified via the ICE_CONFIG environment variable.

28.6 Command-Line Parsing and Initialization

When you initialize the Ice run time by calling Ice::initialize (C++), 
Ice.Util.initialize (Java/C#/Visual Basic) or Ice.initialize 
(Python), you can pass an argument vector to the initialization call.2

For C++, Ice::initialize accepts a C++ reference to argc:

namespace Ice { 
    CommunicatorPtr initialize(int& argc, char* argv[]); 
}

Ice::initialize parses the argument vector and initializes its property 
settings accordingly. In addition, it removes any arguments from argv that are 
property settings. For example, assume we invoke a server as:

$ ./server --myoption --Ice.Config=config -x a \ 
--Ice.Trace.Network=3 -y opt file

Initially, argc has the value 9, and argv has ten elements: the first nine 
elements contain the program name and the arguments, and the final element, 
argv[argc], contains a null pointer (as required by the ISO C++ standard). 
When Ice::initialize returns, argc has the value 7 and argv contains 
the following elements:

./server 
--myoption 
-x 

2. See also Section 30.3.
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a 
-y 
opt 
file 
0             # Terminating null pointer

This means that you should initialize the Ice run time before you parse the 
command line for your application-specific arguments. That way, the Ice-related 
options are stripped from the argument vector for you so you do not need to 
explicitly skip them. If you use the Ice::Application helper class (see 
Section 8.3.1), the run member function is passed the cleaned-up argument 
vector as well.

For Java, Ice.Util.initialize is overloaded. The signatures are:

package Ice; 
public final class Util { 
 
    public static Communicator 
    initialize(); 
 
    public static Communicator 
    initialize(String[] args); 
 
    public static Communicator 
    initialize(StringSeqHolder args); 
 
    public static Communicator 
    initialize(InitializationData id); 
 
    public static Communicator 
    initialize(String[] args, InitializationData id); 
 
    public static Communicator 
    initialize(StringSeqHolder args, InitializationData id); 
     
 
    // ... 
}

The versions that accept an argument vector of type String[] do not strip Ice-
related options for you, so, if you use one of these methods, your code must ignore 
options that start with one of the reserved prefixes (--Ice, --IceBox, 
--IceGrid, --IcePatch2, --IceSSL, --IceStorm, --Freeze, and 
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--Glacier2). The versions that accept a StringSeqHolder behave like the 
C++ version and strip the Ice-related options from the passed argument vector.

In C# and Visual Basic .NET, the argument vector is passed by reference to the 
initialize method, allowing it to strip the Ice-related options:

namespace Ice { 
 
    public sealed class Util { 
 
        public static Communicator 
        initialize(); 
 
        public static Communicator 
        initialize(ref string[] args); 
 
        public static Communicator 
        initialize(InitializationData id); 
 
        public static Communicator 
        initialize(ref string[] args, InitializationData id); 
 
        // ... 
 
    } 
}

The Python implementation of initialize has the same semantics as C++ and 
.NET; it expects the argument vector to be passed as a list from which all Ice-
related options are removed.

If you use the Ice.Application helper class, the run method is passed 
the cleaned-up argument vector. The Ice.Application class is described in 
the server-side language mapping chapters.

28.7 The Ice.ProgramName property

For C++ and Python, initialize sets the Ice.ProgramName property to 
the name of the current program (argv[0]). In C# and Visual Basic .NET, 
initialize sets Ice.ProgramName to the value of System.AppDo-
main.CurrentDomain.FriendlyName.

Ice uses the program name for log messages. Your application code can read 
this property and use it for similar purposes, for example, in diagnostic or trace 
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messages. (See Section 28.8.1 for how to access the property value in your 
program.)

Even though Ice.ProgramName is initialized for you, you can still over-
ride its value from a configuration file or by setting the property on the command 
line.

For Java, the program name is not supplied as part of the argument vector—if 
you want the program name to appear in Ice log messages, you must set 
Ice.ProgramName before initializing a Java communicator.

28.8 Using Properties Programmatically

The Ice property mechanism is useful not only to configure Ice, but you can also 
use it as the configuration mechanism for your own applications. You can use the 
same configuration file and command-line mechanism to set application-specific 
properties. For example, we could introduce a property to control the maximum 
file size for our file system application:

# Configuration file for file system application 
 
Filesystem.MaxFileSize=1024    # Max file size in kB

The Ice run time stores the Filesystem.MaxFileSize property like any 
other property and makes it accessible via the Properties interface.

To access property values from within your program, you need to acquire the 
communicator’s properties by calling getProperties:

module Ice { 
 
    local interface Properties; // Forward declaration 
 
    local interface Communicator { 
 
        Properties getProperties(); 
 
        // ... 
    }; 
};

The Properties interface provides methods to read and write property settings:
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module Ice { 
    local dictionary<string, string> PropertyDict; 
 
    local interface Properties { 
 
        string getProperty(string key); 
        string getPropertyWithDefault(string key, string value); 
        int getPropertyAsInt(string key); 
        int getPropertyAsIntWithDefault(string key, int value); 
        PropertyDict getPropertiesForPrefix(string prefix); 
 
        void setProperty(string key, string value); 
 
        StringSeq getCommandLineOptions(); 
        StringSeq parseCommandLineOptions(string prefix, 
                                          StringSeq options); 
        StringSeq parseIceCommandLineOptions(StringSeq options); 
 
        void load(string file); 
 
        Properties clone(); 
    }; 
};

28.8.1 Reading Properties
The operations to read property values behave as follows:

• getProperty

This operation returns the value of the specified property. If the property is not 
set, the operation returns the empty string.

• getPropertyWithDefault

This operation returns the value of the specified property. If the property is not 
set, the operation returns the supplied default value.

• getPropertyAsInt

This operation returns the value of the specified property as an integer. If the 
property is not set or contains a string that does not parse as an integer, the 
operation returns zero.

• getPropertyAsIntWithDefault

This operation returns the value of the specified property as an integer. If the 
property is not set or contains a string that does not parse as an integer, the 
operation returns the supplied default value.
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• getPropertiesForPrefix

This operation returns all properties that begin with the specified prefix as a 
dictionary of type PropertyDict. This operation is useful if you want to 
extract the properties for a specific subsystem. For example,

getPropertiesForPrefix("Filesystem")

returns all properties that start with the prefix Filesystem, such as File-
system.MaxFileSize. You can then use the usual dictionary lookup 
operations to extract the properties of interest from the returned dictionary.

With these lookup operations, using application-specific properties now becomes 
the simple matter of initializing a communicator as usual, getting access to the 
communicator’s properties, and examining the desired property value. For 
example (in C++):

// ... 
 
Ice::CommunicatorPtr ic; 
 
// ... 
 
ic = Ice::initialize(argc, argv); 
 
// Get the maximum file size. 
// 
Ice::PropertiesPtr props = ic->getProperties(); 
Ice::Int maxSize 
    = props->getPropertyAsIntWithDefault("Filesystem.MaxFileSize", 
                                         1024); 
 
// ...

Assuming that you have created a configuration file that sets the File-
system.MaxFileSize property (and set the ICE_CONFIG variable or the 
--Ice.Config option accordingly), your application will pick up the config-
ured value of the property.

28.8.2 Setting Properties
The setProperty operation sets a property to the specified value. (You can clear a 
property by setting it to the empty string.) This operation is useful only if you call 
it before you call initialize. This is because property values are (usually) 
read by the Ice run time only once, when you call initialize. The Ice run 
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time does not guarantee that it will pay attention to a property value that is 
changed after you have initialized a communicator. Of course, this begs the ques-
tion of how you can set a property value and have it also recognized by a commu-
nicator.

To permit you to set properties before initializing a communicator, the Ice run 
time provides an overloaded helper function called createProperties that 
creates a property set. In C++, the function is in the Ice namespace:

namespace Ice { 
 
PropertiesPtr createProperties(const StringConverterPtr& = 0); 
PropertiesPtr createProperties(StringSeq&, 
                               const PropertiesPtr& = 0, 
                               const StringConverterPtr& = 0); 
PropertiesPtr createProperties(int&, char*[], 
                               const PropertiesPtr& = 0, 
                               const StringConverterPtr& = 0); 
 
}

The StringConverter parameter allows you to parse properties whose values 
contain non-ASCII characters and to correctly convert this character into the 
native codeset. (See Section 30.21 for details.) The converter that is passed to 
createProperties remains attached to the returned property set for the life 
time of the property set.

The function is overloaded to accept either an argc/argv pair, or a 
StringSeq (see Section 28.8.3 for details.)

In C#, the Util class in the Ice namespace supplies equivalent methods:

namespace Ice { 
    public sealed class Util { 
        public static Properties createProperties(); 
        public static Properties 
                createProperties(ref string[] args); 
        public static Properties 
                createProperties(ref string[] args, 
                                 Properties defaults); 
    } 
}

The Python method resides in the Ice module:

def createProperties(args=[])
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In Java, the functions are static methods of the Util class inside the Ice 
package:

package Ice; 
 
public final class Util 
{ 
    public static Properties 
    createProperties(); 
 
    public static Properties 
    createProperties(StringSeqHolder args); 
 
    public static Properties 
    createProperties(StringSeqHolder args, Properties defaults); 
 
    public static Properties 
    createProperties(String[] args); 
 
    public static Properties 
    createProperties(String[] args, Properties defaults); 
 
    // ... 
}

As for initialize (see Section 30.3), createProperties strips Ice-
related command-line options from the passed argument vector. (For Java, only 
the versions that accept a StringSeqHolder do this.)

Because Java cannot access environment variables, the Java implementation of 
createProperties always ignores the setting of the ICE_CONFIG environ-
ment variable. For the other languages, the functions behave as follows:

• The parameterless version of createProperties simply creates an empty 
property set. It does not check ICE_CONFIG for a configuration file to parse.

• The other overloads of createProperties accept an argument vector and 
a default property set. The returned property set contains all the property 
settings that are passed as the default, plus any property settings in the argu-
ment vector. If the argument vector sets a property that is also set in the passed 
default property set, the setting in the argument vector overrides the default.

The overloads that accept an argument vector also look for the 
--Ice.Config option; if the argument vector specifies a configuration file, 
the configuration file is parsed. The order of precedence of property settings, 
from lowest to highest, is:
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• Property settings passed in the default parameter

• Property settings set in the configuration file

• Property settings in the argument vector.

The overloads that accept an argument vector also look for the setting of the 
ICE_CONFIG environment variable (except for Java) and, if that variable 
specifies a configuration file, parse that file. (However, an explicit 
--Ice.Config option in the argument vector or the defaults parameter 
overrides any setting of the ICE_CONFIG environment variable.)

createProperties is useful if you want to ensure that a property is set to 
a particular value, regardless of any setting of that property in a configuration file 
or in the argument vector. For example:

// Get the initialized property set. 
// 
Ice::PropertiesPtr props = Ice::createProperties(argc, argv); 
 
// Make sure that network and protocol tracing are off. 
// 
props->setProperty("Ice.Trace.Network", "0"); 
props->setProperty("Ice.Trace.Protocol", "0"); 
 
// Initialize a communicator with these properties. 
// 
Ice::InitializationData id; 
id.properties = props; 
Ice::CommunicatorPtr ic = Ice::initialize(id); 
 
// ...

The equivalent Python code is shown next:

props = Ice.createProperties(sys.argv) 
props.setProperty("Ice.Trace.Network", "0") 
props.setProperty("Ice.Trace.Protocol", "0") 
Ice.InitializationData id; 
id.properties = props; 
ic = Ice.initialize(id)

The equivalent Java code looks as follows:
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Ice.StringSeqHolder argsH = new Ice.StringSeqHolder(args); 
Ice.Properties properties = Ice.Util.createProperties(argsH); 
properties.setProperty("Ice.Warn.Connections", "0"); 
properties.setProperty("Ice.Trace.Protocol", "0"); 
Ice.InitializationData id = new Ice.InitializationData(); 
id.properties = properties; 
communicator = Ice.Util.initialize(id);

We first convert the argument array to an initialized StringSeqHolder. This is 
necessary so createProperties can strip Ice-specific settings. In that way, 
we first obtain an initialized property set, then override the settings for the two 
tracing properties, and then set the properties in the InitializationData 
structure.

28.8.3 Parsing Properties
The Properties interface provides three operations to convert and parse properties:

• getCommandLineOptions

This operation converts an initialized set of properties into a sequence of 
equivalent command-line options. For example, if you have set the File-
system.MaxFileSize property to 1024 and call getCommandLineOp-
tions, the setting is returned as the string 
"Filesystem.MaxFileSize=1024". This operation is useful for diag-
nostic purposes, for example, to dump the setting of all properties to a logging 
facility (see Section 30.18), or if you want to fork a new process with the same 
property settings as the current process.

• parseCommandLineOptions

This operation examines the passed argument vector for command-line 
options that have the specified prefix. Any options that match the prefix are 
converted to property settings (that is, they initialize the corresponding prop-
erties). The operation returns an argument vector that contains all those 
options that were not converted (that is, those options that did not match the 
prefix).

Because parseCommandLineOptions expects a sequence of strings, but 
C++ programs are used to dealing with argc and argv, Ice provides two 
utility functions that convert an argc/argv vector into a sequence of strings 
and vice-versa:

namespace Ice { 
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    StringSeq argsToStringSeq(int argc, char* argv[]); 
 
    void stringSeqToArgs(const StringSeq& args, 
                         int& argc, char* argv[]); 
 
}

You need to use parseCommandLineOptions (and the utility functions) if you 
want to permit application-specific properties to be set from the command 
line. For example, to permit the --Filesystem.MaxFileSize option to 
be used on the command line, we need to initialize our program as follows:

int 
main(int argc, char* argv[]) 
{ 
    // Create an empty property set. 
    // 
    Ice::PropertiesPtr props = Ice::createProperties(); 
 
    // Convert argc/argv to a string sequence. 
    // 
    Ice::StringSeq args = Ice::argsToStringSeq(argc, argv); 
 
    // Strip out all options beginning with --Filesystem. 
    // 
    args = props->parseCommandLineOptions("Filesystem", args); 
 
    // args now contains only those options that were not 
    // stripped. Any options beginning with --Filesystem have 
    // been converted to properties. 
 
    // Convert remaining arguments back to argc/argv vector. 
    // 
    Ice::stringSeqToArgs(args, argc, argv); 
 
    // Initialize communicator. 
    // 
    Ice::InitializationData id; 
    id.props = props; 
    Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id); 
 
    // At this point, argc/argv only contain options that 
    // set neither an Ice property nor a Filesystem property, 
    // so we can parse these options as usual. 
    // 
    // ... 
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}

Using this code, any options beginning with --Filesystem are converted 
to properties and are available via the property lookup operations as usual. 
The call to initialize then removes any Ice-specific command-line 
options so, once the communicator is created, argc/argv only contains 
options and arguments that are not related to setting either a filesystem or an 
Ice property.

• parseIceCommandLineOptions

This operation behaves like parseCommandLineOptions, but removes the 
reserved Ice-specific options from the argument vector (see Section 28.2.2). It 
is used internally by the Ice run time to parse Ice-specific options in 
initialize.

28.8.4 Utility Operations
The Properties interface provides two utility operations:

• clone

This operation makes a copy of an existing property set. The copy contains 
exactly the same properties and values as the original.

• load

This operation accepts a pathname to a configuration file and initializes the 
property set from that file. If the specified file cannot be read (for example, 
because it does not exist or the caller does not have read permission), the oper-
ation throws a FileException.

These operations are useful if you need to work with multiple communicators that 
use different property sets.

28.9 Summary

The Ice property mechanism provides a simple way to configure Ice by setting 
properties in configuration files or on the command line. This also applies to your 
own applications: you can easily use the Properties interface to access applica-
tion-specific properties that you have created for your own needs. The API to 
access property values is small and simple, making it easy to retrieve property 
values at run time, yet is flexible enough to allow you to work with different prop-
erty sets and configuration files if the need arises.
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Chapter 29
Threads and Concurrency with C++

29.1 Chapter Overview

This chapter presents the C++ threading and signal handling abstractions that are 
provided by Ice. (For other language mappings, Ice uses the built-in threading and 
synchronization facilities.) We briefly describe how to use each of the available 
synchronization primitives (mutexes and monitors). We then cover how to create, 
control, and destroy threads. The threading discussion concludes with a brief 
example that shows how to create a thread-safe producer-consumer application 
that uses several threads. Finally, we introduce a portable abstraction for handling 
signals and signal-like events.

29.2 Introduction

Threading and concurrency control vary widely with different operating systems. 
To make threads programming easier and portable, Ice provides a simple thread 
abstraction layer that allows you to write portable source code regardless of the 
underlying platform. In this chapter, we take a closer look at the threading and 
concurrency control mechanisms in Ice for C++.

Note that we assume that you are familiar with light-weight threads and 
concurrency control. (See [8] for an excellent treatment of programming with 
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threads.) Also see Section 30.9, which provides a language-neutral introduction to 
the Ice threading model.

29.3 Library Overview

The Ice threading library provides the following thread-related abstractions:

• mutexes

• recursive mutexes

• read-write recursive mutexes

• monitors

• a thread abstraction that allows you to create, control, and destroy threads

The synchronization primitives permit you to implement concurrency control at 
different levels of granularity. In addition, the thread abstraction allows you to, for 
example, create a separate thread that can respond to GUI or other asynchronous 
events. All of the threading APIs are part of the IceUtil namespace.

29.4 Mutexes

The classes IceUtil::Mutex (defined in IceUtil/Mutex.h) and 
IceUtil::StaticMutex (defined in IceUtil/StaticMutex.h) 
provide simple non-recursive mutual exclusion mechanisms:

namespace IceUtil { 
 
    class Mutex { 
    public: 
        Mutex(); 
        ~Mutex(); 
        void lock() const; 
        bool tryLock() const; 
        void unlock() const; 
 
        typedef LockT<Mutex> Lock; 
        typedef TryLockT<Mutex> TryLock; 
    }; 
 
    struct StaticMutex { 
        void lock() const; 
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        bool tryLock() const; 
        void unlock() const; 
 
        typedef LockT<StaticMutex> Lock; 
        typedef TryLockT<StaticMutex> TryLock; 
    }; 
}

IceUtil::Mutex and IceUtil::StaticMutex have identical behavior, 
but IceUtil::StaticMutex is implemented as a simple data structure1 so 
that instances can be declared statically and initialized during compilation, as 
demonstrated below.

static IceUtil::StaticMutex myStaticMutex = 
    ICE_STATIC_MUTEX_INITIALIZER;

The preprocessor macro ICE_STATIC_MUTEX_INITIALIZER is defined to 
correctly initialize the data members of IceUtil::StaticMutex. Instances 
of IceUtil::StaticMutex are never destroyed.

IceUtil::Mutex, on the other hand, is implemented as a class and there-
fore is initialized by its constructor and destroyed by its destructor.

The member functions of these classes work as follows:

• lock

The lock function attempts to acquire the mutex. If the mutex is already 
locked, it suspends the calling thread until the mutex becomes available. The 
call returns once the calling thread has acquired the mutex.

• tryLock

The tryLock function attempts to acquire the mutex. If the mutex is avail-
able, the call returns with the mutex locked and returns true. Otherwise, if 
the mutex is locked by another thread, the call returns false.

• unlock

The unlock function unlocks the mutex.

Note that IceUtil::Mutex and IceUtil::StaticMutex are non-recur-
sive mutex implementations. This means that you must adhere to the following 
rules:

1. In ISO C++ terminology, StaticMutex is “plain old data” (POD).
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• Do not call lock on the same mutex more than once from a thread. The 
mutex is not recursive so, if the owner of a mutex attempts to lock it a second 
time, the behavior is undefined.

• Do not call unlock on a mutex unless the calling thread holds the lock. 
Calling unlock on a mutex that is not currently held by any thread, or calling 
unlock on a mutex that is held by a different thread, results in undefined 
behavior.

29.4.1 Thread-Safe File Access for the Filesystem Application
Recall that the implementation of the read and write operations for our file 
system server in Section 9.2.3 is not thread safe:

Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    return _lines;      // Not thread safe! 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    _lines = text;      // Not thread safe! 
}

The problem here is that, if we receive concurrent invocations of read and 
write, one thread will be assigning to the _lines vector while another thread 
is reading that same vector. The outcome of such concurrent data access is unde-
fined; to avoid the problem, we need to serialize access to the _lines member 
with a mutex. We can make the mutex a data member of the FileI class and lock 
and unlock it in the read and write operations:

#include <IceUtil/Mutex.h> 
// ... 
 
namespace Filesystem { 
    // ... 
 
    class FileI : virtual public File, 
                  virtual public Filesystem::NodeI { 
    public: 
        // As before... 
    private: 
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        Lines _lines; 
        IceUtil::Mutex _fileMutex; 
    }; 
    // ... 
} 
 
Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    _fileMutex.lock(); 
    Lines l = _lines; 
    _fileMutex.unlock(); 
    return l; 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    _fileMutex.lock(); 
    _lines = text; 
    _fileMutex.unlock(); 
}

The FileI class here is identical to the implementation in Section 9.2.2, except 
that we have added the _fileMutex data member. The read and write oper-
ations lock and unlock the mutex to ensure that only one thread can read or write 
the file at a time. Note that, by using a separate mutex for each FileI instance, it 
is still possible for multiple threads to concurrently read or write files, as long as 
they each access a different file. Only concurrent accesses to the same file are seri-
alized.

The implementation of read is somewhat awkward here: we must make a 
local copy of the file contents while we are holding the lock and return that copy. 
Doing so is necessary because we must unlock the mutex before we can return 
from the function. However, as we will see in the next section, the copy can be 
avoided by using a helper class that unlocks the mutex automatically when the 
function returns.

29.4.2 Guaranteed Unlocking of Mutexes
Using the raw lock and unlock operations on mutexes has an inherent 
problem: if you forget to unlock a mutex, your program will deadlock. Forgetting 
to unlock a mutex is easier than you might suspect, for example:
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Filesystem::Lines 
Filesystem::File::read(const Ice::Current&) const 
{ 
    _fileMutex.lock();                  // Lock the mutex 
    Lines l = readFileContents();       // Read from database 
    _fileMutex.unlock();                // Unlock the mutex 
    return l; 
}

Assume that we are keeping the contents of the file on secondary storage, such as 
a database, and that the readFileContents function accesses the file. The 
code is almost identical to the previous example but now contains a latent bug: if 
readFileContents throws an exception, the read function terminates 
without ever unlocking the mutex. In other words, this implementation of read is 
not exception-safe.

The same problem can easily arise if you have a larger function with multiple 
return paths. For example:

void 
SomeClass::someFunction(/* params here... */) 
{ 
    _mutex.lock();                      // Lock a mutex 
 
    // Lots of complex code here... 
 
    if (someCondition) { 
        // More complex code here... 
        return;                         // Oops!!! 
    } 
 
    // More code here... 
 
    _mutex.unlock();                    // Unlock the mutex 
}

In this example, the early return from the middle of the function leaves the mutex 
locked. Even though this example makes the problem quite obvious, in large and 
complex pieces of code, both exceptions and early returns can cause hard-to-track 
deadlock problems. To avoid this, the Mutex class contains two type definitions 
for helper classes, called Lock and TryLock:

namespace IceUtil { 
 
    class Mutex { 
        // ... 
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        typedef LockT<Mutex> Lock; 
        typedef TryLockT<Mutex> TryLock; 
    }; 
}

LockT and TryLockT are simple templates that primarily consist of a 
constructor and a destructor; the constructor calls lock on its argument, and the 
destructor calls unlock. By instantiating a local variable of type Lock or 
TryLock, we can avoid the deadlock problem entirely:2

void 
SomeClass::someFunction(/* params here... */) 
{ 
    IceUtil::Mutex::Lock lock(_mutex);  // Lock a mutex 
 
    // Lots of complex code here... 
 
    if (someCondition) { 
        // More complex code here... 
        return;                         // No problem 
    } 
 
    // More code here... 
 
}   // Destructor of lock unlocks the mutex

On entry to someFunction, we instantiate a local variable lock, of type 
IceUtil::Mutex::Lock. The constructor of lock calls lock on the mutex 
so the remainder of the function is inside a critical region. Eventually, some-
Function returns, either via an ordinary return (in the middle of the function or 
at the end) or because an exception was thrown somewhere in the function body. 
Regardless of how the function terminates, the C++ run time unwinds the stack 
and calls the destructor of lock, which unlocks the mutex, so we cannot get 
trapped by the deadlock problem we had previously.

You should make it a habit to always use the Lock and TryLock helpers 
instead of calling lock and unlock directly. Doing so results in code that is 
easier to understand and maintain.

Using the Lock helper, we can rewrite the implementation of our read and 
write operations as follows:

2. This is an example of the RAII (Resource Acquisition Is Initialization) idiom [20].
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Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    IceUtil::Mutex::Lock lock(_fileMutex); 
    return _lines; 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    IceUtil::Mutex::Lock lock(_fileMutex); 
    _lines = text; 
}

Note that this also eliminates the need to make a copy of the _lines data 
member: the return value is initialized under protection of the mutex and cannot 
be modified by another thread once the destructor of lock unlocks the mutex.

29.5 Recursive Mutexes

As we saw on page 694, a non-recursive mutex cannot be locked more than once, 
even by the thread that holds the lock. This frequently becomes a problem if a 
program contains a number of functions, each of which must acquire a mutex, and 
you want to call one function as part of the implementation of another function:

IceUtil::Mutex _mutex; 
 
void 
f1() 
{ 
    IceUtil::Mutex::Lock lock(_mutex); 
    // ... 
} 
 
void 
f2() 
{ 
    IceUtil::Mutex::Lock lock(_mutex); 
    // Some code here... 
 
    // Call f1 as a helper function 
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    f1();                               // Deadlock! 
 
    // More code here... 
}

f1 and f2 each correctly lock the mutex before manipulating data but, as part of 
its implementation, f2 calls f1. At that point, the program deadlocks because f2 
already holds the lock that f1 is trying to acquire. For this simple example, the 
problem is obvious. However, in complex systems with many functions that 
acquire and release locks, it can get very difficult to track down this kind of situa-
tion: the locking conventions are not manifest anywhere but in the source code 
and each caller must know which locks to acquire (or not to acquire) before 
calling a function. The resulting complexity can quickly get out of hand.

Ice provides a recursive mutex class RecMutex (defined in 
IceUtil/RecMutex.h) that avoids this problem:

namespace IceUtil { 
 
    class RecMutex { 
    public: 
        void lock() const; 
        bool tryLock() const; 
        void unlock() const; 
 
        typedef LockT<RecMutex> Lock; 
        typedef TryLockT<RecMutex> TryLock; 
    }; 
}

Note that the signatures of the operations are the same as for 
IceUtil::Mutex. However, RecMutex implements a recursive mutex:

• lock

The lock function attempts to acquire the mutex. If the mutex is already 
locked by another thread, it suspends the calling thread until the mutex 
becomes available. If the mutex is available or is already locked by the calling 
thread, the call returns immediately with the mutex locked.

• tryLock

The tryLock function works like lock, but, instead of blocking the caller, 
it returns false if the mutex is locked by another thread. Otherwise, the 
return value is true.
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• unlock

The unlock function unlocks the mutex.

As for non-recursive mutexes, you must adhere to a few simple rules for recursive 
mutexes:

• Do not call unlock on a mutex unless the calling thread holds the lock.

• You must call unlock as many times as you called lock for the mutex to 
become available to another thread. (Internally, a recursive mutex is imple-
mented with a counter that is initialized to zero. Each call to lock increments 
the counter and each call to unlock decrements the counter; the mutex is 
made available to another thread when the counter returns to zero.)

Using recursive mutexes, the code fragment on page 698 works correctly:

#include <IceUtil/RecMutex.h> 
// ... 
 
IceUtil::RecMutex _mutex;       // Recursive mutex 
 
void 
f1() 
{ 
    IceUtil::RecMutex::Lock lock(_mutex); 
    // ... 
} 
 
void 
f2() 
{ 
    IceUtil::RecMutex::Lock lock(_mutex); 
    // Some code here... 
 
    // Call f1 as a helper function 
    f1();                               // Fine 
 
    // More code here... 
}

Note that the type of the mutex is now RecMutex instead of Mutex, and that we 
are using the Lock type definition provided by the RecMutex class, not the one 
provided by the Mutex class.
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29.6 Read-Write Recursive Mutexes

The implementation of our read and write operations on page 698 is more 
conservative in its locking than strictly necessary: only one thread can be in either 
the read or write operation at a time. However, we have problems with concur-
rent file access only if we have concurrent writers, or concurrent readers and 
writers for the same file. However, if we have only readers, there is no need to 
serialize access for all the reading threads because none of them updates the file 
contents.

Ice provides a read-write recursive mutex class RWRecMutex (defined in 
IceUtil/RWRecMutex.h) that implements a reader-writer lock:

namespace IceUtil { 
 
    class RWRecMutex { 
    public: 
        void readLock() const; 
        bool tryReadLock() const; 
        bool timedReadLock(const Time&) const; 
 
        void writeLock() const; 
        bool tryWriteLock() const; 
        bool timedWriteLock(const Time&) const; 
 
        void unlock() const; 
 
        void upgrade() const; 
        bool timedUpgrade(const Time&) const; 
        void downgrade() const; 
 
        typedef RLockT<RWRecMutex> RLock; 
        typedef TryRLockT<RWRecMutex> TryRLock; 
        typedef WLockT<RWRecMutex> WLock; 
        typedef TryWLockT<RWRecMutex> TryWLock; 
    }; 
}

A read-write recursive mutex splits the usual single lock operation into read-
Lock and writeLock operations. Multiple readers can each acquire the mutex 
in parallel. However, only a single writer can hold the mutex at any one time (with 
neither other readers nor other writers being present). A RWRecMutex is recur-
sive, meaning that you can call readLock or writeLock multiple times from 
the same calling thread.
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The member functions behave as follows:

• readLock

This function acquires a read lock. If a writer currently holds the mutex or a 
thread is waiting for a lock upgrade, the caller is suspended until the mutex 
becomes available for reading. If the mutex is available, or only readers 
currently hold the mutex, the call returns immediately with the mutex locked.

• tryReadLock

This function attempts to acquire a read lock. If the lock is currently held by a 
writer or a thread is waiting for a lock upgrade, the function returns false. 
Otherwise, it acquires the lock and returns true.

• timedReadLock

This function attempts to acquire a read lock. If the lock is currently held by a 
writer or another thread is waiting for an upgrade, the function waits for the 
specified timeout. If the lock can be acquired within the timeout, the function 
returns true with the lock held. Otherwise, once the timeout expires, the 
function returns false. (See Section 29.7 for how to construct a timeout 
value.)

• writeLock

This function acquires a write lock. If readers or a writer currently hold the 
mutex or another thread is waiting for an upgrade, the caller is suspended until 
the mutex becomes available for writing. If the mutex is available, the call 
returns immediately with the lock held.

• tryWriteLock

This function attempts to acquire a write lock. If the lock is currently held by 
readers or a writer, or if another thread is waiting for an upgrade, the function 
returns false. Otherwise, it acquires the lock and returns true.

• timedWriteLock

This function attempts to acquire a write lock. If the lock is currently held by 
readers or a writer, or if another thread is waiting for an upgrade, the function 
waits for the specified timeout. If the lock can be acquired within the timeout, 
the function returns true with the lock held. Otherwise, once the timeout 
expires, the function returns false. (See Section 29.7 for how to construct a 
timeout value.)
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• unlock

This function unlocks the mutex (whether currently held for reading or 
writing).

• upgrade

This function upgrades a read lock to a write lock. If other readers currently 
hold the mutex, the caller is suspended until the mutex becomes available for 
writing. If the mutex is available, the call returns immediately with the lock 
held.

Only one reader can attempt to upgrade a lock at a time. If several threads call 
upgrade, all but the first thread receive a DeadlockException.

Note that upgrade is non-recursive. Do not call it more than once from the 
same thread.

• timedUpgrade

This function attempts to upgrade a read lock to a write lock. If the lock is 
currently held by other readers, the function waits for the specified timeout. If 
the lock can be acquired within the timeout, the function returns true with 
the lock held. Otherwise, once the timeout expires, the function returns 
false. (See Section 29.7 for how to construct a timeout value.) If another 
thread is waiting to upgrade the lock, timedUpgrade returns false imme-
diately.

Note that timedUpgrade is non-recursive. Do not call it more than once 
from the same thread.

• downgrade

This function converts a write lock to a read lock.

As for non-recursive and recursive mutexes, you must adhere to a few rules for 
correct use of read-write locks:

• Do not call unlock on a mutex unless the calling thread holds the lock.

• You must call unlock as many times as you called readLock or write-
Lock (or upgrade or successful timedUpgrade) for the mutex to 
become available to another thread.

• Do not call upgrade or timedUpgrade on a mutex for which you do not 
hold a read lock.

• upgrade and timedUpgrade are non-recursive (because making them 
recursive would incur an unacceptable performance penalty). Do not call these 
methods more than once from the same thread.
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• Do not call downgrade on a mutex unless the calling thread holds a write 
lock.

• You must call downgrade (or unlock) as many times as you called 
writeLock and upgrade (or successfully called timedUpgrade) for the 
mutex to become available to another thread.

The implementation of read-write recursive mutexes gives preference to writers: if 
a writer is waiting to acquire the lock, no new readers are permitted to acquire the 
lock; the implementations waits until all current readers relinquish the lock and 
then locks the mutex for the waiting writer. Similarly, the implementation gives 
preference to a thread that wants to upgrade the lock; no new readers or writers 
can acquire the lock until the upgrade is complete.

Note that mutexes do not implement any notion of fairness: if multiple writers 
are continuously waiting to acquire a write lock, which writer gets the lock next 
depends on the underlying threads implementation. There is no queue of waiting 
writers to ensure that none of the writers are permanently starved of access to the 
mutex.

Using a RWRecMutex, we can implement our read and write operations to 
allow multiple readers in parallel, or a single writer:

#include <IceUtil/RWRecMutex.h> 
// ... 
 
namespace Filesystem { 
    // ... 
 
    class FileI : virtual public File, 
                  virtual public Filesystem::NodeI { 
    public: 
        // As before... 
    private: 
        Lines _lines; 
        IceUtil::RWRecMutex _fileMutex; // Read-write mutex 
    }; 
    // ... 
} 
 
Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    IceUtil::RWRecMutex::RLock lock(_fileMutex);    // Read lock 
    return _lines; 
} 
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void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    IceUtil::RWRecMutex::WLock lock(_fileMutex);    // Write lock 
    _lines = text; 
}

This code is almost identical to the non-recursive version on page 694. Note that 
the only changes are that we have changed the type of the mutex in the servant to 
RWRecMutex and that we are using the RLock and WLock helpers to guarantee 
unlocking instead of calling readLock and writeLock directly.

29.7 Timed Locks

As we saw on page 701, read-write locks provide member functions that operate 
with a timeout. The amount of time to wait is specified by an instance of the 
IceUtil::Time class (defined in IceUtil/Time.h):

namespace IceUtil { 
 
    class Time { 
    public: 
        Time(); 
        static Time now(); 
        static Time seconds(long long); 
        static Time milliSeconds(long long); 
        static Time microSeconds(long long); 
 
        long long toSeconds() const; 
        long long toMilliSeconds() const; 
        long long toMicroSeconds() const; 
 
        double toSecondsDouble() const; 
        double toMilliSecondsDouble() const; 
        double toMicroSecondsDouble() const; 
 
        std::string toDateTime() const; 
        std::string toDuration() const; 
 
        Time operator-() const; 
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        Time operator-(const Time&) const; 
        Time operator+(const Time&) const; 
 
        Time operator*(int) const; 
        Time operator*(long long) const; 
        Time operator*(double) const; 
 
        double operator/(const Time&) const; 
        Time operator/(int) const; 
        Time operator/(long long) const; 
        Time operator/(double) const; 
 
        Time& operator-=(const Time&); 
        Time& operator+=(const Time&); 
 
        Time& operator*=(int); 
        Time& operator*=(long long); 
        Time& operator*=(double); 
 
        Time& operator/=(int); 
        Time& operator/=(long long); 
        Time& operator/=(double); 
 
        bool operator<(const Time&) const; 
        bool operator<=(const Time&) const; 
        bool operator>(const Time&) const; 
        bool operator>=(const Time&) const; 
        bool operator==(const Time&) const; 
        bool operator!=(const Time&) const; 
 
#ifndef _WIN32 
        operator timeval() const; 
#endif 
    }; 
}

The Time class provides basic facilities for getting the current time, constructing 
time intervals, adding and subtracting times, and comparing times:

• Time

Internally, the Time class stores ticks in microsecond units. For absolute time, 
this is the number of microseconds since the UNIX epoch (00:00:00 UTC on 
1 Jan. 1970). For durations, this is the number of microseconds in the dura-
tion. The default constructor initializes the tick count to zero.
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• now

This function constructs a Time object that is initialized to the current time of 
day.

• seconds 
milliSeconds 
microSeconds

These functions construct Time objects from the argument in the specified 
units. For example, the following code fragment creates a time duration of one 
minute:

IceUtil::Time t = IceUtil::Time::seconds(60);

• toSeconds 
toMilliSeconds 
toMicroSeconds

The member functions provide explicit conversion of a duration to seconds, 
milliseconds, and microseconds, respectively. The return value is a 64-bit 
signed integer (long long).

IceUtil::Time t = IceUtil::Time::milliSeconds(2000); 
long long secs = t.toSeconds(); // Returns 2

• toSecondsDouble 
toMilliSecondsDouble 
toMicroSecondsDouble

The member functions provide explicit conversion of a duration to seconds, 
milliseconds, and microseconds, respectively. The return value is of type 
double.

• toDateTime

This function returns a human-readable representation of a Time value as a 
date and time.

• toDuration

This function returns a human-readable representation fo a Time value as a 
duration.

• operator- 
operator+ 
operator* 
operator/ 
operator-= 
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operator+= 
operator*= 
operator/=

These operators allow you to add, subtract, multiply, and divide times. For 
example:

IceUtil::Time oneMinute = IceUtil::Time::seconds(60); 
IceUtil::Time oneMinuteAgo = IceUtil::Time::now() - oneMinute;

The multiplication and division operators permit you to multiply and divide a 
duration. Note that these operators provide overloads for int, long long, 
and double.

• The comparison operators allow you to compare times and time intervals with 
each other, for example:

IceUtil::Time oneMinute  = IceUtil::Time::seconds(60); 
IceUtil::Time twoMinutes = IceUtil::Time::seconds(120); 
assert(oneMinute < twoMinutes);

• operator timeval

This operator converts a Time object to a struct timeval, defined as 
follows:

struct timeval { 
    long tv_sec; 
    long tv_usec; 
};

The conversion is useful for API calls that require a struct timeval 
argument, such as select. To convert a duration into a timeval structure, 
simply assign a Time object to a struct timeval:

IceUtil::Time oneMinute = IceUtil::Time::seconds(60); 
struct timeval tv; 
tv = t;

Note that this member function is not available under Windows.

Using a Time object with a timed lock operation is trivial, for example:

#include <IceUtil/RWRecMutex.h> 
 
// ... 
IceUtil::RWRecMutex _mutex; 
 
// ... 
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// Wait for up to two seconds to get a write lock... 
// 
IceUtil::RWRecMutex::TryWLock 
    lock(_mutex, IceUtil::Time::seconds(2)); 
 
if(lock.acquired()) 
{ 
    // Got the lock -- destructor of lock will unlock 
} 
else 
{ 
    // Waited for two seconds without getting the lock... 
}

Note that the TryRLock and TryWLock constructors are overloaded: if you 
supply only a mutex as the sole argument, the constructor calls tryReadLock or 
tryWriteLock; if you supply both a mutex and a timeout, the constructor calls 
timedReadLock or timedWriteLock.

29.8 Monitors

Mutexes implement a simple mutual exclusion mechanism that allows only a 
single thread (or, in the case of read-write mutexes, a single writer thread or 
multiple reader threads) to be active in a critical region at a time. In particular, for 
another thread to enter the critical region, another thread must leave it. This means 
that, with mutexes, it is impossible to suspend a thread inside a critical region and 
have that thread wake up again at a later time, for example, when a condition 
becomes true.

To address this problem, Ice provides a monitor. Briefly, a monitor is a 
synchronization mechanism that protects a critical region: as for a mutex, only one 
thread may be active at a time inside the critical region. However, a monitor 
allows you to suspend a thread inside the critical region; doing so allows another 
thread to enter the critical region. The second thread can either leave the monitor 
(thereby unlocking the monitor), or it can suspend itself inside the monitor; either 
way, the original thread is woken up and continues execution inside the monitor. 
This extends to any number of threads, so several threads can be suspended inside 
a monitor.3

Monitors provide a more flexible mutual exclusion mechanism than mutexes 
because they allow a thread to check a condition and, if the condition is false, put 
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itself to sleep; the thread is woken up by some other thread that has changed the 
condition.

29.8.1 The Monitor Class
Ice provides monitors with the IceUtil::Monitor class (defined in 
IceUtil/Monitor.h):

namespace IceUtil { 
 
    template <class T> 
    class Monitor { 
    public: 
        void lock() const; 
        void unlock() const; 
        bool tryLock() const; 
 
        void wait() const; 
        bool timedWait(const Time&) const; 
        void notify(); 
        void notifyAll(); 
 
        typedef LockT<Monitor<T> > Lock; 
        typedef TryLockT<Monitor<T> > TryLock; 
    }; 
}

Note that Monitor is a template class that requires either Mutex or RecMutex 
as its template parameter. (Instantiating a Monitor with a RecMutex makes the 
monitor recursive.)

The member functions behave as follows:

• lock

This function attempts to lock the monitor. If the monitor is currently locked 
by another thread, the calling thread is suspended until the monitor becomes 
available. The call returns with the monitor locked.

3. The monitors provided by Ice have Mesa semantics, so called because they were first imple-
mented by the Mesa programming language [12]. Mesa monitors are provided by a number of 
languages, including Java and Ada. With Mesa semantics, the signalling thread continues to run 
and another thread gets to run only once the signalling thread suspends itself or leaves the 
monitor.
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• tryLock

This function attempts to lock a monitor. If the monitor is available, the call 
returns true with the monitor locked. If the monitor is locked by another 
thread, the call returns false.

• unlock

This function unlocks a monitor. If other threads are waiting to enter the 
monitor (are blocked inside a call to lock), one of the threads is woken up 
and locks the monitor.

• wait

This function suspends the calling thread and, at the same time, releases the 
lock on the monitor. A thread suspended inside a call to wait can be woken 
up by another thread that calls notify or notifyAll. When the call 
returns, the suspended thread resumes execution with the monitor locked.

• timedWait

This function suspends the calling thread for up to the specified timeout. If 
another thread calls notify or notifyAll and wakes up the suspended 
thread before the timeout expires, the call returns true and the suspended 
thread resumes execution with the monitor locked. Otherwise, if the timeout 
expires, the function returns false.

• notify

This function wakes up a single thread that is currently suspended in a call to 
wait. If no thread is suspended in a call to wait at the time notify is 
called, the notification is lost (that is, calls to notify are not remembered if 
there is no thread to be woken up).

Note that notifying does not run another thread immediately. Another thread 
gets to run only once the notifying thread either calls wait or unlocks the 
monitor (Mesa semantics).

• notifyAll

This function wakes up all threads that are currently suspended in a call to 
wait. As for notify, calls to notifyAll are lost if no threads are 
suspended at the time.

As for notify, notifyAll causes other threads to run only once the noti-
fying thread has either called wait or unlocked the monitor (Mesa seman-
tics).

You must adhere to a few rules for monitors to work correctly:
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• Do not call unlock unless you hold the lock. If you instantiate a monitor 
with a recursive mutex, you get recursive semantics, that is, you must call 
unlock as many times as you have called lock (or tryLock) for the 
monitor to become available.

• Do not call wait or timedWait unless you hold the lock.

• Do not call notify or notifyAll unless you hold the lock.

• When returning from a wait call, you must re-test the condition before 
proceeding (see page 714).

29.8.2 Using Monitors
To illustrate how to use a monitor, consider a simple unbounded queue of items. A 
number of producer threads add items to the queue, and a number of consumer 
threads remove items from the queue. If the queue becomes empty, consumers 
must wait until a producer puts a new item on the queue. The queue itself is a crit-
ical region, that is, we cannot allow a producer to put an item on the queue while a 
consumer is removing an item. Here is a very simple implementation of a such a 
queue:

template<class T> class Queue { 
public: 
    void put(const T& item) { 
        _q.push_back(item); 
    } 
 
    T get() { 
        T item = _q.front(); 
        _q.pop_front(); 
        return item; 
    } 
 
private: 
    list<T> _q; 
};

As you can see, producers call the put method to enqueue an item, and 
consumers call the get method to dequeue an item. Obviously, this implementa-
tion of the queue is not thread-safe and there is nothing to stop a consumer from 
attempting to dequeue an item from an empty queue.

Here is a version of the queue that uses a monitor to suspend a consumer if the 
queue is empty:
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#include <IceUtil/Monitor.h> 
 
template<class T> class Queue 
    : public IceUtil::Monitor<IceUtil::Mutex> { 
public: 
    void put(const T& item) { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        _q.push_back(item); 
        notify(); 
    } 
 
    T get() { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        while (_q.size() == 0) 
            wait(); 
        T item = _q.front(); 
        _q.pop_front(); 
        return item; 
    } 
 
private: 
    list<T> _q; 
};

Note that the Queue class now inherits from 
IceUtil::Monitor<IceUtil::Mutex>, that is, Queue is-a monitor.

Both the put and get methods lock the monitor when they are called. As for 
mutexes, instead of calling lock and unlock directly, we are using the Lock 
helper which automatically locks the monitor when it is instantiated and unlocks 
the monitor again when it is destroyed.

The put method first locks the monitor and then, now being in sole posses-
sion of the critical region, enqueues an item. Before returning (thereby unlocking 
the monitor), put calls notify. The call to notify will wake up any consumer 
thread that may be asleep in a wait call to inform the consumer that an item is 
available.

The get method also locks the monitor and then, before attempting to 
dequeue an item, tests whether the queue is empty. If so, the consumer calls 
wait. This suspends the consumer inside the wait call and unlocks the monitor, 
so a producer can enter the monitor to enqueue an item. Once that happens, the 
producer calls notify, which causes the consumer’s wait call to complete, 
with the monitor again locked for the consumer. The consumer now dequeues an 
item and returns (thereby unlocking the monitor).
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For this machinery to work correctly, the implementation of get does two 
things:

• get tests whether the queue is empty after acquiring the lock.

• get re-tests the condition in a loop around the call to wait; if the queue is 
still empty after wait returns, the wait call is re-entered.

You must always write your code to follow the same pattern:

• Never test a condition unless you hold the lock.

• Always re-test the condition in a loop around wait. If the test still shows the 
wrong outcome, call wait again.

Not adhering to these conditions will eventually result in a thread accessing shared 
data when it is not in its expected state, for the following reasons:

1. If you test a condition without holding the lock, there is nothing to prevent 
another thread from entering the monitor and changing its state before you can 
acquire the lock. This means that, by the time you get around to locking the 
monitor, the state of the monitor may no longer be in agreement with the result 
of the test.

2. Some thread implementations suffer from a problem known as spurious wake-
up: occasionally, more than one thread may wake up in response to a call to 
notify, or a thread may wake up without any call to notify at all. As a 
result, each thread that returns from a call to wait must re-test the condition 
to ensure that the monitor is in its expected state: the fact that wait returns 
does not indicate that the condition has changed.

29.8.3 Efficient Notification
The previous implementation of our thread-safe queue on page 713 uncondition-
ally notifies a waiting reader whenever a writer deposits an item into the queue. If 
no reader is waiting, the notification is lost and does no harm. However, unless 
there is only a single reader and writer, many notifications will be sent unneces-
sarily, causing unwanted overhead.

Here is one way to fix the problem:

#include <IceUtil/Monitor.h> 
 
template<class T> class Queue 
    : public IceUtil::Monitor<IceUtil::Mutex> { 
public: 
    void put(const T& item) { 
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        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        _q.push_back(item); 
        if (_q.size() == 1) 
            notify(); 
    } 
 
    T get() { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        while (_q.size() == 0) 
            wait(); 
        T item = _q.front(); 
        _q.pop_front(); 
        return item; 
    } 
 
private: 
    list<T> _q; 
};

The only difference between this code and the implementation on page 713 is that 
a writer calls notify only if the queue length has just changed from empty to 
non-empty. That way, unnecessary notify calls are never made. However, this 
approach works only for a single reader thread. To see why, consider the following 
scenario:

1. Assume that the queue currently contains a number of items and that we have 
five reader threads.

2. The five reader threads continue to call get until the queue becomes empty 
and all five readers are waiting in get.

3. The scheduler schedules a writer thread. The writer finds the queue empty, 
deposits an item, and wakes up a single reader thread.

4. The awakened reader thread dequeues the single item on the queue.

5. The reader calls get a second time, finds the queue empty, and goes to sleep 
again.

The net effect of this is that there is a good chance that only one reader thread will 
ever be active; the other four reader threads end up being permanently asleep 
inside the get method.

One way around this problem is call notifyAll instead of notify once 
the queue length exceeds a certain amount, for example:
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#include <IceUtil/Monitor.h> 
 
template<class T> class Queue 
    : public IceUtil::Monitor<IceUtil::Mutex> { 
public: 
    void put(const T& item) { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        _q.push_back(item); 
        if (_q.size() >= _wakeupThreshold) 
            notifyAll(); 
    } 
 
    T get() { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        while (_q.size() == 0) 
            wait(); 
        T item = _q.front(); 
        _q.pop_front(); 
        return item; 
    } 
 
private: 
    list<T> _q; 
    const int _wakeupThreshold = 100; 
};

Here, we have added a private data member _wakeupThreshold; a writer 
wakes up all waiting readers once the queue length exceeds the threshold, in the 
expectation that all the readers will consume items more quickly than they are 
produced, thereby reducing the queue length below the threshold again.

This approach works, but has drawbacks as well:

• The appropriate value of _wakeupThreshold is difficult to determine and 
sensitive to things such as speed and number of processors and I/O bandwidth.

• If multiple readers are asleep, they are all made runnable by the thread sched-
uler once a writer calls notifyAll. On a multiprocessor machine, this may 
result in all readers running at once (one per CPU). However, as soon as the 
readers are made runnable, each of them attempts to reacquire the mutex that 
protects the monitor before returning from wait. Of course, only one of the 
readers actually succeeds and the remaining readers are suspended again, 
waiting for the mutex to become available. The net result is a large number of 
thread context switches as well as repeated and unnecessary locking of the 
system bus.
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A better option than calling notifyAll is to wake up waiting readers one at a 
time. To do this, we keep track of the number of waiting readers and call notify 
only if a reader needs to be woken up:

#include <IceUtil/Monitor.h> 
 
template<class T> class Queue 
    : public IceUtil::Monitor<IceUtil::Mutex> { 
public: 
    Queue() : _waitingReaders(0) {} 
 
    void put(const T& item) { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        _q.push_back(item); 
        if (_waitingReaders) 
            notify(); 
    } 
 
    T get() { 
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this); 
        while (_q.size() == 0) { 
            try { 
                ++_waitingReaders; 
                wait(); 
                --_waitingReaders; 
            } catch (...) { 
                --_waitingReaders; 
                throw; 
            } 
        } 
        T item = _q.front(); 
        _q.pop_front(); 
        return item; 
    } 
 
private: 
    list<T> _q; 
    short _waitingReaders; 
};

This implementation uses a member variable _waitingReaders to keep track 
of the number of readers that are suspended. The constructor initializes the vari-
able to zero and the implementation of get increments and decrements the vari-
able around the call to wait. Note that these statements are enclosed in a try–
catch block; this ensures that the count of waiting readers remains accurate even 
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if wait throws an exception. Finally, put calls notify only if there is a waiting 
reader.

The advantage of this implementation is that it minimizes contention on the 
monitor mutex: a writer wakes up only a single reader at a time, so we do not end 
up with multiple readers simultaneously trying to lock the mutex. Moreover, the 
monitor notify implementation signals a waiting thread only after it has 
unlocked the mutex. This means that, when a thread wakes up from its call to 
wait and tries to reacquire the mutex, the mutex is likely to be unlocked. This 
results in more efficient operation because acquiring an unlocked mutex is typi-
cally very efficient, whereas forcefully putting a thread to sleep on a locked mutex 
is expensive (because it forces a thread context switch).

29.9 Efficiency Considerations

The mutual exclusion mechanisms provided by Ice differ in their size and speed. 
Table 29.1 shows the relative sizes for Windows and Linux (both on Intel architec-
tures).

Table 29.1. Size of mutual exclusion primitives.

Primitive
Size in Bytes 
(Windows)

Size in Bytes 
(Linux)

Mutex 24 24

RecMutex 28 28

RWRecMutex 172 184

Monitor<Mutex> 72 76

Monitor<RecMutex> 76 80
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Table 29.2 shows the relative performance of the different synchronization primi-
tives under conditions of no lock contention.

Note that the size and performance differences between a mutex and a recursive 
mutex are negligible, so you should use a non-recursive mutex only if you have a 
very small critical region that is accessed repeatedly in a tight loop. Similarly, 
monitors perform much the same as mutexes (but do have a size penalty).

Read-write locks incur a substantial cost in both size and speed (especially 
under Windows), so you should use a read-write lock only if you can truly exploit 
the additional parallelism afforded by multiple readers and if a substantial amount 
of work is performed inside the critical region.

29.10 Threads

As described in Section 30.9, the server-side Ice run time by default creates a 
thread pool for you and automatically dispatches each incoming request in its own 
thread. As a result, you usually only need to worry about synchronization among 
threads to protect critical regions when you implement a server. However, you 
may wish to create threads of your own. For example, you might need a dedicated 
thread that responds to input from a user interface. And, if you have complex and 
long-running operations that can exploit parallelism, you might wish to use 
multiple threads for the implementation of that operation.

Table 29.2. Relative performance of mutual exclusion primitives.

Primitive Speed (Windows) Speed (Linux)

Mutex 1.00 1.00

RecMutex 1.02 1.25

RWRecMutex 12.24 (read lock) 
22.45 (write lock)

3.23 (read lock) 
3.40 (write lock)

Monitor<Mutex> 0.86 1.09

Monitor<RecMutex> 0.90 1.30
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Ice provides a simple thread abstraction that permits you to write portable 
source code regardless of the native threading platform. This shields you from the 
native underlying thread APIs and guarantees uniform semantics regardless of 
your deployment platform.

29.10.1 The Thread Class
The basic thread abstraction in Ice is provided by two classes, ThreadControl 
and Thread (defined in IceUtil/Thread.h):

namespace IceUtil { 
 
    class Time; 
 
    class ThreadControl { 
    public: 
#ifdef _WIN32 
        typedef DWORD ID; 
#else 
        typedef pthread_t ID; 
#endif 
 
        ThreadControl(); 
#ifdef _WIN32 
        ThreadControl(HANDLE, DWORD); 
#else 
        ThreadControl(explicit pthread_t); 
#endif 
        ID id() const; 
 
        void join(); 
        void detach(); 
 
        static void sleep(const Time&); 
        static void yield(); 
 
        bool operator==(const ThreadControl&) const; 
        bool operator!=(const ThreadControl&) const; 
 
    }; 
 
    class Thread { 
    public: 
        virtual void run() = 0; 
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        ThreadControl start(size_t = 0); 
        ThreadControl getThreadControl() const; 
        bool isAlive() const; 
 
        bool operator==(const Thread&) const; 
        bool operator!=(const Thread&) const; 
        bool operator<(const Thread&) const; 
    }; 
    typedef Handle<Thread> ThreadPtr; 
}

The Thread class is an abstract base class with a pure virtual run method. To 
create a thread, you must specialize the Thread class and implement the run 
method (which becomes the starting stack frame for the new thread). The 
remaining member functions behave as follows:

• start

This member function starts a newly-created thread (that is, calls the run 
method).

The optional parameter specifies a stack size (in bytes) for the thread. The 
default value of zero creates the thread with a default stack size that is deter-
mined by the operating system.

The return value is a ThreadControl object for the new thread (see 
Section 29.10.4).

You can start a thread only once; calling start on an already-started thread 
raises ThreadStartedException.

• getThreadControl

This member function returns a thread control object for the thread on which it 
is invoked (see Section 29.10.4). Calling this method before calling start 
raises a ThreadNotStartedException.

• id

This method returns the underlying thread ID (DWORD for Windows and 
pthread_t for POSIX threads). This method is provided mainly for debug-
ging purposes.4

4. pthread_t is, strictly-speaking, and opaque type, so you should not make any assumptions 
about what you can do with a thread ID.
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• isAlive

This method returns false before a thread’s start method has been called 
and after a thread’s run method has completed; otherwise, while the thread is 
still running, it returns true. isAlive is useful to implement a non-blocking 
join:

ThreadPtr p = new MyThread(); 
// ... 
while(p->isAlive()) { 
    // Do something else... 
} 
t.join(); // Will not block

• operator== 
operator!= 
operator<

These member functions compare the in-memory address of two threads. 
They are provided so you can use sorted STL containers with Thread 
objects.

Note that IceUtil also defines the type ThreadPtr. This is the usual refer-
ence-counted smart pointer (see Section 6.14.6) to guarantee automatic clean-up: 
the Thread destructor calls delete this once its reference count drops to zero.

29.10.2 Implementing Threads
To illustrate how to implement threads, consider the following code fragment:

#include <IceUtil/Thread.h> 
// ... 
 
Queue q; 
 
class ReaderThread : public IceUtil::Thread { 
    virtual void run() { 
        for (int i = 0; i < 100; ++i) 
            cout << q.get() << endl; 
    } 
}; 
 
class WriterThread : public IceUtil::Thread { 
    virtual void run() { 
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        for (int i = 0; i < 100; ++i) 
            q.put(i); 
    } 
};

This code fragment defines two classes, ReaderThread and WriterThread, 
that inherit from IceUtil::Thread. Each class implements the pure virtual 
run method it inherits from its base class. For this simple example, a writer 
thread places the numbers from 1 to 100 into an instance of the thread-safe 
Queue class we defined in Section 29.8, and a reader thread retrieves 
100 numbers from the queue and prints them to stdout.

Note that if run throws an exception, the thread is terminated as if it had 
exited normally, so a thread that is terminated by an exception that escapes the 
run member function can still joined with.

29.10.3 Creating Threads
To create a new thread, we simply instantiate the thread and call its start 
method:

IceUtil::ThreadPtr t = new ReaderThread; 
t->start(); 
// ...

Note that we assign the return value from new to a smart pointer of type 
ThreadPtr. This ensures that we do not suffer a memory leak:5

1. When the thread is created, its reference count is set to zero.

2. Prior to calling run (which is called by the start method), start incre-
ments the reference count of the thread to 1.

3. For each ThreadPtr for the thread, the reference count of the thread is 
incremented by 1, and for each ThreadPtr that is destroyed, the reference 
count is decremented by 1.

4. When run completes, start decrements the reference count again and then 
checks its value: if the value is zero at this point, the Thread object deallo-
cates itself by calling delete this; if the value is non-zero at this point, 
there are other smart pointers that reference this Thread object and deletion 
happens when the last smart pointer goes out of scope.

5. ThreadPtr is another example of an RAII class [20].
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Note that, for all this to work, you must allocate your Thread objects on the 
heap—stack-allocated Thread objects will result in deallocation errors:

ReaderThread thread; 
IceUtil::ThreadPtr t = &thread; // Bad news!!!

This is wrong because the destructor of t will eventually call delete, which has 
undefined behavior for a stack-allocated object.

Similarly, you must use a ThreadPtr for an allocated thread. Do not attempt 
to explicitly delete a a thread:

Thread* t = new ReaderThread(); 
 
// ... 
 
delete t; // Disaster!

This will result in a double deallocation of the thread because the thread’s 
destructor will call delete this.

It is legal for a thread to call start on itself from within its own constructor. 
However, if so, the thread must not be (very) short lived:

class ActiveObject : public Thread() { 
public: 
    ActiveObject() { 
        start(); 
    } 
 
    void done() { 
        getThreadControl().join(); 
    } 
 
    virtual void run() { 
        // *Very* short lived... 
    } 
}; 
typedef Handle<ActiveObject> ActiveObjectPtr; 
 
// ... 
 
ActiveObjectPtr ao = new ActiveObject;

With this code, it is possible for run to complete before the assignment to the 
smart pointer ao completes; in that case, start will call delete this; 
before it returns and ao ends up deleting an already-deleted object. However, note 
that this problem can arise only if run is indeed very short-lived and moreover, 
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the scheduler allows the newly-created thread to run to completion before the 
assignment of the return value of operator new to ao takes place. This is 
highly unlikely to happen—if you are concerned about this scenario, do not call 
start from within a thread’s own construtor. That way, the smart pointer is 
assigned first, and the thread started second (as in the example on page 723), so 
the problem cannot arise.

29.10.4 The ThreadControl Class
The start method returns an object of type ThreadControl (see page 720). 
The member functions of ThreadControl behave as follows:

• ThreadControl

The default constructor returns a ThreadControl object that refers to the 
calling thread. This allows you to get a handle to the current (calling) thread 
even if you do not have saved a handle to that thread previously. For example:

IceUtil::ThreadControl self;    // Get handle to self 
cout << self.id() << endl;      // Print thread ID

This example also explains why we have two classes, Thread and Thread-
Control: without a separate ThreadControl, it would not be possible to 
obtain a handle to an arbitrary thread. (Note that this code works even if the 
calling thread was not created by the Ice run time; for example, you can create 
a ThreadControl object for a thread that was created by the operating 
system.)

The (implicit) copy constructor and assignment operator create a Thread-
Control object that refers to the same underlying thread as the source 
ThreadControl object.

Note that the constructor is overloaded. For Windows, the signature is

ThreadControl(HANDLE, DWORD);

For UNIX, the signature is

ThreadControl(pthread_t);

These constructors allow you to create a ThreadControl object for the 
specified thread.

• join

This method suspends the calling thread until the thread on which join is 
called has terminated. For example:
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IceUtil::ThreadPtr t = new ReaderThread; // Create a thread 
IceUtil::ThreadControl tc = t->start();  // Start it 
tc.join();                               // Wait for it

If the reader thread has finished by the time the creating thread calls join, the 
call to join returns immediately; otherwise, the creating thread is suspended 
until the reader thread terminates.

Note that the join method of a thread must be called from only one other 
thread, that is, only one thread can wait for another thread to terminate. 
Calling join on a thread from more than one other thread has undefined 
behavior.

Calling join on a thread that was previously joined with or calling join on 
a detached thread has undefined behavior.

• detach

This method detaches a thread. Once a thread is detached, it cannot be joined 
with.

Calling detach on an already detached thread, or calling detach on a 
thread that was previously joined with has undefined behavior.

Note that, if you have detached a thread, you must ensure that the detached 
thread has terminated before your program leaves its main function. This 
means that, because detached threads cannot be joined with, they must have a 
life time that is shorter than that of the main thread.

• sleep

This method suspends the calling thread for the amount of time specified by 
the Time parameter (see Section 29.7).

• yield

This method causes the calling thread to relinquish the CPU, allowing another 
thread to run.

• operator== 
operator!=

These operators compare thread IDs. (Note that operator< is not provided 
because it cannot be implemented portably.) These operators yield meaningful 
results only for threads that have not been detached or joined with.

As for all the synchronization primitives, you must adhere to a few rules when 
using threads to avoid undefined behavior:

• Do not join with or detach a thread that you have not created yourself.
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• For every thread you create, you must either join with that thread exactly once 
or detach it exactly once; failure to do so may cause resource leaks.

• Do not call join on a thread from more than one other thread.

• Do not leave main until all other threads you have created have terminated.

• Do not leave main until after you have destroyed all Ice::Communi-
cator objects you have created (or use the Ice::Application class—
see Section 8.3.1 on page 253)).

• A common mistake is to call yield from within a critical region. Doing so is 
usually pointless because the call to yield will look for another thread that 
can be run but, when that thread is run, it will most likely try to enter the crit-
ical region that is held by the yielding thread and go to sleep again. At best, 
this achieves nothing and, at worst, it causes many additional context switches 
for no gain.

If you call yield, do so only in circumstances where there is at least a fair 
chance that another thread will actually be able to run and do something 
useful.

29.10.5 A Small Example
Following is a small example that uses the Queue class we defined in 
Section 29.8. We create five writer and five reader threads. The writer threads each 
deposit 100 numbers into the queue, and the reader threads each retrieve 100 
numbers and print them to stdout:

#include <vector> 
#include <IceUtil/Thread.h> 
// ... 
 
Queue q; 
 
class ReaderThread : public IceUtil::Thread { 
    virtual void run() { 
        for (int i = 0; i < 100; ++i) 
            cout << q.get() << endl; 
    } 
}; 
 
class WriterThread : public IceUtil::Thread { 
    virtual void run() { 
        for (int i = 0; i < 100; ++i) 
            q.put(i); 
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    } 
}; 
 
int 
main() 
{ 
    vector<IceUtil::ThreadControl> threads; 
    int i; 
 
    // Create five reader threads and start them 
    // 
    for (i = 0; i < 5; ++i) { 
        IceUtil::ThreadPtr t = new ReaderThread; 
        threads.push_back(t->start()); 
    } 
 
    // Create five writer threads and start them 
    // 
    for (i = 0; i < 5; ++i) { 
        IceUtil::ThreadPtr t = new WriterThread; 
        threads.push_back(t->start()); 
    } 
 
    // Wait for all threads to finish 
    // 
    for (vector<IceUtil::ThreadControl>::iterator i 
            = threads.begin(); i != threads.end(); ++i) { 
        i->join(); 
    } 
}

The code uses the threads variable, of type vector<IceUtil::Thread-
Control> to keep track of the created threads. The code creates five reader and 
five writer threads, storing the ThreadControl object for each thread in the 
threads vector. Once all the threads are created and running, the code joins 
with each thread before returning from main.

Note that you must not leave main without first joining with the threads you 
have created: many threading libraries crash if you return from main with other 
threads still running. (This is also the reason why you must not terminate a 
program without first calling Communicator::destroy (see page 252); the 
destroy implementation joins with all outstanding threads before it returns.)
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29.11 Portable Signal Handling

The IceUtil::CtrlCHandler class provides a portable mechanism to 
handle Ctrl+C and similar signals sent to a C++ process. On Windows, 
IceUtil::CtrlCHandler is a wrapper for SetConsoleCtrlHandler; 
on POSIX platforms, it handles SIGHUP, SIGTERM and SIGINT with a dedi-
cated thread that waits for these signals using sigwait. Signals are handled by a 
callback function implemented and registered by the user. The callback is a simple 
function that takes an int (the signal number) and returns void; it should not 
throw any exception:

namespace IceUtil { 
 
    typedef void (*CtrlCHandlerCallback)(int); 
 
    class CtrlCHandler { 
    public: 
        CtrlCHandler(CtrlCHandlerCallback = 0); 
        ~CtrlCHandler(); 
 
        void setCallback(CtrlCHandlerCallback); 
        CtrlCHandlerCallback getCallback() const; 
    }; 
}

The member functions of CtrlCHandler behave as follows:

• constructor

Constructs an instance with a callback function. Only one instance of Ctrl-
CHandler can exist in a process at a given moment in time. On POSIX plat-
forms, the constructor masks SIGHUP, SIGTERM and SIGINT, then starts a 
thread that waits for these signals using sigwait. For signal masking to 
work properly, it is imperative that the CtrlCHandler instance be created 
before starting any thread, and in particular before initializing an Ice commu-
nicator.

• destructor

Destroys the instance, after which the default signal processing behavior is 
restored on Windows (TerminateProcess). On POSIX platforms, the 
“sigwait” thread is cancelled and joined, but the signal mask remains 
unchanged, so subsequent signals are ignored.
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• setCallback

Sets a new callback function.

• getCallback

Gets the current callback function.

It is legal specify a value of zero (0) for the callback function, in which case 
signals are caught and ignored until a non-zero callback function is set.

A typical use for CtrlCHandler is to shutdown a communicator in an Ice 
server (see Section 8.3.1).

29.12 Summary

This chapter explained the threading abstractions provided by Ice: mutexes, moni-
tors, and threads. Using these APIs allows to make your code thread safe and to 
create threads of your own without having to use non-portable APIs that differ in 
syntax or semantics across different platforms: Ice not only provides a portable 
API but also guarantees that the semantics of the various functions are the same 
across different platforms. This makes it easier to create thread-safe applications 
and allows you to move your code between platforms with simple recompilation.
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Chapter 30
The Ice Run Time in Detail

30.1 Introduction

Now that we have seen the basics of implementing clients and servers, it is time to 
look at the Ice run time in more detail. This chapter presents the server-side APIs 
of the Ice run time for synchronous, oneway, and datagram invocations in detail. 
(We cover the asynchronous interfaces in Chapter 31.)

Section 30.2 describes the functionality associated with Ice communicators, 
which are the main handle to the Ice run time. Sections 30.4 to 30.6 describe 
object adapters and the role they play for call dispatch, and show the relationship 
between proxies, Ice objects, servants, and object identities. Section 30.7 
describes servant locators, which are a major mechanism in Ice for controlling the 
trade-off between performance and memory consumption. Section 30.8 describes 
the most common implementation techniques that are used by servers. We suggest 
that you read this section in detail because knowledge of these techniques is 
crucial to building systems that perform and scale well. Section 30.11 describes 
implicit transmission of parameters from client to server and Section 30.12 
discusses connection timeouts. Sections 30.13 to 30.16 describe oneway, data-
gram, and batched invocations, and Sections 30.17 to 30.20 deal with location 
services, logging, statistics collection, and location transparency. Finally, 
Section 30.22 compares the Ice server-side run time with the corresponding 
CORBA approach.
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30.2 Communicators

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. An instance of Ice::Communicator is associated with a 
number of run-time resources:

• Client-side thread pool

The client-side thread pool (see Section 30.9) is used to process replies to 
asynchronous method invocations (AMI) (see Section 31.3), to avoid dead-
locks in callbacks, and to process incoming requests on bidirectional connec-
tions (see Section 34.7).

• Server-side thread pool

Threads in this pool accept incoming connections and handle requests from 
clients. See Section 30.9 for more information.

• Configuration properties

Various aspects of the Ice run time can be configured via properties. Each 
communicator has its own set of such configuration properties (see 
Chapter 28).

• Object factories

In order to instantiate classes that are derived from a known base type, the 
communicator maintains a set of object factories that can instantiate the class 
on behalf of the Ice run time (see Section 6.14.5 and Section 10.14.4).

• Logger object

A logger object implements the Ice::Logger interface and determines how 
log messages that are produced by the Ice run time are handled (see 
Section 30.18).

• Statistics object

A statistics object implements the Ice::Stats interface and is informed about 
the amount of traffic (bytes sent and received) that is handled by a communi-
cator (see Section 30.19).

• Default router

A router implements the Ice::Router interface. Routers are used by Glacier2 
(see Chapter 40) to implement the firewall functionality of Ice.
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• Default locator

A locator is an object that resolves an object identity to a proxy. Locator 
objects are used to build location services, such as IceGrid (see Chapter 36).

• Plug-in manager

Plug-ins are objects that add features to a communicator. For example, IceSSL 
(see Chapter 39) is implemented as a plug-in. Each communicator has a plug-
in manager that implements the Ice::PluginManager interface and provides 
access to the set of plug-ins for a communicator.

• Object adapters

Object adapters dispatch incoming requests and take care of passing each 
request to the correct servant.

Object adapters and objects that use different communicators are completely inde-
pendent from each other. Specifically:

• Each communicator uses its own thread pool. This means that if, for example, 
one communicator runs out of threads for incoming requests, only objects 
using that communicator are affected. Objects using other communicators 
have their own thread pool and are therefore unaffected.

• Collocated invocations across different communicators are not optimized, 
whereas collocated invocations using the same communicator bypass much of 
the overhead of call dispatch.

Typically, servers use only a single communicator but, occasionally, multiple 
communicators can be useful. For example, IceBox (see Chapter 41) uses a sepa-
rate communicator for each Ice service it loads to ensure that different services 
cannot interfere with each other. Multiple communicators are also useful to avoid 
thread starvation: if one service runs out of threads, this leaves the remaining 
services unaffected.

The interface of the communicator is defined in Slice. Part of this interface
looks as follows:

module Ice { 
    local interface Communicator { 
        nonmutating string proxyToString(Object* obj); 
        nonmutating Object* stringToProxy(string str); 
        nonmutating Identity stringToIdentity(string str); 
        nonmutating string identityToString(Identity id); 
        ObjectAdapter createObjectAdapter(string name); 
        ObjectAdapter createObjectAdapterWithEndpoints( 
                                            string name, 
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                                            string endpoints); 
        void shutdown(); 
        void waitForShutdown(); 
        void destroy(); 
        // ... 
    }; 
    // ... 
};

The communicator offers a number of operations:
• proxyToString 
stringToProxy

These operations allow you to convert a proxy into its stringified representa-
tion and vice versa.

Instead of calling proxyToString on the communicator, you can also use the 
ice_toString operation on a proxy to stringify it (see Section 30.10.1). 
However, you can only stringify non-null proxies that way—to stringify a null 
proxy, you must use proxyToString. (The stringified representation of a null 
proxy is the empty string.)

• identityToString 
stringToIdentity

These operations allow you to convert an identity to a string and vice versa 
(see Section 30.5).

• createObjectAdapter 
createObjectAdapterWithEndpoints

These operations create a new object adapter. Each object adapter is associ-
ated with zero or more transport endpoints.

Typically, an object adapter has a single transport endpoint. However, an 
object adapter can also offer multiple endpoints. If so, these endpoints each 
lead to the same set of objects and represent alternative means of accessing 
these objects. This is useful, for example, if a server is behind a firewall but 
must offer access to its objects to both internal and external clients; by binding 
the adapter to both the internal and external interfaces, the objects imple-
mented in the server can be accessed via either interface.

An object adapter also can have no endpoint at all. In that case, the adapter can 
only be reached via collocated invocations originating from the same commu-
nicator as is used by the adapter.

Whereas createObjectAdapter determines which endpoints to bind itself to 
from configuration information (see Chapter 36), createObjectAdapter-
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WithEndpoints allows you to specify the transport endpoints for the new 
adapter. Typically, you should use createObjectAdapter in preference to 
createObjectAdapterWithEndpoints. Doing so keeps transport-specific 
information, such as host names and port numbers, out of the source code and 
allows you to reconfigure the application by changing a property (and so avoid 
recompilation when a transport endpoint needs to be changed).

• shutdown

This operation shuts down the server side of the Ice run time:

• Operation invocations that are in progress at the time shutdown is called are 
allowed to complete normally. shutdown does not wait for these operations 
to complete; when shutdown returns, you know that no new incoming 
requests will be dispatched, but operations that were already in progress at 
the time you called shutdown may still be running. You can wait for still 
executing operations to complete by calling waitForShutdown.

• Operation invocations that arrive after the server has called shutdown either 
fail with a ConnectFailedException or are transparently redirected to a 
new instance of the server (see Chapter 36).

• Note that shutdown initiates deactivation of all object adapters associated 
with the communicator, so attempts to use an adapter once shutdown has 
completed raise an ObjectAdapterDeactivatedException.

• waitForShutdown

This operation suspends the calling thread until the communicator has shut-
down (that is, until no more operations are executing in the server). This 
allows you to wait until the server is idle before you destroy the communi-
cator.

• destroy

This operation destroys the communicator and all its associated resources, 
such as threads, communication endpoints, and memory resources. Once you 
have destroyed the communicator (and therefore destroyed the run time for 
that communicator), you must not call any other Ice operation (other than to 
create another communicator).

It is imperative that you call destroy before you leave the main function of 
your program. Failure to do so results in undefined behavior.

Calling destroy before leaving main is necessary because destroy waits for 
all running threads to terminate before it returns. If you leave main without 
calling destroy, you will leave main with other threads still running; many 
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threading packages do not allow you to do this and end up crashing your 
program.

If you call destroy without calling shutdown, the call waits for all executing 
operation invocations to complete before it returns (that is, the implementation of 
destroy implicitly calls shutdown followed by waitForShutdown). shutdown 
(and, therefore, destroy) deactivates all object adapters that are associated with 
the communicator.

One the client side, calling shutdown while operations are still executing 
causes those operations to terminate with a CommunicatorDestroyedException.

30.3 Communicator Initialization

During the creation of a communicator, the Ice run time initializes a number of 
features that affect the communicator’s operation. Once set, these features remain 
in effect for the life time of the communicator, that is, you cannot change these 
features after you have created a communicator. Therefore, if you want to 
customize these features, you must do so when you create the communicator.

The following features can be customized at communicator creation time:

• the property set (see Chapter 28)

• the Logger interface (see Section 30.18)

• the Stats interface (see Section 30.19)

• the default context (see Section 30.11)

• the narrow and wide string converters (C++ only, see page 851)

• the thread notification hook (see page 811)

To establish these features, you initialize a structure or class of type 
InitializationData with the relevant settings. For C++ the structure is 
defined as follows:

namespace Ice { 
    struct InitializationData { 
        PropertiesPtr properties; 
        LoggerPtr logger; 
        StatsPtr stats; 
        Context defaultContext; 
        StringConverterPtr stringConverter; 
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        WstringConverterPtr wstringConverter; 
        ThreadNotificationPtr threadHook; 
    }; 
}

For languages other than C++, InitializationData is a class with all data 
members public. (The string converter fields are missing for these languages.)

For C++, Ice::initialize is overloaded as follows:

namespace Ice { 
    CommunicatorPtr initialize( 
                const InitializationData& = InitializationData()); 
    CommunicatorPtr initialize(int&, char*[], 
                const InitializationData& = InitializationData()); 
}

The version of initialize that accepts an argc/argv pair looks for Ice-
specific command-line options and removes them from the argument vector, as 
described on page 252. The version without an argc/argv pair is useful if you 
want to prevent property settings for a program to be changed from the command 
line (see Section 28.8).

To set a feature, you set the corresponding field in the 
InitializationData structure and pass the structure to initialize. For 
example, to establish a custom logger of type MyLogger, you can use:

Ice::InitializationData id; 
id.logger = new MyLoggerI(); 
Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id);

For Java, C#, and Visual Basic, Ice.Util.initialize is overloaded simi-
larly (as is Ice.initialize for Python), so you can pass an Initializa-
tionData instance either with or without an argument vector. The version of 
initialize without an argument does not look for a configuration in the 
ICE_CONFIG environment variable. (See also Section 28.6.)

30.4 Object Adapters

A communicator contains one or more object adapters. An object adapter sits at 
the boundary between the Ice run time and the server application code and has a 
number of responsibilities:

• It maps Ice objects to servants for incoming requests and dispatches the 
requests to the application code in each servant (that is, an object adapter 
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implements an up-call interface that connects the Ice run time and the 
application code in the server).

• It assists in life cycle operations so Ice objects and servants can be created and 
existing destroyed without race conditions.

• It provides one or more transport endpoints. Clients access the Ice objects 
provided by the adapter via those endpoints. (It is also possible to create an 
object adapter without endpoints. In this case the adapter is used for bidirec-
tional callbacks—see Section 34.7.)

Each object adapter has one or more servants that incarnate Ice objects, as well as 
one or more transport endpoints. If an object adapter has more than one endpoint, 
all servants registered with that adapter respond to incoming requests on any of 
the endpoints. In other words, if an object adapter has multiple transport 
endpoints, those endpoints represent alternative communication paths to the same 
set of objects (for example, via different transports).

Each object adapter belongs to exactly one communicator (but a single 
communicator can have many object adapters). Each object adapter has a name 
that distinguishes it from all other object adapters in the same communicator.

Each object adapter can optionally have its own thread pool, enabled via the 
<adapter-name>.ThreadPool.Size property (see Section 30.9.1). If so, 
client invocations for that adapter are dispatched in a thread taken from the 
adapter’s thread pool instead of using a thread from the communicator’s server 
thread pool.

30.4.1 The Active Servant Map
Each object adapter maintains a data structure known as the active servant map. 
The active servant map (or ASM, for short) is a lookup table that maps object iden-
tities to servants: for C++, the lookup value is a smart pointer to the corresponding 
servant’s location in memory; for Java and C#, the lookup value is a reference to 
the servant. When a client sends an operation invocation to the server, the request 
is targeted at a specific transport endpoint. Implicitly, the transport endpoint iden-
tifies the object adapter that is the target of the request (because no two object 
adapters can be bound to the same endpoint). The proxy via which the client sends 
its request contains the object identity for the corresponding object, and the client-
side run time sends this object identity over the wire with the invocation. In turn, 
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the object adapter uses that object identity to look in its ASM for the correct 
servant to dispatch the call to, as shown in Figure 30.1.

Figure 30.1. Binding a request to the correct servant.

The process of associating a request via a proxy to the correct servant is known as 
binding. The scenario depicted in Figure 30.1 shows direct binding, in which the 
transport endpoint is embedded in the proxy. Ice also supports an indirect binding 
mode, in which the correct transport endpoints are provided by the IceGrid service 
(see Chapter 36 for details).

If a client request contains an object identity for which there is no entry in the 
adapter’s ASM, the adapter returns an ObjectNotExistException to the client 
(unless you use a servant locator—see Section 30.7).

30.4.2 Servants
As mentioned in Section 2.2.2, servants are the physical manifestation of an Ice 
object, that is, they are entities that are implemented in a concrete programming 
language and instantiated in the server’s address space. Servants provide the 
server-side behavior for operation invocations sent by clients.

The same servant can be registered with one or more object adapters.

30.4.3 Object Adapter Interface
Object adapters are local interfaces:

module Ice { 
    local interface ObjectAdapter { 
        string getName(); 
        Communicator getCommunicator(); 
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        // ... 
    }; 
};

The operations behave as follows:

• The getName operation returns the name of the adapter as passed to 
Communicator::createObjectAdapter or 
Communicator::createObjectAdapterWithEndpoints.

• The getCommunicator operation returns the communicator that was used to 
create the adapter.

Note that there are other operations in the ObjectAdapter interface; we will 
explore these throughout the remainder of this chapter.

30.4.4 Servant Activation and Deactivation
The term servant activation refers to making the presence of a servant for a partic-
ular Ice object known to the Ice run time. Activating a servant adds an entry to the 
active servant map shown in Figure 30.1. Another way of looking at servant acti-
vation is to think of it as creating a link between the identity of an Ice object and 
the corresponding programming-language servant that handles requests for that 
Ice object. Once the Ice run time has knowledge of this link, it can dispatch 
incoming requests to the correct servant. Without this link, that is, without a corre-
sponding entry in the ASM, an incoming request for the identity results in an 
ObjectNotExistException. While a servant is activated, it is said to incarnate 
the corresponding Ice object.

The inverse operation is known as servant deactivation. Deactivating a servant 
removes an entry for a particular identity from the ASM. Thereafter, incoming 
requests for that identity are no longer dispatched to the servant and result in an 
ObjectNotExistException.

The object adapter offers a number of operations to manage servant activation 
and deactivation:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
 
        Object* add(Object servant, Identity id); 
        Object* addWithUUID(Object servant); 
        Object  remove(Identity id); 
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        // ... 
    }; 
};

The operations behave as follows:
• add

The add operation adds a servant with the given identity to the ASM. Requests 
are dispatched to that servant as soon as add is called. The return value is the 
proxy for the Ice object incarnated by that servant. The proxy embeds the 
identity passed to add.

You cannot call add with the same identity more than once: attempts to add an 
already existing identity to the ASM result in an 
AlreadyRegisteredException. (It does not make sense to add two servants 
with the same identity because that would make it ambiguous as to which 
servant should handle incoming requests for that identity.)

Note that it is possible to activate the same servant multiple times with 
different identities. In that case, the same single servant incarnates multiple 
Ice objects. We explore the ramifications of this in more detail in 
Section 30.8.2.

• addWithUUID

The addWithUUID operation behaves the same way as the add operation but 
does not require you to supply an identity for the servant. Instead, 
addWithUUID generates a UUID (see [14]) as the identity for the corre-
sponding Ice object. You can retrieve the generated identity by calling the 
ice_getIdentity operation on the returned proxy. addWithUUID is useful to 
create identities for temporary objects, such as short-lived session objects. 
(You can also use addWithUUID for persistent objects that do not have a 
natural identity, as we have done for the filesystem application.)

• remove

The remove operation breaks the association between an identity and its 
servant by removing the corresponding entry from the ASM; it returns a smart 
pointer to the removed servant.

Once the servant is deactivated, new incoming requests for the removed iden-
tity result in an ObjectNotExistException. Requests that are executing 
inside the servant at the time remove is called are allowed to complete 
normally. Once the last request for the servant is complete, the object adapter 
drops its reference (or smart pointer, for C++) to the servant. At that point, the 
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servant becomes available for garbage collection (or is destroyed, for C++), 
provided that you do not hold references or smart pointers to the servant else-
where. The net effect is that a deactivated servant is destroyed once it becomes 
idle.

Deactivating an object adapter (see Section 30.4.5) implicitly calls remove on 
its active servants.

30.4.5 Adapter States
An object adapter has a number of processing states:

• holding

In this state, any incoming requests for the adapter are held, that is, not 
dispatched to servants.

For TCP/IP (and other stream-oriented protocols), the server-side run time 
stops reading from the corresponding transport endpoint while the adapter is 
in the holding state. In addition, it also does not accept incoming connection 
requests from clients. This means that if a client sends a request to an adapter 
that is in the holding state, the client eventually receives a TimeoutException 
or ConnectTimeoutException (unless the adapter is placed into the active 
state before the timer expires).

For UDP, client requests that arrive at an adapter that is in the holding state are 
thrown away.

Immediately after creation of an adapter, the adapter is in the holding state. 
This means that requests are not dispatched until you place the adapter into the 
active state.

• active

In this state, the adapter accepts incoming requests and dispatches them to 
servants. A newly-created adapter is initially in the holding state. The adapter 
begins dispatching requests as soon as you place it into the active state.

You can transition between the active and the holding state as many times as 
you wish.

• inactive

In this state, the adapter has conceptually been destroyed (or is in the process 
of being destroyed). Deactivating an adapter destroys all transport endpoints 
that are associated with the adapter. Requests that are executing at the time the 
adapter is placed into the inactive state are allowed to complete, but no new 
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requests are accepted. (New requests are rejected with an exception). Once an 
adapter has been deactivated, you can reactivate it again. Any attempt to use a 
deactivated object adapter results in an 
ObjectAdapterDeactivatedException.

The ObjectAdapter interface offers operations that allow you to change the 
adapter state, as well as to wait for a state change to be complete:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
 
        void activate(); 
        void hold(); 
        void waitForHold(); 
        void deactivate(); 
        void waitForDeactivate(); 
 
        // ... 
    }; 
};

The operations behave as follows:
• activate

The activate operation places the adapter into the active state. Activating an 
adapter that is already active has no effect. The Ice run time starts dispatching 
requests to servants for the adapter as soon as activate is called.

• hold

The hold operation places the adapter into the holding state. Requests that 
arrive after calling hold are held as detailed on page 742. Requests that are in 
progress at the time hold is called are allowed to complete normally. Note that 
hold returns immediately without waiting for currently executing requests to 
complete.

• waitForHold

The waitForHold operation suspends the calling thread until the adapter has 
completed its transition to the holding state, that is, until all currently 
executing requests have finished. You can call waitForHold from multiple 
threads, and you can call waitForHold while the adapter is in the active state. 
If you call waitForHold on an adapter that is already in the holding state, 
waitForHold returns immediately.
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• deactivate

The deactivate operation initiates deactivation of the adapter: requests that 
arrive after calling deactivate are rejected, but currently executing requests 
are allowed to complete, and any servants associated with the adapter are 
destroyed once they become idle. Once all requests have completed, the 
adapter enters the inactivate state. Note that deactivate returns immediately 
without waiting for the currently executing requests to complete. Any attempt 
to use a deactivated object adapter results in an 
ObjectAdapterDeactivatedException.

• waitForDeactivate

The waitForDeactivate operation suspends the calling thread until the 
adapter has completed its transition to the inactive state, that is, until all 
currently executing requests have completed, all transport endpoints have 
been closed, and all associated servants have been destroyed. You can call 
waitForDeactivate from multiple threads, and you can call 
waitForDeactivate while the adapter is in the active or holding state. Calling 
waitForDeactivate on an adapter that is in the inactive state does nothing 
and returns immediately.

Note that, after calling deactivate, you must call waitForDeactivate; this 
is necessary because waitForDeactivate deallocates internal resources.

Placing an adapter into the holding state is useful, for example, if you need to 
make state changes in the server that require the server (or a group of servants) to 
be idle. For example, you could place the implementation of your servants into a 
dynamic library and upgrade the implementation by loading a newer version of 
the library at run time without having to shut down the server.

Similarly, waiting for an adapter to complete its transition to the inactive state 
is useful if your server needs to perform some final clean-up work that cannot be 
carried out until all executing request have completed.

Note that you can create an object adapter with the same name as a previous 
object adapter, but only once waitForDeactivate on the previous adapter has 
completed.

30.4.6 Endpoints
An object adapter maintains two sets of transport endpoints. One set identifies the 
network interfaces on which the adapter listens for new connections, and the other 
set is embedded in proxies created by the adapter and used by clients to communi-
cate with it. We will refer to these sets of endpoints as the physical endpoints and 
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the published endpoints, respectively. In most cases these sets are identical, but 
there are situations when they must be configured independently.

Physical Endpoints

An object adapter’s physical endpoints identify the network interfaces on which it 
receives requests from clients. These endpoints are configured via the 
name.Endpoints property, or they can be specified explicitly when the 
adapter is created using the operation createObjectAdapterWithEndpoints (see 
Section 30.2). The endpoint syntax is described in detail in Appendix D, however 
an endpoint generally consists of a transport protocol followed by an optional 
hostname and port.

If a hostname is specified, the object adapter listens only on the network 
interface associated with that hostname. If no hostname is specified but the prop-
erty Ice.Default.Host is defined, the object adapter uses the property’s 
value as the hostname. Finally, if a hostname is not specified, and the property 
Ice.Default.Host is undefined, the object adapter listens on all available 
network interfaces, including the loopback interface. You may also force the 
object adapter to listen on all interfaces by using one of the hostnames 0.0.0.0 
or *.

If you want an adapter to accept requests on certain network interfaces, you 
must specify a separate endpoint for each interface. For example, the following 
property configures a single endpoint for the adapter named MyAdapter:

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999

This endpoint causes the adapter to accept requests on the network interface asso-
ciated with the IP address 10.0.1.1 at port 9999. Note however that this adapter 
configuration does not accept requests on the loopback interface (the one associ-
ated with address 127.0.0.1). If both addresses must be supported, then both 
must be specified explicitly, as shown below:

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999:tcp -h 127.0.0.1 -p 9999

If these are the only two network interfaces available on the host, then a simpler 
configuration omits the hostname altogether, causing the object adapter to listen 
on both interfaces automatically:

MyAdapter.Endpoints=tcp -p 9999

If you want to make your configuration more explicit, you can use one of the 
special hostnames:

MyAdapter.Endpoints=tcp -h * -p 9999
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Another advantage to this configuration is that it ensures the object adapter always 
listens on all interfaces, even if a definition for Ice.Default.Host is later 
added to your configuration. Without an explicit hostname, the addition of 
Ice.Default.Host could potentially change the interfaces on which the 
adapter is listening.

Careful consideration must also be given to the selection of a port for an 
endpoint. If no port is specified, the adapter uses a port that is selected (essentially 
at random) by the operating system, meaning the adapter will likely be using a 
different port each time the server is restarted. Whether that behavior is desirable 
depends on the application, but in many applications a client has a proxy 
containing the adapter’s endpoint and expects that proxy to remain valid indefi-
nitely. Therefore, an endpoint generally should contain a fixed port to ensure that 
the adapter is always listening at the same port.

However, there are certain situations where a fixed port is not required. For 
example, an adapter whose servants are transient does not need a fixed port, 
because the proxies for those objects are not expected to remain valid past the life-
time of the server process. Similarly, a server using indirect binding via IceGrid 
(see Chapter 36) does not need a fixed port because its port is never published.

Published Endpoints

An object adapter publishes its endpoints in the proxies it creates, but it is not 
always appropriate to publish the adapter’s physical endpoints in a proxy. For 
example, suppose a server is running on a host in a private network, protected 
from the public network by a firewall that can forward network traffic to the 
server. The adapter’s physical endpoints must use the private network’s address 
scheme, but a client in the public network would be unable to use those endpoints 
if they were published in a proxy. In this scenario, the adapter must publish 
endpoints in its proxies that direct the client to the firewall instead.

The published endpoints are configured using the adapter property 
name.PublishedEndpoints. If this property is not defined, the adapter 
publishes its physical endpoints by default, with one exception: endpoints for the 
loopback address (127.0.0.1) are not published unless the loopback interface 
is the only interface, or 127.0.0.1 (or loopback) is explicitly listed as an 
endpoint with -h option. Otherwise, to force the inclusion of loopback endpoints 
when they would normally be excluded, you must define name.Publishe-
dEndpoints explicitly.

As an example, the properties below configure the adapter named 
MyAdapter with physical and published endpoints:
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MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999 
MyAdapter.PublishedEndpoints=tcp -h corpfw -p 25000

This example assumes that clients connecting to host corpfw at port 25000 are 
forwarded to the adapter’s endpoint in the private network.

Another use case of published endpoints is for replicated servers. Suppose we 
have two instances of a stateless server running on separate hosts in order to 
distribute the load between them. We can supply the client with a bootstrap proxy 
containing the endpoints of both servers, and the Ice run time in the client will 
select one of the servers at random when a connection is established. However, 
should the client invoke an operation on a server that returns a proxy for another 
object, that proxy would normally contain only the endpoint of the server that 
created it. Invocations on the new proxy are always directed at the same server, 
reducing the opportunity for load balancing.

We can alleviate this situation by configuring the adapters to publish the 
endpoints of both servers. For example, here is a configuration for the server on 
host Sun1:

MyAdapter.Endpoints=tcp -h Sun1 -p 9999 
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

Similarly, the configuration for host Sun2 retains the same published endpoints:

MyAdapter.Endpoints=tcp -h Sun2 -p 9999 
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

Routers

If an object adapter is configured with a router, the adapter’s published endpoints 
are augmented to reflect the router. See Chapter 40 for more information on 
configuring an adapter with a router.

30.4.7 Creating Proxies
Although the servant activation operations described in Section 30.4.4 return 
proxies, the life cycle of proxies is completely independent from servants (see 
XREF). The ObjectAdapter interface provides several operations for creating a 
proxy, regardless of whether a servant is currently activated for the object’s iden-
tity:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
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        Object* createProxy(Identity id); 
        Object* createDirectProxy(Identity id); 
        Object* createIndirectProxy(Identity id); 
        Object* createReverseProxy(Identity id); 
 
        // ... 
    }; 
};

The createReverseProxy operation is provided for use by specialized services 
such as routers and should not be used by applications. The remaining operations 
are described below:

• createProxy

The createProxy operation returns a new proxy for the object with the given 
identity. The adapter’s configuration determines whether the return value is a 
direct proxy or an indirect proxy (see Section 2.2.2). If the adapter is config-
ured with an adapter id (see Section 30.17.5), the operation returns an indirect 
proxy that refers to the adapter id. If the adapter is also configured with a 
replica group id, the operation returns an indirect proxy that refers to the 
replica group id. Otherwise, if an adapter id is not defined, createProxy 
returns a direct proxy containing the adapter’s published endpoints (see 
Section 30.4.6).

• createDirectProxy

The createDirectProxy operation returns a direct proxy containing the 
adapter’s published endpoints (see Section 30.4.6).

• createIndirectProxy

The createIndirectProxy operation returns an indirect proxy. If the adapter 
is configured with an adapter id, the returned proxy refers to that adapter id. 
Otherwise, the proxy refers only to the object’s identity (see page 13).

In contrast to createProxy, createIndirectProxy does not use the replica 
group id. Therefore, the returned proxy always refers to a specific replica.

30.5 Object Identity

Each Ice object has an object identity defined as follows:
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module Ice { 
    struct Identity { 
        string name; 
        string category; 
    }; 
};

As you can see, an object identity consists of a pair of strings, a name and a cate-
gory. The complete object identity is the combination of name and category, that 
is, for two identities to be equal, both name and category must be the same. The 
category member is usually the empty string, unless you are using servant loca-
tors (see Section 30.7).1

If name is an empty string, category must be the empty string as well. (An 
identity with an empty name and a non-empty category is illegal.) If a proxy 
contains an identity in which name is empty, Ice interprets that proxy as a null 
proxy. 

Object identities can be represented as strings; the category part appears first 
and is followed by the name; the two components are separated by a / character, 
for example:

Factory/File

In this example, Factory is the category, and File is the name. If the name or 
category member themselves contain a / character, the stringified representation 
escapes the / character with a \, for example:

Factories\/Factory/Node\/File

In this example, the category member is Factories/Factory and the name 
member is Node/File.

30.5.1 Syntax for Stringified Identities
You rarely need to write identities as strings because, typically, your code will be 
using identityToString and stringToIdentity (see Section 30.5.2), or simply 
deal with proxies instead of identities. However, on occasion, you will need to use 
stringified identities in configuration files. If the identities happen to contain 
meta-characters (such as a slash or backslash), or characters outside the printable 

1. Glacier2 (see Chapter 40) also uses the category member for filtering.
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ASCII range, these characters must be escaped in the stringified representation. 
Here are rules that the Ice run time applies when parsing a stringified identity:

1. The parser scans the stringified identity for an un-escaped slash character (/). 
If such a slash character can be found, the substrings to the left and right of the 
slash are parsed as the category and name members of the identity, respec-
tively; if no such slash character can be found, the entire string is parsed as the 
name member of the identity, and the category member is the empty string.

2. Each of the category (if present) and name substrings is parsed according to 
the following rules:

1.All characters in the string must be in the ASCII range 32 (space) to 126 (~); 
characters outside this range cause the parse to fail.

2.Any character that is not part of an escape sequence is treated as that char-
acter.

3.The parser recognizes the following escape sequences and replaces them 
with their equivalent character:

\\ (backslash)

\' (single quote)

\" (double quote)

\b (space)

\f (form feed)

\n (new line)

\r (carriage return)

\t (tab)

4.An escape sequence of the form \o, \oo, or \ooo (where o is a digit in the 
range 0 to 7) is replaced with the the ASCII character with the corre-
sponding octal value. Parsing for octal digits allows for at most three 
consecutive digits, so the string \0763 is interpreted as the character with 
octal value 76 (>) followed by the character 3. Parsing for octal digits termi-
nates as soon as it encounters a character that is not in the range 0 to 7, so 
\7x is the character with octal value 7 (bell) followed by the character x. 
Octal escape sequences must be in the range 0 to 255 (octal 000 to 377); 
escape sequences outside this range cause a parsing error. For example, 
\539 is an illegal escape sequence.

5. If a character follows a backslash, but is not part of a recognized escape 
sequence, the backslash is ignored, so \x is the character x.
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30.5.2 Helper Functions
To make conversion of identities to and from strings easier, the Communicator 
interface provides appropriate conversion functions:

local interface Communicator { 
    string identityToString(Identity id); 
    Identity stringToIdentity(string id); 
};

For C++, the operations on the communicator are the only way to convert between 
identities and strings. For other languages, the conversion functions are provided 
as operations on the communicator as well but, in addition, the language 
mappings provide static utility functions. (The utility functions have the advantage 
that you can call them without holding a reference to the communicator.)2

For Java, the utility functions are in the Ice.Util class and are defined as:

package Ice; 
 
public final class Util { 
    public static String   identityToString(Identity id); 
    public static Identity stringToIdentity(String s); 
}

For C#, the utility functions are in the Ice.Util class and are defined as:

namespace Ice 
{ 
    public sealed class Util 
    { 
        public static string   identityToString(Identity id); 
        public static Identity stringToIdentity(string s); 
    } 
}

These functions correctly encode and decode characters that might otherwise 
cause problems (such as control characters or white space).

As mentioned on page 741, each entry in the ASM for an object adapter must 
be unique: you cannot add two servants with the same identity to the ASM.

2. For C++, the static utility functions are not provided due to the need to apply string conversions, 
and the string converters are registered on the communicator (see Section 30.21).
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30.6 The Ice::Current Object

Up to now, we have tacitly ignored the trailing parameter of type Ice::Current 
that is passed to each skeleton operation on the server side. The Current object is 
defined as follows:

module Ice { 
    local dictionary<string, string> Context; 
 
    enum OperationMode { Normal, \Nonmutating, \Idempotent }; 
 
    local struct Current { 
        ObjectAdapter   adapter; 
        Connection      con; 
        Identity        id; 
        string          facet; 
        string          operation; 
        OperationMode   mode; 
        Context         ctx; 
        int             requestId; 
    }; 
};

Note that the Current object provides access to information about the currently 
executing request to the implementation of an operation in the server:

• adapter

The adapter member provides access to the object adapter via which the 
request is being dispatched. In turn, the adapter provides access to its commu-
nicator (via the getCommunicator operation).

• con

The con member provides information about the connection over which this 
request was received (see Section 34.5.1).

• id

The id member provides the object identity for the current request (see 
Section 30.5).

• facet

The facet member provides access to the facet for the request (see 
Chapter 32).
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• operation

The operation member contains the name of the operation that is being 
invoked. Note that the operation name may indicate one of the operations on 
Ice::Object, such as ice_ping or ice_isA. (ice_isA is invoked if a client 
performs a checkedCast.)

• mode

The mode member contains the invocation mode for the operation (Normal, 
Idempotent, or Nonmutating).

• ctx

The ctx member contains the current context for the invocation (see 
Section 30.11).

• requestId

The Ice protocol (see Chapter 33) uses request IDs to associate replies with 
their corresponding requests. The requestId member provides this ID. For 
oneway requests (which do not have replies), the request ID is 0. For collo-
cated requests (which do not use the Ice protocol), the request ID is -1.

If you implement your server such that it uses a separate servant for each Ice 
object, the contents of the Current object are not particularly interesting. (You 
would most likely access the Current object to read the adapter member, for 
example, to activate or deactivate a servant.) However, as we will see in 
Section 30.7, the Current object is essential for more sophisticated (and more 
scalable) servant implementations.

30.7 Servant Locators

Using an adapter’s ASM to map Ice objects to servants has a number of design 
implications:

• Each Ice object is represented by a different servant.3

• All servants for all Ice objects are permanently in memory.

Using a separate servant for each Ice object in this fashion is common to many 
server implementations: the technique is simple to implement and provides a 

3. It is possible to register a single servant with multiple identities. However, there is little point in 
doing so because a default servant (see Section 30.8.2) achieves the same thing.
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natural mapping from Ice objects to servants. Typically, on start-up, the server 
instantiates a separate servant for each Ice object, activates each servant, and then 
calls activate on the object adapter to start the flow of requests.

There is nothing wrong with the above design, provided that two criteria are 
met:

1. The server has sufficient memory available to keep a separate servant instanti-
ated for each Ice object at all times.

2. The time required to initialize all the servants on start-up is acceptable.

For many servers, neither criterion presents a problem: provided that the number 
of servants is small enough and that the servants can be initialized quickly, this is a 
perfectly acceptable design. However, the design does not scale well: the memory 
requirements of the server grow linearly with the number of Ice objects so, if the 
number of objects gets too large (or if each servant stores too much state), the 
server runs out of memory.

Ice uses servant locators to allow you to scale servers to larger numbers of 
objects.

30.7.1 Overview
In a nutshell, a servant locator is a local object that you implement and attach to an 
object adapter. Once an adapter has a servant locator, it consults its ASM to locate 
a servant for an incoming request as usual. If a servant for the request can be 
found in the ASM, the request is dispatched to that servant. However, if the ASM 
does not have an entry for the object identity of the request, the object adapter 
calls back into the servant locator to ask it to provide a servant for the request. The 
servant locator either

• instantiates a servant and passes it to the Ice run time, in which case the 
request is dispatched to that newly instantiated servant, or

• the servant locator indicates failure to locate a servant to the Ice run time, in 
which case the client receives an ObjectNotExistException.

This simple mechanism allows us to scale servers to provide access to an unlim-
ited number of Ice objects: instead of instantiating a separate servant for each and 
every Ice object in existence, the server can instantiate servants for only a subset 
of Ice objects, namely those that are actually used by clients.

Servant locators are most commonly used by servers that provide access to 
databases: typically, the number of entries in the database is far larger than what 
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the server can hold in memory. Servant locators allow the server to only instantiate 
servants for those Ice objects that are actually used by clients.

Another common use for servant locators is in servers that are used for process 
control or network management: in that case, there is no database but, instead, 
there is a potentially very large number of devices or network elements that must 
be controlled via the server. Otherwise, this scenario is the same as for large data-
bases: the number of Ice objects exceeds the number of servants that the server 
can hold in memory and, therefore, requires an approach that allows the number 
of instantiated servants to be less than the number of Ice objects.

30.7.2 Servant Locator Interface
A servant locator has the following interface:

module Ice { 
    local interface ServantLocator { 
        Object locate(    Current     curr, 
                      out LocalObject cookie); 
 
        void finished(    Current     curr, 
                          Object      servant, 
                          LocalObject cookie); 
 
        void deactivate(string category); 
    }; 
};

Note that ServantLocator is a local interface. To create an actual implementation 
of a servant locator, you must define a class that is derived from Ice::Servant-
Locator and provide implementations of the locate, finished, and deactivate 
operations. The Ice run time invokes the operations on your derived class as 
follows:

• locate

Whenever a request arrives for which no entry exists in the ASM, the Ice run 
time calls locate. The implementation of locate (which you provide as part 
of the derived class) is supposed to return a servant that can process the 
incoming request. Your implementation of locate can behave in three 
possible ways:

1. Instantiate and return a servant for the current request. In this case, the Ice 
run time dispatches the request to the newly instantiated servant.
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2.Return null. In this case, the Ice run time raises an 
ObjectNotExistException in the client.

3.Throw an exception. In this case, the Ice run time propagates the thrown 
exception back to the client. (Keep in mind that all exceptions, apart from 
ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException, are presented as UnknownLocalException to 
the client.)

The cookie out-parameter to locate allows you return a local object to the 
object adapter. The object adapter does not care about the contents of that 
object (and it is legal to return a null cookie). Instead, the Ice run time passes 
whatever cookie you return from locate back to you when it calls finished. 
This allows you to pass an arbitrary amount of state from locate to the corre-
sponding call to finished.

• finished

If a call to locate has returned a servant to the Ice run time, the Ice run time 
dispatches the incoming request to the servant. Once the request is complete 
(that is, the operation being invoked has completed), the Ice run time calls 
finished, passing the servant whose operation has completed, the Current 
object for the request, and the cookie that was initially created by locate. 
This means that every call to locate is balanced by a corresponding call to 
finished (provided that locate actually returned a servant).

You cannot throw exceptions from finished—if you do, the Ice run time logs 
an error messages and (for connection-oriented transports) closes the connec-
tion to the client.

• deactivate

The deactivate operation allows a servant locator to clean up once it is no 
longer needed. (For example, the locator might close a database connection.) 
The Ice run time passes the category of the servant locator being deactivated 
to the deactivate operation.

The run time calls deactivate when the object adapter to which the servant 
locator is attached is deactivated. More precisely, deactivate is called when 
you call waitForDeactivate on the object adapter, or when you call 
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waitForShutdown on the communicator (or destroy on the communicator, 
which implicitly calls waitForShutdown).

Once the run time has called deactivate, it is guaranteed that no further calls 
to locate or finished can happen, that is, deactivate is called exactly once, 
after all operations dispatched via this servant locator have completed. 

This also explains why deactivate is not called as part of 
ObjectAdapter::deactivate: ObjectAdapter::deactivate initiates deac-
tivation and returns immediately, so it cannot call 
ServantLocator::deactivate directly, because there might still be 
outstanding requests dispatched via this servant locator that have to complete 
first—in turn, this would mean that either ObjectAdapter::deactivate 
could block (which it must not do) or that a call to 
ServantLocator::deactivate could be followed by one or more calls to 
finished (which must not happen either).

It is important to realize that the Ice run time does not “remember” the servant that 
is returned by a particular call to locate. Instead, the Ice run time simply 
dispatches an incoming request to the servant returned by locate and, once the 
request is complete, calls finished. In particular, if two requests for the same 
servant arrive more or less simultaneously, the Ice run time calls locate and 
finished once for each request. In other words, locate establishes the associa-
tion between an object identity and a servant; that association is valid only for a 
single request and is never used by the Ice run time to dispatch a different request.

30.7.3 Threading Guarantees for Servant Locators
The Ice run time guarantees that every operation invocation that involves a servant 
locator is bracketed by calls to locate and finished, that is, every call to locate 
is balanced by a corresponding call to finished (assuming that the call to locate 
actually returned a servant, of course).

In addition, the Ice run time guarantees that locate, the operation, and 
finished are called by the same thread. This guarantee is important because it 
allows you to use locate and finished to implement thread-specific pre- and 
post-processing around operation invocations. (For example, you can start a trans-
action in locate and commit or roll back that transaction in finished, or you can 
acquire a lock in locate and release the lock in finished.4)

Note that, if you are using asynchronous method dispatch (see Chapter 31), 
the thread that starts a call is not necessarily the thread that finishes it. In that case, 
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finished is called by whatever thread executes the operation implementation, 
which is may be different thread than the one that called locate.

The Ice run time also guarantees that deactivate is called when you 
deactivate the object adapter to which the servant locator is attached. The 
deactivate call is made only once all operations that involved the servant locator 
are finished, that is, deactivate is guaranteed not to run concurrently with 
locate or finished, and is guaranteed to be the last call made to a servant 
locator.

Beyond this, the Ice run time provides no threading guarantees for servant 
locators. In particular:

• It is possible for invocations of locate to proceed concurrently (for the same 
object identity or for different object identities).

• It is possible for invocations of finished to proceed concurrently (for the 
same object identity or for different object identities).

• It is possible for invocations of locate and finished to proceed concurrently 
(for the same object identity or for different object identities).

These semantics allow you to extract the maximum amount of parallelism from 
your application code (because the Ice run time does not serialize invocations 
when serialization may not be necessary). Of course, this means that you must 
protect access to shared data from locate and finished with mutual exclusion 
primitives as necessary.

30.7.4 Servant Locator Registration
An object adapter does not automatically know when you create a servant locator. 
Instead, you must explicitly register servant locators with the object adapter:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
 
        void addServantLocator(ServantLocator locator, 
                               string         category); 
 
        ServantLocator findServantLocator(string category); 

4. Both transactions and locks usually are thread-specific, that is, only the thread that started a trans-
action can commit it or roll it back, and only the thread that acquired a lock can release the lock.
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        // ... 
    }; 
};

As you can see, the object adapter allows you add and find servant locators. Note 
that, when you register a servant locator, you must provide an argument for the 
category parameter. The value of the category parameter controls which object 
identities the servant locator is responsible for: only object identities with a 
matching category member (see page 748) trigger a corresponding call to 
locate. An incoming request for which no explicit entry exists in the ASM and 
with a category for which no servant locator is registered returns an 
ObjectNotExistException to the client.

addServantLocator has the following semantics:

• You can register exactly one servant locator for a specific category. Attempts 
to call addServantLocator for the same category more than once raise an 
AlreadyRegisteredException.

• You can register different servant locators for different categories, or you can 
register the same single servant locator multiple times (each time for a 
different category). In the former case, the category is implicit in the servant 
locator instance that is called by the Ice run time; in the latter case, the imple-
mentation of locate can find out which category the incoming request is for 
by examining the object identity member of the Current object that is passed 
to locate.

• It is legal to register a servant locator for the empty category. Such a servant 
locator is known as a default servant locator: if a request comes in for which 
no entry exists in the ASM, and whose category does not match the category 
of any other registered servant locator, the Ice run time calls locate on the 
default servant locator.

Note that, once registered, you cannot change or remove the servant locator for a 
category. The life cycle of the servant locators for an object adapter ends with the 
life cycle of the adapter: when the object adapter is deactivated, so are its servant 
locators.

The findServantLocator operation allows you retrieve the servant locator 
for a specific category (including the empty category). If no servant locator is 
registered for the specified category, findServantLocator returns null.
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Call Dispatch Semantics

The preceding rules may seem complicated, so here is a summary of the actions 
taken by the Ice run time to locate a servant for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the 
request (because the request arrives at a specific transport endpoint and, therefore, 
identifies a particular object adapter). The incoming request carries an object iden-
tity that must be mapped to a servant. To locate a servant, the Ice run time goes 
through the following steps, in the order shown:

1. Look for the identity in the ASM. If the ASM contains an entry, dispatch the 
request to the corresponding servant.

2. If the category of the incoming object identity is non-empty, look for a servant 
locator that is registered for that category. If such a servant locator is regis-
tered, call locate on the servant locator and, if locate returns a servant, 
dispatch the request to that servant, followed by a call to finished; otherwise, 
if the call to locate returns null, raise ObjectNotExistException or 
FacetNotExistException in the client. (ObjectNotExistException is 
raised if the ASM does not contain a servant with the given identity at all, 
FacetNotExistException is raised if the ASM contains a servant with a 
matching name, but a non-matching category.)

3. If the category of the incoming object identity is empty, or no servant locator 
could be found for the category in step 2, look for a default servant locator 
(that is, a servant locator that is registered for the empty category). If a default 
servant locator is registered, dispatch the request as for step 2.

4. Raise ObjectNotExistException or FacetNotExistException in the client. 

It is important to keep these call dispatch semantics in mind because they enable a 
number of powerful implementation techniques. Each technique allows you to 
streamline your server implementation and to precisely control the trade-off 
between performance, memory consumption, and scalability. To illustrate the 
possibilities, we outline a number of the most common implementation tech-
niques in the following section.

30.7.5 Implementing a Simple Servant Locator
To illustrate the concepts outlined in the previous sections, let us examine a (very 
simple) implementation of a servant locator. Consider that we want to create an 
electronic phone book for the entire world’s telephone system (which, clearly, 
involves a very large number of entries, certainly too many to hold the entire 
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phone book in memory). The actual phone book entries are kept in a large 
database. Also assume that we have a search operation that returns the details of a 
phone book entry. The Slice definitions for this application might look something 
like the following:

struct Details { 
    // Lots of details about the entry here... 
}; 
 
interface PhoneEntry { 
    nonmutating Details getDetails(); 
    idempotent void updateDetails(Details d); 
    // ... 
}; 
 
struct SearchCriteria { 
    // Fields to permit searching... 
}; 
 
interface PhoneBook { 
    nonmutating PhoneEntry* search(SearchCriteria c); 
    // ... 
};

The details of the application do not really matter here; the important point to note 
is that each phone book entry is represented as an interface for which we need to 
create a servant eventually, but we cannot afford to keep servants for all entries 
permanently in memory.

Each entry in the phone database has a unique identifier. This identifier might 
be an internal database identifier, or a combination of field values, depending on 
exactly how the database is constructed. The important point is that we can use 
this database identifier to link the proxy for an Ice object to its persistent state: we 
simply use the database identifier as the object identity. This means that each 
proxy contains the primary access key that is required to locate the persistent state 
of each Ice object and, therefore, instantiate a servant for that Ice object.

What follows is an outline implementation in C++. The class definition of our 
servant locator looks as follows:

class MyServantLocator : public virtual Ice::ServantLocator { 
public: 
 
    virtual Ice::ObjectPtr locate(const Ice::Current&  c, 
                                  Ice::LocalObjectPtr& cookie); 
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    virtual void finished(const Ice::Current&        c, 
                          const Ice::ObjectPtr&      servant, 
                          const Ice::LocalObjectPtr& cookie); 
 
    virtual void deactivate(const std::string& category); 
};

Note that MyServantLocator inherits from Ice::ServantLocator and 
implements the pure virtual functions that are generated by the slice2cpp 
compiler for the Ice::ServantLocator interface. Of course, as always, you can 
add additional member functions, such as a constructor and destructor, and you 
can add private data members as necessary to support your implementation.

In C++, you can implement the locate member function along the following 
lines:

Ice::ObjectPtr 
MyServantLocator::locate(const Ice::Current&  c, 
                         Ice::LocalObjectPtr& cookie) 
{ 
    // Get the object identity. (We use the name member 
    // as the database key.) 
    // 
    std::string name = c.id.name; 
 
    // Use the identity to retrieve the state from the database. 
    // 
    ServantDetails d; 
    try { 
        d = DB_lookup(name); 
    } catch (const DB_error&) 
        return 0; 
    } 
 
    // We have the state, instantiate a servant and return it. 
    // 
    return new PhoneEntryI(d); 
}

For the time being, the implementations of finished and deactivate are 
empty and do nothing.

The DB_lookup call in the preceding example is assumed to access the 
database. If the lookup fails (presumably, because no matching record could be 
found), DB_lookup throws a DB_error exception. The code catches that 
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exception and returns zero its stead; this raises ObjectNotExistException in the 
client to indicate that the client used a proxy to a no-longer existent Ice object.

Note that locate instantiates the servant on the heap and returns it to the Ice 
run time. This raises the question of when the servant will be destroyed. The 
answer is that the Ice run time holds onto the servant for as long as necessary, that 
is, long enough to invoke the operation on the returned servant and to call 
finished once the operation has completed. Thereafter, the servant is no longer 
needed and the Ice run time destroys the smart pointer that was returned by 
locate. In turn, because no other smart pointers exist for the same servant, this 
causes the destructor of the PhoneEntryI instance to be called, and the servant 
to be destroyed.

The upshot of this design is that, for every incoming request, we instantiate a 
servant and allow the Ice run time to destroy the servant once the request is 
complete. Depending on your application, this may be exactly what is needed, or 
it may be prohibitively expensive—we will explore designs that avoid creation 
and destruction of a servant for every request shortly.

In Java, the implementation of our servant locator looks very similar:5

public class MyServantLocator 
        extends Ice.LocalObjectImpl 
        implements Ice.ServantLocator { 
 
    public Ice.Object locate(Ice.Current c, 
                             Ice.LocalObjectHolder cookie) 
    { 
        // Get the object identity. (We use the name member 
        // as the database key. 
        String name = c.id.name; 
 
        // Use the identity to retrieve the state 
        // from the database. 
        // 
        ServantDetails d; 
        try { 
            d = DB.lookup(name); 
        } catch (DB.error e) { 
            return null; 
        } 

5. The C# implementation is virtually identical to the Java implementation, so we do not show it 
here.
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        // We have the state, instantiate a servant and return it. 
        // 
        return new PhoneEntryI(d); 
    } 
 
    public void finished(Ice.Current c, 
                         Ice.Object servant, 
                         Ice.LocalObject cookie) 
    { 
    } 
 
    public void deactivate(String category) 
    { 
    } 
}

Note that the MyServantLocator class extends Ice.LocalObjectImpl. 
LocalObjectImpl is provide by the Ice run time and contains the implemen-
tation of methods that are common to all local objects (namely, equals, clone, 
and ice_getHash).

All implementations of locate follow the pattern illustrated by the previous 
pseudo-code:

1. Use the id member of the passed Current object to obtain the object identity. 
Typically, only the name member of the identity is used to retrieve servant 
state. The category member is normally used to select a servant locator. (We 
will explore use of the category member shortly.)

2. Retrieve the state of the Ice object from secondary storage (or the network) 
using the object identity as a key.

• If the lookup succeeds, you have retrieved the state of the Ice object.

• If the lookup fails, return null. In that case, the Ice object for the client’s 
request truly does not exist, presumably, because that Ice object was deleted 
earlier, but the client still has a proxy to the now-deleted object.

3. Instantiate a servant and use the state retrieved from the database to initialize 
the servant. (In this example, we pass the retrieved state to the servant 
constructor.)

4. Return the servant.

Of course, before we can use our servant locator, we must inform the adapter of its 
existence prior to activating the adapter, for example (in Java or C#):
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MyServantLocator sl = new MyServantLocator(); 
adapter.addServantLocator(sl, "");

Note that, in this example, we have installed the servant locator for the empty 
category. This means that locate on our servant locator will be called for invo-
cations to any of our Ice objects (because the empty category acts as the default). 
In effect, with this design, we are not using the category member of the object 
identity. This is fine, as long as all our servants all have the same, single interface. 
However, if we need to support several different interfaces in the same server, this 
simple strategy is no longer sufficient.

30.7.6 Using the category Member of the Object Identity
The simple example in the preceding section always instantiates a servant of type 
PhoneEntryI. In other words, the servant locator implicitly is aware of the type 
of servant the incoming request is for. This is not a very realistic assumption for 
most servers because, usually, a server provides access to objects with several 
different interfaces. This poses a problem for our locate implementation: 
somehow, we need to decide inside locate what type of servant to instantiate. 
You have several options for solving this problem:

• Use a separate object adapter for each interface type and use a separate servant 
locator for each object adapter.

This technique works fine, but has the down-side that each object adapter 
requires a separate transport endpoint, which is wasteful.

• Mangle a type identifier into the name component of the object identity.

This technique uses part of the object identity to denote what type of object to 
instantiate. For example, in our file system application, we have directory and 
file objects. By convention, we could prepend a ‘d’ to the identity of every 
directory and prepend an ‘f’ to the identity of every file. The servant locator 
then can use the first letter of the identity to decide what type of servant to 
instantiate:

Ice::ObjectPtr 
MyServantLocator::locate(const Ice::Current&  c, 
                         Ice::LocalObjectPtr& cookie) 
{ 
    // Get the object identity. (We use the name member 
    // as the database key.) 
    // 
    std::string name = c.id.name; 
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    std::string realId = c.id.name.substr(1); 
    try { 
        if(name[0] == 'd') { 
            // The request is for a directory. 
            // 
            DirectoryDetails d = DB_lookup(realId); 
            return new DirectoryI(d); 
        } else { 
            // The request is for a file. 
            // 
            FileDetails d = DB_lookup(realId); 
            return new FileI(d); 
        } 
    } catch (DatabaseNotFoundException&) { 
        return 0; 
    } 
}

While this works, it is awkward: not only do we need to parse the name 
member to work out what type of object to instantiate, but we also need to 
modify the implementation of locate whenever we add a new type to our 
application.

• Use the category member of the object identity to denote the type of servant 
to instantiate.

This is the recommended approach: for every interface type, we assign a sepa-
rate identifier as the value of the category member of the object identity. (For 
example, we can use ‘d’ for directories and ‘f’ for files.) Instead of registering 
a single servant locator, we create two different servant locator implementa-
tions, one for directories and one for files, and then register each locator for 
the appropriate category:

class DirectoryLocator : public virtual Ice::ServantLocator { 
public: 
 
    virtual Ice::ObjectPtr locate(const Ice::Current&  c, 
                                  Ice::LocalObjectPtr& cookie) 
    { 
        // Code to locate and instantiate a directory here... 
    } 
 
 
    virtual void finished(const Ice::Current&        c, 
                          const Ice::ObjectPtr&      servant, 
                          const Ice::LocalObjectPtr& cookie) 
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    { 
    } 
 
    virtual void deactivate(const std::string& category) 
    { 
    } 
}; 
 
class FileLocator : public virtual Ice::ServantLocator { 
public: 
 
    virtual Ice::ObjectPtr locate(const Ice::Current&  c, 
                                  Ice::LocalObjectPtr& cookie) 
    { 
        // Code to locate and instantiate a file here... 
    } 
 
 
    virtual void finished(const Ice::Current&        c, 
                          const Ice::ObjectPtr&      servant, 
                          const Ice::LocalObjectPtr& cookie) 
    { 
    } 
 
    virtual void deactivate(const std::string& category) 
    { 
    } 
}; 
 
// ... 
 
// Register two locators, one for directories and 
// one for files. 
// 
adapter->addServantLocator(new DirectoryLocator(), "d"); 
adapter->addServantLocator(new FileLocator(), "f");

Yet another option is to use the category member of the object identity, but to use 
a single default servant locator (that is, a locator for the empty category). With this 
approach, all invocations go to the single default servant locator, and you can 
switch on the category value inside the implementation of the locate opera-
tion to determine which type of servant to instantiate. However, this approach is 
harder to maintain than the previous one; the category member of the Ice object 
identity exists specifically to support servant locators, so you might as well use it 
as intended.
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30.7.7 Using Cookies
Occasionally, it can be useful to be able to pass information between locate and 
finished. For example, the implementation of locate could choose among a 
number of alternative database backends, depending on load or availability and, to 
properly finalize state, the implementation of finish might need to know which 
database was used by locate. To support such scenarios, you can create a cookie 
in your locate implementation; the Ice run time passes the value of the cookie to 
finished after the operation invocation has completed. The cookie must be 
derived from Ice::LocalObject and can contain whatever state and member 
functions are useful to your implementation:

class MyCookie : public virtual Ice::LocalObject { 
public: 
    // Whatever is useful here... 
}; 
 
typedef IceUtil::Handle<MyCookie> MyCookiePtr; 
 
class MyServantLocator : public virtual Ice::ServantLocator { 
public: 
 
    virtual Ice::ObjectPtr locate(const Ice::Current&  c, 
                                  Ice::LocalObjectPtr& cookie) 
    { 
        // Code as before... 
 
        // Allocate and initialize a cookie. 
        // 
        cookie = new MyCookie(...); 
 
        return new PhoneEntryI(); 
    } 
 
    virtual void finished(const Ice::Current&        c, 
                          const Ice::ObjectPtr&      servant, 
                          const Ice::LocalObjectPtr& cookie) 
    { 
        // Down-cast cookie to actual type. 
        // 
        MyCookiePtr mc = MyCookiePtr::dynamicCast(cookie); 
 
        // Use information in cookie to clean up... 
        // 
        // ... 
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    } 
 
    virtual void deactivate(const std::string& category); 
};

30.8 Server Implementation Techniques

As we mentioned on page 754, instantiating a servant for each Ice object on server 
start-up is a viable design, provided that you can afford the amount of memory 
required by the servants, as well as the delay in start-up of the server. However, Ice 
supports more flexible mappings between Ice objects and servants; these alternate 
mappings allow you to precisely control the trade-off between memory consump-
tion, scalability, and performance. We outline a few of the more common imple-
mentation techniques in this section.

30.8.1 Incremental Initialization
If you use a servant locator, the servant returned by locate is used only for the 
current request, that is, the Ice run time does not add the servant to the active 
servant map. Of course, this means that if another request comes in for the same 
Ice object, locate must again retrieve the object state and instantiate a servant. A 
common implementation technique is to add each servant to the ASM as part of 
locate. This means that only the first request for each Ice object triggers a call to 
locate; thereafter, the servant for the corresponding Ice object can be found in the 
ASM and the Ice run time can immediately dispatch another incoming request for 
the same Ice object without having to call the servant locator.

An implementation of locate to do this would look something like the 
following:

Ice::ObjectPtr 
MyServantLocator::locate(const Ice::Current&  c, 
                         Ice::LocalObjectPtr& cookie) 
{ 
    // Get the object identity. (We use the name member 
    // as the database key.) 
    // 
    std::string name = c.id.name; 
 
    // Use the identity to retrieve the state from the database. 
    // 
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    ServantDetails d; 
    try { 
        d = DB_lookup(name); 
    } catch (const DB_error&) 
        return 0; 
    } 
 
    // We have the state, instantiate a servant. 
    // 
    Ice::ObjectPtr servant = new PhoneEntryI(d); 
 
    // Add the servant to the ASM. 
    // 
    c.adapter->add(servant, c.id);      // NOTE: Incorrect! 
 
    return servant; 
}

This is almost identical to the implementation on page 762—the only difference is 
that we also add the servant to the ASM by calling ObjectAdapter::add. Unfor-
tunately, this implementation is wrong because it suffers from a race condition. 
Consider the situation where we do not have a servant for a particular Ice object in 
the ASM, and two clients more or less simultaneously send a request for the same 
Ice object. It is entirely possible for the thread scheduler to schedule the two 
incoming requests such that the Ice run time completes the lookup in the ASM for 
both requests and, for each request, concludes that no servant is in memory. The 
net effect is that locate will be called twice for the same Ice object, and our 
servant locator will instantiate two servants instead of a single servant. Because 
the second call to ObjectAdapter::add will raise an AlreadyRegisteredExcep-
tion, only one of the two servants will be added to the ASM.

Of course, this is hardly the behavior we expect. To avoid the race condition, 
our implementation of locate must check whether a concurrent invocation has 
already instantiated a servant for the incoming request and, if so, return that 
servant instead of instantiating a new one. The Ice run time provides the 
ObjectAdapter::find operation to allow us to test whether an entry for a 
specific identity already exists in the ASM:

module Ice { 
    local interface ObjectAdapter { 
        // ... 
 
        Object find(Identity id); 
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        // ... 
    }; 
};

find returns the servant if it exists in the ASM and null, otherwise. Using this 
lookup function, together with a mutex, allows us to correctly implement locate. 
The class definition of our servant locator now has a private mutex so we can 
establish a critical region inside locate:

class MyServantLocator : public virtual Ice::ServantLocator { 
public: 
 
    virtual Ice::ObjectPtr locate(const Ice::Current&  c, 
                                  Ice::LocalObjectPtr&); 
 
    // Declaration of finished() and deactivate() here... 
 
private: 
    IceUtil::Mutex _m; 
};

The locate member function locks the mutex and tests whether a servant is 
already in the ASM: if so, it returns that servant; otherwise, it instantiates a new 
servant and adds it to the ASM as before:

Ice::ObjectPtr 
MyServantLocator::locate(const Ice::Current&  c, 
                         Ice::LocalObjectPtr&) 
{ 
    IceUtil::Mutex::Lock lock(_m); 
 
    // Check if we have instantiated a servant already. 
    // 
    Ice::ObjectPtr servant = c.adapter.find(c.id); 
 
    if(!servant) {      // We don't have a servant already 
 
        // Instantiate a servant. 
        // 
        ServantDetails d; 
        try { 
           d = DB_lookup(c.id.name); 
        } catch (const DB_error&) { 
           return 0; 
        } 
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        servant = new PhoneEntryI(d); 
 
        // Add the servant to the ASM. 
        // 
        c.adapter->add(servant, c.id); 
    } 
 
    return servant; 
}

The Java version of this locator is almost identical, but we use the synchro-
nized qualifier instead of a mutex to make locate a critical region:6

synchronized public Ice.Object 
locate(Ice.Current c, Ice.LocalObjectHolder cookie) 
{ 
    // Check if we have instantiated a servant already. 
    // 
    Ice.Object servant = c.adapter.find(c.id); 
 
    if(servant == null) { // We don't have a servant already 
 
        // Instantiate a servant 
        // 
        ServantDetails d; 
        try { 
            d = DB.lookup(c.id.name); 
        } catch (DB.error&) { 
            return null; 
        } 
        servant = new PhoneEntryI(d); 
    } 
 
    return servant; 
}

Using a servant locator that adds the servant to the ASM has a number of advan-
tages:

• Servants are instantiated on demand, so the cost of initializing the servants is 
spread out over many invocations instead of being incurred all at once during 
server start-up.

6. In C#, you can place the body of locate into a lock(this) statement.
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• The memory requirements for the server are reduced because servants are 
instantiated only for those Ice objects that are actually accessed by clients. If 
clients only access a subset of the total number of Ice objects, the memory 
savings can be substantial.

In general, incremental initialization is beneficial if instantiating servants during 
start-up is too slow. The memory savings can be worthwhile as well but, as a rule, 
are realized only for comparatively short-lived servers: for long-running servers, 
chances are that, sooner or later, every Ice object will be accessed by some client 
or another; in that case, there are no memory savings because we end up with an 
instantiated servant for every Ice object regardless.

30.8.2 Default Servants
A common problem with object-oriented middleware is scalability: servers 
frequently are used as front ends to large databases that are accessed remotely by 
clients. The servers’ job is to present an object-oriented view to clients of a very 
large number of records in the database. Typically, the number of records is far too 
large to instantiate servants for even a fraction of the database records.

A common technique for solving this problem is to use default servants. A 
default servant is a servant that, for each request, takes on the persona of a 
different Ice object. In other words, the servant changes its behavior according to 
the object identity that is accessed by a request, on a per-request basis. In this way, 
it is possible to allow clients access to an unlimited number of Ice objects with 
only a single servant in memory.

Default servant implementations are attractive not only because of the 
memory savings they offer, but also because of the simplicity of implementation: 
in essence, a default servant is a facade [2] to the persistent state of an object in 
the database. This means that the programming required to implement a default 
servant is typically minimal: it simply consists of the code required to read and 
write the corresponding database records.

To create a default servant implementation, we need as many locators as there 
are non-abstract interfaces in the system. For example, for our file system 
application, we require two locators, one for directories and one for files. In addi-
tion, the object identities we create use the category member of the object iden-
tity to encode the type of interface of the corresponding Ice object. The value of 
the category field can be anything that identifies the interface, such as the ‘d’ 
and ‘f’ convention we used on page 766. Alternatively, you could use "Direc-
tory" and "File", or use the type ID of the corresponding interface, such as 
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"::Filesystem::Directory" and "::Filesystem::File". The name member 
of the object identity must be set to whatever identifier we can use to retrieve the 
persistent state of each directory and file from secondary storage. (For our file-
system application, we used a UUID as a unique identifier.)

The servant locators each return a singleton servant from their respective 
locate implementations. Here is the servant locator for directories:

class DirectoryLocator : public virtual Ice::ServantLocator { 
public: 
    DirectoryLocator() : _servant(new DirectoryI) 
    { 
    } 
     
    virtual Ice::ObjectPtr locate(const Ice::Current&, 
                                  Ice::LocalObjectPtr&) 
    { 
        return _servant; 
    } 
 
    virtual void finished(const Ice::Current&, 
                          const Ice::ObjectPtr&, 
                          const Ice::LocalObjectPtr&) 
    { 
    } 
 
    virtual void deactivate(const std::string&) 
    { 
    } 
 
private: 
    Ice::ObjectPtr _servant; 
};

Note that constructor of the locator instantiates a servant and returns that same 
servant from every call to locate. The implementation of the file locator is anal-
ogous to the one for directories. Registration of the servant locators proceeds as 
usual:

_adapter->addServantLocator(new DirectoryLocator, "d"); 
_adapter->addServantLocator(new FileLocator, "f");

All the action happens in the implementation of the operations, using the 
following steps for each operation:

1. Use the passed Current object to get the identity for the current request.
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2. Use the name member of the identity to locate the persistent state of the servant 
on secondary storage. If no record can be found for the identity, throw an 
ObjectNotExistException.

3. Implement the operation to operate on that retrieved state (returning the state 
or updating the state as appropriate for the operation).

In pseudo-code, this might look something like the following:

Filesystem::NodeSeq 
Filesystem::DirectoryI::list(const Ice::Current& c) const 
{ 
    // Use the identity of the directory to retrieve 
    // its contents. 
    DirectoryContents dc; 
    try { 
        dc = DB_getDirectory(c.id.name); 
    } catch(const DB_error&) { 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
    } 
 
    // Use the records retrieved from the database to 
    // initialize return value. 
    // 
    FileSystem::NodeSeq ns; 
    // ... 
 
    return ns; 
}

Note that the servant implementation is completely stateless: the only state it oper-
ates on is the identity of the Ice object for the current request (and that identity is 
passed as part of the Current parameter). The price we have to pay for the 
unlimited scalability and reduced memory footprint is performance: default 
servants make a database access for every invoked operation which is obviously 
slower than caching state in memory, as part of a servant that has been added to 
the ASM. However, this does not mean that default servants carry an unacceptable 
performance penalty: databases often provide sophisticated caching, so even 
though the operation implementations read and write the database, as long as they 
access cached state, performance may be entirely acceptable.

Overriding ice_ping

One issue you need to be aware of with default servants is the need to override 
ice_ping: the default implementation of ice_ping that the servant inherits 
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from its skeleton class always succeeds. For servants that are registered with the 
ASM, this is exactly what we want; however, for default servants, ice_ping 
must fail if a client uses a proxy to a no-longer existent Ice object. To avoid getting 
successful ice_ping invocations for non-existent Ice objects, you must override 
ice_ping in the default servant. The implementation must check whether the 
object identity for the request denotes a still-existing Ice object and, if not, throw 
ObjectNotExistException:

void 
Filesystem::DirectoryI::ice_ping(const Ice::Current& c) const 
{ 
    try { 
       d = DB_lookup(c.id.name); 
    } catch (const DB_error&) { 
       throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
    } 
}

It is good practice to override ice_ping if you are using default servants.

30.8.3 Hybrid Approaches and Caching
Depending on the nature of your application, you may be able to steer a middle 
path that provides better performance while keeping memory requirements low: if 
your application has a number of frequently-accessed objects that are perfor-
mance-critical, you can add servants for those objects to the ASM. If you store the 
state of these objects in data members inside the servants, you effectively have a 
cache of these objects.

The remaining, less-frequently accessed objects can be implemented with a 
default servant. For example, in our file system implementation, we could choose 
to instantiate directory servants permanently, but to have file objects implemented 
with a default servant. This provides efficient navigation through the directory tree 
and incurs slower performance only for the (presumably less frequent) file 
accesses.

This technique could be augmented with a cache of recently-accessed files, 
along similar lines to the buffer pool used by the UNIX kernel [10]. The point is 
that you can combine use of the ASM with servant locators and default servants to 
precisely control the trade-offs among scalability, memory consumption, and 
performance to suit the needs of your application.
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30.8.4 Servant Evictors
A variation on the previous theme and particularly interesting use of a servant 
locator is as an evictor [4]. An evictor is a servant locator that maintains a cache of 
servants:

• Whenever a request arrives (that is, locate is called by the Ice run time), the 
evictor checks to see whether it can find a servant for the request in its cache. 
If so, it returns the servant that is already instantiated in the cache; otherwise, 
it instantiates a servant and adds it to the cache.

• The cache is a queue that is maintained in least-recently used (LRU) order: the 
least-recently used servant is at the tail of the queue, and the most-recently 
used servant is at the head of the queue. Whenever a servant is returned from 
or added to the cache, it is moved from its current queue position to the head 
of the queue, that is, the “newest” servant is always at the head, and the 
“oldest” servant is always at the tail.

• The queue has a configurable length that corresponds to how many servants 
will be held in the cache; if a request arrives for an Ice object that does not 
have a servant in memory and the cache is full, the evictor removes the least-
recently used servant at the tail of the queue from the cache in order to make 
room for the servant about to be instantiated at the head of the queue.

Figure 30.2 illustrates an evictor with a cache size of five after five invocations 
have been made, for object identities 1 to 5, in that order.

Figure 30.2. An evictor after five invocations for object identities 1 to 5.

At this point, the evictor has instantiated five servants, and has placed each servant 
onto the evictor queue. Because requests were sent by the client for object identi-
ties 1 to 5 (in that order), servant 5 ends up at the head of the queue (at the most-
recently used position), and servant 1 ends up at the tail of the queue (at the least-
recently used position).

Evictor
5 4 3 2 1

Evictor Queue

Head Tail

5 4 3 2 1

Servants
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Assume that the client now sends a request for servant 3. In this case, the 
servant is found on the evictor queue and moved to the head position. The 
resulting ordering is shown in Figure 30.3.

Figure 30.3. The evictor from Figure 30.2 after accessing servant 3.

Assume that the next client request is for object identity 6. The evictor queue is 
fully populated, so the evictor creates a servant for object identity 6, places that 
servant at the head of the queue, and evicts the servant with identity 1 (the least-
recently used servant) at the tail of the queue, as shown in Figure 30.4.

Figure 30.4. The evictor from Figure 30.3 after evicting servant 1.

The evictor pattern combines the advantages of the ASM with the advantages of a 
default servant: provided that the cache size is sufficient to hold the working set of 
servants in memory, most requests are served by an already instantiated servant, 
without incurring the overhead of creating a servant and accessing the database to 
initialize servant state. By setting the cache size, you can control the trade-off 
between performance and memory consumption as appropriate for your 
application.

The following sections show how to implement an evictor in both C++ and 
Java. (You can also find the source code for the evictor with the code examples for 
this book in the Ice distribution.)
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Creating an Evictor Implementation in C++

The evictor we show here is designed as an abstract base class: in order to use it, 
you derive an object from the EvictorBase base class and implement two 
methods that are called by the evictor when it needs to add or evict a servant. This 
leads to a class definitions as follows:

class EvictorBase : public Ice::ServantLocator { 
public: 
 
    EvictorBase(int size = 1000); 
 
    virtual Ice::ObjectPtr locate(const Ice::Current& c, 
                                  Ice::LocalObjectPtr& cookie); 
    virtual void finished(const Ice::Current& c, 
                          const Ice::ObjectPtr& servant, 
                          const Ice::LocalObjectPtr& cookie); 
    virtual void deactivate(const std::string& category); 
 
    virtual Ice::ObjectPtr add(const Ice::Current& c, 
                               Ice::LocalObjectPtr& cookie) = 0; 
    virtual void evict(const Ice::ObjectPtr& servant, 
                       const Ice::LocalObjectPtr& cookie) = 0; 
 
private: 
    // ... 
}; 
typedef IceUtil::Handle<EvictorBase> EvictorBasePtr;

Note that the evictor has a constructor that sets the size of the queue, with a default 
argument to set the size to 1000.

The locate, finished, and deactivate functions are inherited from 
the ServantLocator base class; these functions implement the logic to main-
tain the queue in LRU order and to add and evict servants as needed.

The add and evict functions are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are pure virtual, so they must be implemented in a derived class. 
The job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:
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1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue. Storing the queue position is not strictly neces-
sary—we store the position for efficiency reasons because it allows us to 
locate a servant’s position in the queue in constant time instead of having to 
search through the queue in order to maintain its LRU property.

3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The need for the use count deserves some extra explanation: suppose a client 
invokes a long-running operation on an Ice object with identity I. In response, the 
evictor adds a servant for I to the evictor queue. While the original invocation is 
still executing, other clients invoke operations on various Ice objects, which leads 
to more servants for other object identities being added to the queue. As a result, 
the servant for identity I gradually migrates toward the tail of the queue. If enough 
client requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the original 
request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea that 
a servant for I is still around and would add a second servant for I. However, 
having two servants for the same Ice object in memory is likely to cause problems, 
especially if the servant’s operation implementations write to a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is busy, 
avoid evicting that servant. As a result, the queue size is not a hard upper limit: 
long-running operations can temporarily cause more servants than the limit to 
appear in the queue. However, as soon as excess servants become idle, they are 
evicted as usual.
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The evictor queue does not store the identity of the servant. Instead, the entries 
on the queue are iterators into the evictor map. This is useful when the time comes 
to evict a servant: instead of having to search the map for the identity of the 
servant to be evicted, we can simply delete the map entry that is pointed at by the 
iterator at the tail of the queue. We can get away with storing an iterator into the 
evictor queue as part of the map, and storing an iterator into the evictor map as 
part of the queue because both std::list and std::map do not invalidate 
iterators when we add or delete entries (except for invalidating iterators that point 
at a deleted entry, of course).

Finally, our locate and finished implementations will need to exchange 
a cookie that contains a smart pointer to the entry in the evictor map. This is 
necessary so that finished can decrement the servant’s use count.

The leads to the following definitions in the private section of our evictor:

class EvictorBase : public Ice::ServantLocator { 
public: 
    // ... 
 
private: 
    struct EvictorEntry; 
    typedef IceUtil::Handle<EvictorEntry> EvictorEntryPtr; 
 
    typedef std::map<Ice::Identity, EvictorEntryPtr> EvictorMap; 
    typedef std::list<EvictorMap::iterator> EvictorQueue; 
 
    struct EvictorEntry : public Ice::LocalObject { 
        Ice::ObjectPtr servant; 
        Ice::LocalObjectPtr userCookie; 
        EvictorQueue::iterator pos; 
        int useCount; 
    }; 
 
    struct EvictorCookie : public Ice::LocalObject { 
        EvictorEntryPtr entry; 
    }; 
    typedef IceUtil::Handle<EvictorCookie> EvictorCookiePtr; 
 
    EvictorMap _map; 
    EvictorQueue _queue; 
    Ice::Int _size; 
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    IceUtil::Mutex _mutex; 
 
    void evictServants(); 
};

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. In addition, we use a private 
_mutex data member so we can correctly serialize access to the evictor’s data 
structures.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

The implementation of the constructor is trivial. The only point of note is that 
we ignore negative sizes:7

EvictorBase::EvictorBase(Ice::Int size) : _size(size) 
{ 
    if (_size < 0) 
        _size = 1000; 
}

Almost all the action of the evictor takes place in the implementation of locate:

Ice::ObjectPtr 
EvictorBase::locate(const Ice::Current& c, 
                    Ice::LocalObjectPtr& cookie) 
{ 
    IceUtil::Mutex::Lock lock(_mutex); 
 
    // Create a cookie. 
    // 
    EvictorCookiePtr ec = new EvictorCookie; 
    cookie = ec; 
 
    // Check if we have a servant in the map already. 
    // 
    EvictorMap::iterator i = _map.find(c.id); 
    bool newEntry = i == _map.end(); 
    if(!newEntry) { 
        // Got an entry already, dequeue the entry from 
        // its current position. 

7. We could have stored the size as a size_t instead. However, for consistency with the Java 
implementation, which cannot use unsigned integers, we use Ice::Int to store the size.
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        // 
        ec->entry = i->second; 
        _queue.erase(ec->entry->pos); 
    } else { 
        // We do not have an entry. Ask the derived class to 
        // instantiate a servant and add a new entry to the map. 
        // 
        ec->entry = new EvictorEntry; 
        ec->entry->servant 
            = add(c, ec->entry->userCookie); // Down-call 
        if(!ec->entry->servant) 
        { 
            return 0; 
        } 
        ec->entry->useCount = 0; 
        i = _map.insert(std::make_pair(c.id, ec->entry)).first; 
    } 
 
    // Increment the use count of the servant and enqueue 
    // the entry at the front, so we get LRU order. 
    // 
    ++(ec->entry->useCount); 
    ec->entry->pos = _queue.insert(_queue.begin(), i); 
 
    return ec->entry->servant; 
}

The first step in locate is to lock the _mutex data member. This protects the 
evictor’s data structures from concurrent access. The next step is to create the 
cookie that is returned from locate and will be passed by the Ice run time to the 
corresponding call to finished. The cookie contains a smart pointer to an 
evictor entry, of type EvictorEntryPtr. This is also the value type of our map 
entries, so we do not store two copies of the same information redundantly—
instead, smart pointers ensure that a single copy is shared by both the cookie and 
the map.

The next step is to look in the evictor map to see whether we already have an 
entry for this object identity. If so, we initialize the cookie’s smart pointer with 
that entry and remove the entry from its current queue position.

Otherwise, we do not have an entry for this object identity yet, so we have to 
create one. The code creates a new evictor entry, and then calls add to get a new 
servant. This is a down-call to the concrete class that will be derived from 
EvictorBase. The implementation of add must attempt to locate the object 
state for the Ice object with the identity passed inside the Current object and 
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either return a servant as usual, or return null or throw an exception to indicate 
failure. If add returns null, we return zero to let the Ice run time know that no 
servant could be found for the current request. If add succeeds, we initialize the 
entry’s use count to zero and insert the entry into the evictor map.

The last few lines of locate add the entry for the current request to the head 
of the evictor queue to maintain its LRU property, increment the use count of the 
entry, and finally return the servant to the Ice run time.

The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:

void 
EvictorBase::finished(const Ice::Current&, 
                      const Ice::ObjectPtr&, 
                      const Ice::LocalObjectPtr& cookie) 
{ 
    IceUtil::Mutex::Lock lock(_mutex); 
 
    EvictorCookiePtr ec = EvictorCookiePtr::dynamicCast(cookie); 
 
    // Decrement use count and check if 
    // there is something to evict. 
    // 
    --(ec->entry->useCount); 
    evictServants(); 
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

void 
EvictorBase::evictServants() 
{ 
    // If the evictor queue has grown larger than the limit, 
    // look at the excess elements to see whether any of them 
    // can be evicted. 
    // 
    for (int i = static_cast<int>(_map.size() - _size); 
         i > 0; --i) { 
        EvictorQueue::reverse_iterator p = _queue.rbegin(); 
        if((*p)->second->useCount == 0) { 
           evict((*p)->second->servant, (*p)->second->userCookie); 
           EvictorMap::iterator pos = *p; 
           _queue.erase((*p)->second->pos); 
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           _map.erase(pos); 
        } 
    } 
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.

void 
EvictorBase::deactivate(const std::string& category) 
{ 
    IceUtil::Mutex::Lock lock(_mutex); 
 
    _size = 0; 
    evictServants(); 
}

Creating an Evictor Implementation in Java

The evictor we show here is designed as an abstract base class: in order to use it, 
you derive an object from the Evictor.EvictorBase base class and imple-
ment two methods that are called by the evictor when it needs to add or evict a 
servant. This leads to a class definitions as follows:

package Evictor; 
 
public abstract class EvictorBase 
    extends Ice.LocalObjectImpl implements Ice.ServantLocator 
{ 
    public 
    EvictorBase() 
    { 
        _size = 1000; 
    } 
 
    public 
    EvictorBase(int size) 
    { 



786 The Ice Run Time in Detail

        _size = size < 0 ? 1000 : size; 
    } 
 
    public abstract Ice.Object 
    add(Ice.Current c, Ice.LocalObjectHolder cookie); 
 
    public abstract void 
    evict(Ice.Object servant, Ice.LocalObject cookie); 
 
    synchronized public final Ice.Object 
    locate(Ice.Current c, Ice.LocalObjectHolder cookie) 
    { 
        // ... 
    } 
 
    synchronized public final void 
    finished(Ice.Current c, Ice.Object o, Ice.LocalObject cookie) 
    { 
        // ... 
    } 
 
    synchronized public final void 
    deactivate(String category) 
    { 
        // ... 
    } 
 
    // ... 
 
    private int _size; 
}

Note that the evictor has constructors to set the size of the queue, with a default 
size of 1000.

The locate, finished, and deactivate methods are inherited from the 
ServantLocator base class; these methods implement the logic to maintain 
the queue in LRU order and to add and evict servants as needed. The methods are 
synchronized, so the evictor’s internal data structures are protected from concur-
rent access.

The add and evict methods are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are abstract, so they must be implemented in a derived class. The 
job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
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evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:

1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue.

3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The last two points deserve some extra explanation.

• The evictor queue must be maintained in least-recently used order, that is, 
every time an invocation arrives and we find an entry for the identity in the 
evictor map, we also must locate the servant’s identity on the evictor queue 
and move it to the front of the queue. However, scanning for that entry is inef-
ficient because it requires O(n) time. To get around this, we store an iterator in 
the evictor map that marks the corresponding entry’s position in the evictor 
queue. This allows us to dequeue the entry from its current position and 
enqueue it at the head of the queue in O(1) time.

Unfortunately, the various lists provided by java.util do not allow us to 
keep an iterator to a list position without invalidating that iterator as the list is 
updated. To deal with this, we use a special-purpose linked list implementa-
tion, Evictor.LinkedList, that does not have this limitation. 
LinkedList has an interface similar to java.util.LinkedList but 
does not invalidate iterators other than iterators that point at an element that is 
removed. For brevity, we do not show the implementation of this list here—
you can find the implementation in the code examples for this book in the Ice 
distribution.
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• We maintain a use count as part of the map in order to avoid incorrect eviction 
of servants. Suppose a client invokes a long-running operation on an Ice 
object with identity I. In response, the evictor adds a servant for I to the 
evictor queue. While the original invocation is still executing, other clients 
invoke operations on various Ice objects, which leads to more servants for 
other object identities being added to the queue. As a result, the servant for 
identity I gradually migrates toward the tail of the queue. If enough client 
requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the orig-
inal request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea 
that a servant for I is still around and would add a second servant for I. 
However, having two servants for the same Ice object in memory is likely to 
cause problems, especially if the servant’s operation implementations write to 
a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is 
busy, avoid evicting that servant. As a result, the queue size is not a hard upper 
limit: long-running operations can temporarily cause more servants than the 
limit to appear in the queue. However, as soon as excess servants become idle, 
they are evicted as usual.

Finally, our locate and finished implementations will need to exchange a 
cookie that contains a smart pointer to the entry in the evictor map. This is neces-
sary so that finished can decrement the servant’s use count.

The leads to the following definitions in the private section of our evictor:

package Evictor; 
 
public abstract class EvictorBase 
    extends Ice.LocalObjectImpl implements Ice.ServantLocator 
{ 
    // ... 
 
    private class EvictorEntry 
    { 
        Ice.Object servant; 
        Ice.LocalObject userCookie; 
        java.util.Iterator pos; 
        int useCount; 
    } 
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    private class EvictorCookie extends Ice.LocalObjectImpl 
    { 
        public EvictorEntry entry; 
    } 
 
    private void evictServants() 
    { 
        // ... 
    } 
 
    private java.util.Map _map = new java.util.HashMap(); 
    private Evictor.LinkedList _queue = new Evictor.LinkedList(); 
    private int _size; 
}

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. The map key is the identity of 
the Ice object, and the lookup value is of type EvictorEntry. The queue 
simply stores identities, of type Ice::Identity.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

Almost all the action of the evictor takes place in the implementation of 
locate:

synchronized public final Ice.Object 
locate(Ice.Current c, Ice.LocalObjectHolder cookie) 
{ 
    // Create a cookie. 
    // 
    EvictorCookie ec = new EvictorCookie(); 
    cookie.value = ec; 
 
    // Check if we a servant in the map already. 
    // 
    ec.entry = (EvictorEntry)_map.get(c.id); 
    boolean newEntry = ec.entry == null; 
    if(!newEntry) { 
        // Got an entry already, dequeue the entry from 
        // its current position. 
        // 
        ec.entry.pos.remove(); 
    } else { 
        // We do not have entry. Ask the derived class to 
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        // instantiate a servant and add a new entry to the map. 
        // 
        ec.entry = new EvictorEntry(); 
        Ice.LocalObjectHolder cookieHolder 
            = new Ice.LocalObjectHolder(); 
        ec.entry.servant = add(c, cookieHolder); // Down-call 
        if(ec.entry.servant == null) { 
            return null; 
        } 
        ec.entry.userCookie = cookieHolder.value; 
        ec.entry.useCount = 0; 
        _map.put(c.id, ec.entry); 
    } 
 
    // Increment the use count of the servant and enqueue 
    // the entry at the front, so we get LRU order. 
    // 
    ++(ec.entry.useCount); 
    _queue.addFirst(c.id); 
    ec.entry.pos = _queue.iterator(); 
    ec.entry.pos.next(); // Position the iterator on the element. 
 
    return ec.entry.servant; 
}

The code creates a cookie that is returned from locate and will be passed by the 
Ice run time to the corresponding call to finished. The cookie contains an 
evictor entry, of type EvictorEntry.

We now look for an existing entry in the evictor map, using the object identity 
as the key. If we have an entry in the map already, we dequeue the corresponding 
identity from the evictor queue. (The pos member of EvictorEntry is an iter-
ator that marks that entry’s position in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and 
call the add method. This is a down-call to the concrete class that will be derived 
from EvictorBase. The implementation of add must attempt to locate the 
object state for the Ice object with the identity passed inside the Current object 
and either return a servant as usual, or return null or throw an exception to indicate 
failure. If add returns null, we return null to let the Ice run time know that no 
servant could be found for the current request. If add succeeds, we initialize the 
entry’s use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry’s use count, add the entry at the 
head of the evictor queue, and store the entry’s position in the queue before 
returning the servant to the Ice run time.
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The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:

synchronized public final void 
finished(Ice.Current c, Ice.Object o, Ice.LocalObject cookie) 
{ 
    EvictorCookie ec = (EvictorCookie)cookie; 
 
    // Decrement use count and check if 
    // there is something to evict. 
    // 
    --(ec.entry.useCount); 
    evictServants(); 
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

private void evictServants() 
{ 
    // If the evictor queue has grown larger than the limit, 
    // look at the excess elements to see whether any of them 
    // can be evicted. 
    // 
    for(int i = _map.size() - _size; i > 0; --i) { 
        java.util.Iterator p = _queue.riterator(); 
        Ice.Identity id = (Ice.Identity)p.next(); 
        EvictorEntry e = (EvictorEntry)_map.get(id); 
        if(e.useCount == 0) { 
            evict(e.servant, e.userCookie); // Down-call 
            p.remove(); 
            _map.remove(id); 
        } 
    } 
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
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in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.

synchronized public final void 
deactivate(String category) 
{ 
    _size = 0; 
    evictServants(); 
}

Creating an Evictor Implementation in C#

The System.Collection classes do not provide a container that does not 
invalidate iterators when we modify the contents of the container but, to efficiently 
implement an evictor, we need such a container. To deal with this, we use a 
special-purpose linked list implementation, Evictor.LinkedList, that does 
not invalidate iterators when we delete or add an element. For brevity, we only 
show the interface of LinkedList here—you can find the implementation in 
the code examples for this book in the Ice for C# distribution.

namespace Evictor 
{ 
    public class LinkedList : ICollection, ICloneable 
    { 
        public LinkedList(); 
 
        public int Count { get; } 
        } 
 
        public void Add(object value); 
        public void AddFirst(object value); 
 
 
        public IEnumerator GetEnumerator(); 
 
        public class Enumerator : IEnumerator 
        { 
            public void Reset(); 
 
            public object Current { get; } 
 
            public bool MoveNext(); 
 
            public bool MovePrev(); 
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            public void Remove(); 
        } 
 
        public void CopyTo(Array array, int index); 
 
        public object Clone(); 
 
        public bool IsSynchronized { get; } 
 
        public object SyncRoot { get; } 
    } 
}

The Add method appends an element to the list, and the AddFirst method 
prepends an element to the list. GetEnumerator returns an enumerator for the 
list elements; immediately after calling GetEnumerator, the enumerator does 
not point at any element until you call either MoveNext or MovePrev, which 
position the enumerator at the first and last element, respectively. Current 
returns the element at the enumerator position, and Remove deletes the element at 
the current position and leaves the enumerator pointing at no element. Calling 
MoveNext or MovePrev after calling Remove positions the enumerator at the 
element following or preceding the deleted element, respectively. MoveNext and 
MovePrev return true if they have positioned the enumerator on an element; 
otherwise, they return false and leave the enumerator position on the last and first 
element, respectively.

Given this LinkedList, we can implement the evictor. The evictor we show 
here is designed as an abstract base class: in order to use it, you derive an object 
from the Evictor.EvictorBase base class and implement two methods that 
are called by the evictor when it needs to add or evict a servant. This leads to a 
class definitions as follows:

namespace Evictor 
{ 
    public abstract class EvictorBase 
        : Ice.LocalObjectImpl, Ice.ServantLocator 
    { 
 
        public EvictorBase() 
        { 
            _size = 1000; 
        } 
 
        public EvictorBase(int size) 



794 The Ice Run Time in Detail

        { 
            _size = size < 0 ? 1000 : size; 
        } 
 
        public abstract Ice.Object 
                            add(Ice.Current c, 
                                out Ice.LocalObject cookie); 
 
        public abstract void evict(Ice.Object servant, 
                                   Ice.LocalObject cookie); 
 
        public Ice.Object locate(Ice.Current c, 
                                 out Ice.LocalObject cookie) 
        { 
            lock(this) 
            { 
                // ... 
            } 
        } 
 
        public void finished(Ice.Current c, Ice.Object o, 
                             Ice.LocalObject cookie) 
        { 
            lock(this) 
            { 
                // ... 
            } 
        } 
 
        public void deactivate(string category) 
        { 
            lock(this) 
            { 
                // ... 
            } 
        } 
 
        private int _size; 
    } 
}

Note that the evictor has constructors to set the size of the queue, with a default 
size of 1000.

The locate, finished, and deactivate methods are inherited from the 
ServantLocator base class; these methods implement the logic to maintain 
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the queue in LRU order and to add and evict servants as needed. The methods use 
a lock(this) statement for their body, so the evictor’s internal data structures 
are protected from concurrent access.

The add and evict methods are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are abstract, so they must be implemented in a derived class. The 
job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:

1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue.

3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The last two points deserve some extra explanation.

• The evictor queue must be maintained in least-recently used order, that is, 
every time an invocation arrives and we find an entry for the identity in the 
evictor map, we also must locate the servant’s identity on the evictor queue 
and move it to the front of the queue. However, scanning for that entry is inef-
ficient because it requires O(n) time. To get around this, we store an iterator in 
the evictor map that marks the corresponding entry’s position in the evictor 
queue. This allows us to dequeue the entry from its current position and 
enqueue it at the head of the queue in O(1) time, using the 
Evictor.LinkedList implementation we saw on page 792.



796 The Ice Run Time in Detail

• We maintain a use count as part of the map in order to avoid incorrect eviction 
of servants. Suppose a client invokes a long-running operation on an Ice 
object with identity I. In response, the evictor adds a servant for I to the 
evictor queue. While the original invocation is still executing, other clients 
invoke operations on various Ice objects, which leads to more servants for 
other object identities being added to the queue. As a result, the servant for 
identity I gradually migrates toward the tail of the queue. If enough client 
requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the orig-
inal request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea 
that a servant for I is still around and would add a second servant for I. 
However, having two servants for the same Ice object in memory is likely to 
cause problems, especially if the servant’s operation implementations write to 
a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is 
busy, avoid evicting that servant. As a result, the queue size is not a hard upper 
limit: long-running operations can temporarily cause more servants than the 
limit to appear in the queue. However, as soon as excess servants become idle, 
they are evicted as usual.

Finally, our locate and finished implementations will need to exchange a 
cookie that contains a smart pointer to the entry in the evictor map. This is neces-
sary so that finished can decrement the servant’s use count.

The leads to the following definitions in the private section of our evictor:

namespace Evictor 
{ 
    public abstract class EvictorBase 
        : Ice.LocalObjectImpl, Ice.ServantLocator 
    { 
        // ... 
 
        private class EvictorEntry 
        { 
            internal Ice.Object servant; 
            internal Ice.LocalObject userCookie; 
            internal LinkedList.Enumerator pos; 
            internal int useCount; 
        } 
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        private class EvictorCookie : Ice.LocalObjectImpl 
        { 
            public EvictorEntry entry; 
        } 
 
        private void evictServants() 
        { 
            // ... 
        } 
 
        private System.Collections.Hashtable _map 
            = new System.Collections.Hashtable(); 
        private LinkedList _queue = new LinkedList(); 
        private int _size; 
    } 
}

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. The map key is the identity of 
the Ice object, and the lookup value is of type EvictorEntry. The queue 
simply stores identities, of type Ice.Identity.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

Almost all the action of the evictor takes place in the implementation of 
locate:

public Ice.Object locate(Ice.Current c, 
                         out Ice.LocalObject cookie) 
{ 
    lock(this) 
    { 
        // 
        // Create a cookie. 
        // 
        EvictorCookie ec = new EvictorCookie(); 
 
        // 
        // Check if we have a servant in the map already. 
        // 
        ec.entry = (EvictorEntry)_map[c.id]; 
        bool newEntry = ec.entry == null; 
        if(!newEntry) 
        { 
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            // 
            // Got an entry already, dequeue the entry 
            // from its current position. 
            // 
            ec.entry.pos.Remove(); 
        } 
        else 
        { 
            // 
            // We do not have an entry. Ask the derived 
            // class to instantiate a servant and add 
            // a new entry to the map. 
            // 
            ec.entry = new EvictorEntry(); 
            Ice.LocalObject theCookie; 
            ec.entry.servant = add(c, out theCookie); 
            if(ec.entry.servant == null) 
            { 
                return null; 
            } 
            ec.entry.userCookie = theCookie; 
            ec.entry.useCount = 0; 
            _map[c.id] = ec.entry; 
        } 
 
        // 
        // Increment the use count of the servant 
        // and enqueue the entry at the front, so 
        // we get LRU order. 
        // 
        ++(ec.entry.useCount); 
        _queue.AddFirst(c.id); 
        ec.entry.pos = 
            (LinkedList.Enumerator)_queue.GetEnumerator(); 
        ec.entry.pos.MovePrev(); 
        cookie = ec; 
 
        return ec.entry.servant; 
    } 
}

The code creates a cookie that is returned from locate and will be passed by the 
Ice run time to the corresponding call to finished. The cookie contains an 
evictor entry, of type EvictorEntry.
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We now look for an existing entry in the evictor map, using the object identity 
as the key. If we have an entry in the map already, we dequeue the corresponding 
identity from the evictor queue. (The pos member of EvictorEntry is an iter-
ator that marks that entry’s position in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and 
call the add method. This is a down-call to the concrete class that will be derived 
from EvictorBase. The implementation of add must attempt to locate the 
object state for the Ice object with the identity passed inside the Current object 
and either return a servant as usual, or return null or throw an exception to indicate 
failure. If add returns null, we return null to let the Ice run time know that no 
servant could be found for the current request. If add succeeds, we initialize the 
entry’s use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry’s use count, add the entry at the 
head of the evictor queue, and store the entry’s position in the queue before 
returning the servant to the Ice run time.

The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:

public void finished(Ice.Current c, Ice.Object o, 
                     Ice.LocalObject cookie) 
{ 
    lock(this) 
    { 
        EvictorCookie ec = (EvictorCookie)cookie; 
 
        // 
        // Decrement use count and check if 
        // there is something to evict. 
        // 
        --(ec.entry).useCount; 
        evictServants(); 
    } 
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

private void evictServants() 
{ 
    // 
    // If the evictor queue has grown larger than the 
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    // limit, look at the excess elements to see whether 
    // any of them can be evicted. 
    // 
    LinkedList.Enumerator p 
        = (LinkedList.Enumerator)_queue.GetEnumerator(); 
    for(int i = _map.Count - _size; i > 0; --i) 
    { 
        p.MovePrev(); 
        Ice.Identity id = (Ice.Identity)p.Current; 
        EvictorEntry e = (EvictorEntry)_map[id]; 
        if(e.useCount == 0) 
        { 
            evict(e.servant, e.userCookie); 
            p.Remove(); 
            _map.Remove(id); 
        } 
    } 
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.

public void deactivate(string category) 
{ 
    lock(this) 
    { 
        _size = 0; 
        evictServants(); 
    } 
}

Using Servant Evictors

Using a servant evictor is simply a matter of deriving a class from 
EvictorBase and implementing the add and evict methods. You can turn a 
servant locator into an evictor by simply taking the code that you wrote for 
locate and placing it into add—EvictorBase then takes care of main-
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taining the cache in least-recently used order and evicting servants as necessary. 
Unless you have clean-up requirements for your servants (such as closing network 
connections or database handles), the implementation of evict can be left 
empty.

One of the nice aspects of evictors is that you do not need to change anything 
in your servant implementation: the servants are ignorant of the fact that an evictor 
is in use. This makes it very easy to add an evictor to an already existing code base 
with little disturbance of the source code.

Evictors can provide substantial performance improvements over default 
servants: especially if initialization of servants is expensive (for example, because 
servant state must be initialized by reading from a network), an evictor performs 
much better than a default servant, while keeping memory requirements low.

As we will see in XREF, evictors can also be useful to get rid of servants that 
have been abandoned by clients.

30.9 The Ice Threading Models

Ice is inherently a multi-threaded platform. There is no such thing as a single-
threaded server in Ice. As a result, you must concern yourself with concurrency 
issues: if a thread reads a data structure while another thread updates the same 
data structure, havoc will ensue unless you protect the data structure with appro-
priate locks. In order to build Ice applications that behave correctly, it is important 
that you understand the threading semantics of the Ice run time. This section 
discusses the two concurrency models that Ice supports, called thread pool and 
thread-per-connection, and provides guidelines for writing thread-safe Ice appli-
cations.

30.9.1 Thread Pool
The thread-pool model is the default concurrency model in Ice. A thread pool is a 
collection of threads that the Ice run time draws upon to perform specific tasks. 
Each communicator creates at least two thread pools:

• The client thread pool services outgoing connections, which primarily 
involves handling the replies to outgoing requests and includes notifying AMI 
callback objects (see Section 31.3). If a connection is used in bidirectional 
mode (see Section 34.7), the client thread pool also dispatches incoming call-
back requests.
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• The server thread pool services incoming connections. It dispatches incoming 
requests and, for bidirectional connections, processes replies to outgoing 
requests.

By default, these two thread pools are shared by all of the communicator’s object 
adapters. If necessary, you can configure individual object adapters to use a 
private thread pool instead.

If a thread pool is exhausted because all threads are currently dispatching a 
request, additional incoming requests are transparently delayed until a request 
completes and relinquishes its thread; that thread is then used to dispatch the next 
pending request. Ice minimizes thread context switches in a thread pool by using a 
leader-follower implementation (see  [17]).

Thread Pool Configuration

Configuration properties determine the minimum and maximum size of a thread 
pool:

• name.Size

This property specifies the initial and minimum size of the thread pool. If not 
defined, the default value is one.

• name.SizeMax

This property specifies the maximum size of the thread pool. As the demand 
for threads increases, the Ice run time adds more threads to the pool, up to the 
maximum size. If not defined, the default value is one.

If name.SizeMax is less than name.Size, name.SizeMax is adjusted 
to be equal to name.Size.

Threads are terminated automatically when they have been idle for a while, but a 
thread pool always contains at least the minimum number of threads.

For configuration purposes, the names of the default client and server thread 
pools are Ice.ThreadPool.Client and Ice.ThreadPool.Server, 
respectively. As an example, the following properties establish minimum and 
maximum sizes for the thread pools:

Ice.ThreadPool.Client.Size=1 
Ice.ThreadPool.Client.SizeMax=10 
Ice.ThreadPool.Server.Size=1 
Ice.ThreadPool.Server.SizeMax=10

Thread pools also support two other properties:
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• name.SizeWarn

This property sets a high water mark; when the number of threads in a pool 
reaches this value, the Ice run time logs a warning message. If you see this 
warning message frequently, it could indicate that you need to increase the 
value of name.SizeMax. If not defined, the default value is 80% of the 
value of name.SizeMax. Set this property to zero to disable the warning.

• name.StackSize

This property specifies the number of bytes to use as the stack size of threads 
in the thread pool. The operating system’s default is used if this property is not 
defined or is set to zero. Only the C++ run time uses this property.

Adapter Thread Pools

Configuring a private thread pool for an adapter is useful in avoiding deadlocks 
due to thread starvation by ensuring that a minimum number of threads is avail-
able for dispatching requests to certain servants.

You configure an object adapter to use a private thread pool by defining at 
least one of the following properties with a value greater than zero:

• adapter.ThreadPool.Size

• adapter.ThreadPool.SizeMax

These properties have the same purpose as those described earlier, but they both 
have a default value of zero. If neither property is defined, the adapter uses the 
communicator’s thread pools by default. If SizeMax is not defined, it defaults to 
the value of Size, meaning the thread pool does not grow dynamically.

Object adapter thread pools also support the SizeWarn and StackSize 
properties described in the previous subsection.

As an example, the properties shown below configure a thread pool for the 
object adapter named PrinterAdapter:

PrinterAdapter.ThreadPool.Size=3 
PrinterAdapter.ThreadPool.SizeMax=15 
PrinterAdapter.ThreadPool.SizeWarn=14 
PrinterAdapter.ThreadPool.StackSize=262144

Size Considerations

Choosing an inappropriate size for a thread pool can have a serious impact on the 
performance of your application. Since the client and server thread pools each 
contain only one thread by default, it is important that you understand the implica-
tions of using them in their default configurations:
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• Only one operation can be dispatched at a time.

This can be convenient because it lets you avoid (or postpone) dealing with 
thread-safety issues in your application (see Section 30.9.5), but it also limits 
throughput. Be aware that this limitation applies to all of the object adapters 
that share the default thread pools.

• Only one AMI reply can be processed at a time.

An application must increase the size of the client thread pool in order to 
process multiple AMI callbacks in parallel.

• Nested twoway invocations are limited.

At most one level of nested twoway invocations is possible. (See 
Section 30.9.4.)

30.9.2 Thread-Per-Connection
The thread-per-connection concurrency model creates a separate thread for each 
incoming and outgoing connection. The thread for an incoming connection 
dispatches requests and, if the connection is bidiretional, handles replies to 
outgoing bidirectional requests. The thread for an outgoing connection processes 
replies and, if the connection is bidirectional, dispatches incoming requests.

Two configuration properties are supported for thread-per-connection:

• Ice.ThreadPerConnection

This property enables thread-per-connection if its value is greater than zero.

• Ice.ThreadPerConnection.StackSize

This property specifies the number of bytes to use as the stack size of each 
thread. The operating system’s default is used if this property is not defined or 
is set to zero. Only the C++ run time uses this property.

It is not possible to use both concurrency models in the same communicator. If 
thread-per-connection is enabled for a communicator, no thread pools are created 
and all thread pool-related configuration properties are ignored. An application 
that needs to use both concurrency models can create multiple communicators 
with the desired configurations.

30.9.3 Comparing Concurrency Models
Thread pool is the default concurrency model because it is an appropriate choice 
for most applications. Thread-per-connection is useful in certain situations and 
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mandatory in others, such as when using IceSSL for Java (see Chapter 39). This 
section discusses some issues to consider when deciding which concurrency 
model is appropriate for your application.

Scalability

Since thread-per-connection creates a new thread for each connection, a program 
that establishes hundreds of connections also creates hundreds of threads. The use 
of active connection management (see Section 34.4) to reap idle connections (and 
therefore the threads associated with them) can mitigate this somewhat, but 
thread-per-connection does not scale as well as a thread pool. In fact, the ability to 
set the maximum size of a thread pool allows you to tune an Ice application to 
match the hardware capabilities of its host. On a multi-processor machine, for 
example, you may decide to limit the thread pool to the number of physical 
processors in order to minimize the overhead of thread context switches.

Concurrency

The thread-per-connection model is useful when you need to serialize requests 
from a client. For instance, suppose that a transaction processing server must 
ensure that requests are dispatched in the order they are received. If the thread-per-
connection model is enabled, only one thread can dispatch the requests received 
on a connection, and therefore serialization is guaranteed (assuming the client is 
not sending requests on multiple connections).

This requirement could also be satisfied with a thread pool, but only if you 
limit the maximum size of the thread pool to one or, alternatively, if you can guar-
antee that the client does not send requests from multiple threads and does not 
send oneway requests. The disadvantage of using a thread pool with only one 
thread is that it serializes requests from all clients, rather than just the requests 
from a single connection. If you use a larger thread pool, and the client sends 
requests from multiple threads or uses oneway requests, then the operating 
system’s thread scheduling behavior in the server could cause requests to be 
dispatched out of order (see Section 30.13).

The fact that thread-per-connection serializes requests could just as easily be 
considered a disadvantage in a use case with different requirements. For example, 
thread-per-connection might be an inappropriate choice for a server with long-
running operations when the client needs the ability to have several operations in 
progress simultaneously. There are ways to achieve the client’s concurrency 
requirements while using the thread-per-connection model. One option is to 
design the client so that it forces new connections to be established (see 
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Section 34.3), however this tightly couples the client with the server implementa-
tion. Another alternative is for the server to use asynchronous dispatch in order to 
avoid blocking the connection’s thread, and use a work queue to execute the 
requests in separate threads. However, unless the server needs to track the order of 
requests, a thread pool provides similar functionality with less effort.

30.9.4 Nested Invocations
A nested invocation is one that is made within the context of another Ice opera-
tion. For instance, the implementation of an operation in a servant might need to 
make a nested invocation on some other object, or an AMI callback object might 
invoke an operation in the course of processing a reply to an asynchronous 
request. It is also possible for one of these invocations to result in a nested call-
back to the originating process. The maximum depth of such invocations is deter-
mined by the concurrency models in use by the communicating parties.

Deadlocks

Applications that use nested invocations must be carefully designed to avoid the 
potential for deadlock, which can easily occur when invocations take a circular 
path. For example, Figure 30.5 presents a deadlock scenario when using the 
default thread pool configuration.

Figure 30.5. Nested invocation deadlock.

In this diagram, the implementation of opA makes a nested twoway invocation of 
opB, but the implementation of opB causes a deadlock when it tries to make a 
nested callback. As mentioned in Section 30.9.1, the default thread pools have a 
maximum size of one thread unless explicitly configured otherwise. In Server A, 

Client Server A Server B

opA

opB

callback
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the only thread in the server thread pool is busy waiting for its invocation of opB to 
complete, and therefore no threads remain to handle the callback from Server B. 
The client is now blocked because Server A is blocked, and they remain blocked 
indefinitely unless timeouts are used.

There are several ways to avoid a deadlock in this scenario:

• Increase the maximum size of the server thread pool in Server A.

Configuring the server thread pool in Server A to support more than one 
thread allows the nested callback to proceed. This is the simplest solution, but 
it requires that you know in advance how deeply nested the invocations may 
occur, or that you set the maximum size to a sufficiently large value that 
exhausting the pool becomes unlikely. For example, setting the maximum size 
to two avoids a deadlock when a single client is involved, but a deadlock could 
easily occur again if multiple clients invoke opA simultaneously.

• Use a oneway invocation.

If Server A called opB using a oneway invocation, it would no longer need to 
wait for a response and therefore opA could complete, making a thread avail-
able to handle the callback from Server B. However, we have made a signifi-
cant change in the semantics of opA because now there is no guarantee that 
opB has completed before opA returns, and it is still possible for the oneway 
invocation of opB to block (see Section 30.13).

• Implement opA using asynchronous dispatch and invocation.

By declaring opA as an AMD operation (see Section 31.4) and invoking opB 
using AMI, Server A can usually avoid blocking the thread pool’s thread 
while it waits for opB to complete. As with oneway invocations, however, the 
asynchronous invocation of opB can block the calling thread if network 
buffers fill up.

• Create another object adapter for the callbacks.

No deadlock occurs if the callback from Server B is directed to a different 
object adapter that is configured with its own thread pool.

• Use thread-per-connection.

To invoke the callback, Server B establishes a connection to Server A and 
therefore a new thread is created to dispatch the request. The limitations of 
thread-per-connection are discussed in Section 30.9.3.

As another example, consider a client that makes a nested invocation from an AMI 
callback object using the default thread pool configuration. The (one and only) 
thread in the client thread pool receives the reply to the asynchronous request and 
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invokes its callback object. If the callback object in turn makes a nested twoway 
invocation, a deadlock occurs because no more threads are available in the client 
thread pool to process its reply. The solutions are similar to some of those 
presented for Figure 30.5: increase the maximum size of the client thread pool, 
use a oneway invocation, or call the nested invocation using AMI. The use of 
thread-per-connection might also solve this deadlock, but only if the nested invo-
cation is sent over a different connection.

Analyzing an Application

A number of factors must be considered when evaluating whether an application 
is properly designed and configured for nested invocations:

• The concurrency models in use by all communicating parties have a signifi-
cant impact on an application’s ability to use nested invocations. While 
analyzing the path of circular invocations, you must pay careful attention to 
the threads involved to determine whether sufficient threads are available to 
avoid deadlock. This includes not just the threads that dispatch requests, but 
also the threads that make the requests and process the replies.

• Bidirectional connections are another complication, since you must be aware 
of which threads are used on either end of the connection.

• Finally, the synchronization activities of the communicating parties must also 
be scrutinized. For example, a deadlock is much more likely when a lock is 
held while making an invocation.

As you can imagine, tracing the call flow of a distributed application to ensure 
there is no possibility of deadlock can quickly become a complex and tedious 
process. In general, it is best to avoid circular invocations if at all possible.

30.9.5 Thread Safety
The Ice run time itself is fully thread safe, meaning multiple application threads 
can safely call methods on objects such as communicators, object adapters, and 
proxies without synchronization problems. As a developer, you must also be 
concerned with thread safety because the Ice run time can dispatch multiple invo-
cations concurrently in a server. In fact, it is possible for multiple requests to 
proceed in parallel within the same servant and within the same operation on that 
servant. It follows that, if the operation implementation manipulates non-stack 
storage (such as member variables of the servant or global or static data), you 
must interlock access to this data to avoid data corruption.
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The need for thread safety in an application depends on its chosen concur-
rency model. Using the default thread pool configuration typically makes 
synchronization unnecessary because at most one operation can be dispatched at a 
time. Thread safety becomes an issue once you increase the maximum size of a 
thread pool, or use thread-per-connection.

Ice uses the native synchronization and threading primitives of each platform. 
For C++ users, Ice provides a collection of convenient and portable wrapper 
classes for use by Ice applications (see Chapter 29) .

Marshaling Issues

The marshaling semantics of the Ice run time present a subtle thread safety issue 
that arises when an operation returns data by reference. In C++, the only relevant 
case is returning an instance of a Slice class, either directly or nested as a member 
of another type. In Java, C#, Visual Basic and Python, Slice structures, sequences, 
and dictionaries are also affected.

The potential for corruption occurs whenever a servant returns data by refer-
ence, yet continues to hold a reference to that data. For example, consider the 
following Java implementation:

public class GridI extends _GridDisp 
{ 
    GridI() 
    { 
        _grid = // ... 
    } 
 
    public int[][] 
    getGrid(Ice.Current curr) 
    { 
        return _grid; 
    } 
 
    public void 
    setValue(int x, int y, int val, Ice.Current curr) 
    { 
        _grid[x][y] = val; 
    } 
 
    private int[][] _grid; 
}

Suppose that a client invoked the getGrid operation. While the Ice run time 
marshals the returned array in preparation to send a reply message, it is possible 
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for another thread to dispatch the setValue operation on the same servant. This 
race condition can result in several unexpected outcomes, including a failure 
during marshaling or inconsistent data in the reply to getGrid. Synchronizing the 
getGrid and setValue operations would not fix the race condition because the 
Ice run time performs its marshaling outside of this synchronization.

One solution is to implement accessor operations, such as getGrid, so that 
they return copies of any data that might change. There are several drawbacks to 
this approach:

• Excessive copying can have an adverse affect on performance.

• The operations must return deep copies in order to avoid similar problems 
with nested values.

• The code to create deep copies is tedious and error-prone to write.

Another solution is to make copies of the affected data only when it is modified. 
In the revised code shown below, setValue replaces _grid with a copy that 
contains the new element, leaving the previous contents of _grid unchanged:

public class GridI extends _GridDisp 
{ 
    ... 
 
    public synchronized int[][] 
    getGrid(Ice.Current curr) 
    { 
        return _grid; 
    } 
 
    public synchronized void 
    setValue(int x, int y, int val, Ice.Current curr) 
    { 
        int[][] newGrid = // shallow copy... 
        newGrid[x][y] = val; 
        _grid = newGrid; 
    } 
 
    ... 
}

This allows the Ice run time top safely marshal the return value of getGrid 
because the array is never modified again. For applications where data is read 
more often than it is written, this solution is more efficient than the previous one 
because accessor operations do not need to make copies. Furthermore, intelligent 
use of shallow copying can minimize the overhead in mutating operations.
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Finally, a third approach changes accessor operations to use AMD (see 
Section 31.4) in order to regain control over marshaling. After annotating the 
getGrid operation with amd metadata, we can revise the servant as follows:

public class GridI extends _GridDisp 
{ 
    ... 
 
    public synchronized void 
    getGrid_async(AMD_Grid_getGrid cb, Ice.Current curr) 
    { 
        cb.ice_response(_grid); 
    } 
 
    public synchronized void 
    setValue(int x, int y, int val, Ice.Current curr) 
    { 
        _grid[x][y] = val; 
    } 
 
    ... 
}

Normally, AMD is used in situations where the servant needs to delay its response 
to the client without blocking the calling thread. For getGrid, that is not the goal; 
instead, as a side-effect, AMD provides the desired marshaling behavior. Specifi-
cally, the Ice run time marshals the reply to an asynchronous request at the time 
the servant invokes ice_response on the AMD callback object. Because 
getGrid and setValue are synchronized, this guarantees that the data 
remains in a consistent state during marshaling.

Thread Creation and Destruction Hooks

On occasion, it is necessary to intercept the creation and destruction of threads 
created by the Ice run time, for example, to interoperate with libraries that require 
applications to make thread-specific intialization and finalization calls (such as 
COM’s CoInitializeEx and CoUninitialize). Ice provides callbacks to 
inform an application when each run-time thread is created and destroyed. For 
C++, the callback class looks as follows:8

8. See below for other languages.
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class ThreadNotification : public IceUtil::Shared { 
public: 
    virtual void start() = 0; 
    virtual void stop() = 0; 
}; 
typedef IceUtil::Handle<ThreadNotification> ThreadNotificationPtr;

To receive notification of thread creation and destruction, you must derive a class 
from ThreadNotification and implement the start and stop member 
functions. These functions will be called by the Ice run by each thread as soon as it 
is created, and just before it exits. You must install your callback class in the Ice 
run time when you create a communicator by setting the threadHook member 
of the InitializationData structure (see Section 30.3).

For example, you could define a callback class and register it with the Ice run 
time as follows:

class MyHook : public virtual Ice::ThreadNotification { 
public: 
    void start() 
    { 
        cout << "start: id = " << ThreadControl().id() << endl; 
    } 
    void stop() 
    { 
        cout << "stop: id = " << ThreadControl().id() << endl; 
    } 
}; 
 
int 
main(int argc, char* argv[]) 
{ 
    // ... 
 
    Ice::InitializationData id; 
    id.threadHook = new MyHook; 
    communicator = Ice::initialize(argc, argv, id); 
 
    // ... 
}

The implementation of your start and stop methods can make whatever 
thread-specific calls are required by your application.

For Java and C#, Ice.ThreadNotification is an interface:
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public interface ThreadNotification { 
    void start(); 
    void stop(); 
}

To receive the thread creation and destruction callbacks, you must derive a class 
from this interface that implements the start and stop methods, and register 
an instance of that class when you create the communicator. (The code to do this 
is analogous to the C++ version.)

30.10 Proxies

The introduction to proxies provided in Section 2.2.2 describes a proxy as a local 
artifact that makes a remote invocation as easy to use as a regular function call. In 
fact, processing remote invocations is just one of a proxy’s many responsibilities. 
A proxy also encapsulates the information necessary to contact the object, 
including its identity (see Section 30.5) and addressing details such as endpoints 
(see Section 30.10.2). Proxy methods provide access to configuration and connec-
tion information, and act as factories for creating new proxies (see 
Section 30.10.1). Finally, a proxy initiates the establishment of a new connection 
when necessary (see Section 34.3).

30.10.1 Proxy Methods
Although the core proxy functionality is supplied by a language-specific base 
class, we can describe the proxy methods in terms of Slice operations as shown 
below:

bool ice_isA(string id); 
void ice_ping(); 
StringSeq ice_ids(); 
string ice_id(); 
int ice_getHash(); 
Communicator ice_getCommunicator(); 
string ice_toString(); 
Object* ice_identity(Identity id); 
Identity ice_getIdentity(); 
Object* ice_adapterId(string id); 
string ice_getAdapterId(); 
Object* ice_endpoints(EndpointSeq endpoints); 
EndpointSeq ice_getEndpoints(); 
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Object* ice_endpointSelection(EndpointSelectionType t); 
EndpointSelectionType ice_getEndpointSelection(); 
Object* ice_context(Context ctx); 
Context ice_getContext(); 
Object* ice_defaultContext(); 
Object* ice_facet(string facet); 
string ice_getFacet(); 
Object* ice_twoway(); 
bool ice_isTwoway(); 
Object* ice_oneway(); 
bool ice_isOneway(); 
Object* ice_batchOneway(); 
bool ice_isBatchOneway(); 
Object* ice_datagram(); 
bool ice_isDatagram(); 
Object* ice_batchDatagram(); 
bool ice_isBatchDatagram(); 
Object* ice_secure(bool b); 
bool ice_isSecure(); 
Object* ice_compress(bool b); 
Object* ice_timeout(int timeout); 
Object* ice_router(Router* rtr); 
Router* ice_getRouter(); 
Object* ice_locator(Locator* loc); 
Locator* ice_getLocator(); 
Object* ice_locatorCacheTimeout(int seconds); 
int ice_getLocatorCacheTimeout(); 
Object* ice_collocationOptimized(bool b); 
bool ice_isCollocationOptimized(); 
Object* ice_connectionId(string id); 
Connection ice_getConnection(); 
Object* ice_connectionCached(bool b); 
bool ice_isConnectionCached();

These methods can be categorized as follows:

• Remote inspection: methods that return information about the remote object. 
These methods make remote invocations and therefore accept an optional 
trailing argument of type Ice::Context (see Section 30.11).

• Local inspection: methods that return information about the proxy’s local 
configuration.

• Factory: methods that return new proxy instances configured with different 
features.
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Proxies are immutable, so factory methods allow an application to obtain a new 
proxy with the desired configuration. Factory methods essentially clone the orig-
inal proxy and modify one or more features of the new proxy.

The core proxy methods are explained in greater detail in Table 30.1.

Table 30.1. The semantics of core proxy methods.

Method Description Remote

ice_isA Returns true if the remote 
object supports the type indicated 
by the id argument, otherwise 
false. This method can only be 
invoked on a twoway proxy.

Yes

ice_ping Determines whether the remote 
object is reachable. Does not 
return a value.

Yes

ice_ids Returns the type ids of the types 
supported by the remote object. 
The return value is an array of 
strings. This method can only be 
invoked on a twoway proxy.

Yes

ice_id Returns the type id of the most-
derived type supported by the 
remote object. This method can 
only be invoked on a twoway 
proxy.

Yes

ice_getHash Returns a hash value for the 
proxy

No

ice_getCommunicator Returns the communicator that 
was used to create this proxy.

No

ice_toString Returns the string representation 
of the proxy.

No

ice_identity Returns a new proxy having the 
given identity.

No

ice_getIdentity Returns the identity of the Ice 
object represented by the proxy.

No

ice_adapterId Returns a new proxy having the 
given adapter id.

No

ice_getAdapterId Returns the proxy’s adapter id, or 
an empty string if no adapter id is 
configured.

No
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ice_endpoints Returns a new proxy having the 
given endpoints.

No

ice_getEndpoints Returns a sequence of Endpoint 
objects representing the proxy’s 
endpoints.

No

ice_endpointSelection Returns a new proxy having the 
given selection policy (random or 
ordered). See Section 34.3.1 for 
more information.

No

ice_getEndpointSelection Returns the endpoint selection 
policy for the proxy.

No

ice_context Returns a new proxy having the 
given request context. See 
Section 30.11 for more infor-
mation on request contexts.

No

ice_getContext Returns the request context asso-
ciated with the proxy. See 
Section 30.11 for more infor-
mation on request contexts.

No

ice_defaultContext Returns a new proxy having the 
default request context. See 
Section 30.11 for more infor-
mation on request contexts.

No

ice_facet Returns a new proxy having the 
given facet name. See Chapter 32 
for more information on facets.

No

ice_getFacet Returns the name of the facet 
associated with the proxy, or an 
empty string if no facet has been 
set. See Chapter 32 for more 
information on facets.

No

ice_twoway Returns a new proxy for making 
twoway invocations.

No

ice_isTwoway Returns true if the proxy uses 
twoway invocations, otherwise 
false.

No

ice_oneway Returns a new proxy for making 
oneway invocations (see 
Section 30.13).

No

Table 30.1. The semantics of core proxy methods.

Method Description Remote
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ice_isOneway Returns true if the proxy uses 
oneway invocations, otherwise 
false.

No

ice_batchOneway Returns a new proxy for making 
batch oneway invocations (see 
Section 30.15).

No

ice_isBatchOneway Returns true if the proxy uses 
batch oneway invocations, other-
wise false.

No

ice_datagram Returns a new proxy for making 
datagram invocations (see 
Section 30.14).

No

ice_isDatagram Returns true if the proxy uses 
datagram invocations, otherwise 
false.

No

ice_batchDatagram Returns a new proxy for making 
batch datagram invocations (see 
Section 30.15).

No

ice_isBatchDatagram Returns true if the proxy uses 
batch datagram invocations, oth-
erwise false.

No

ice_secure Returns a new proxy whose end-
points may be filtered depending 
on the boolean argument. If 
true, only endpoints using 
secure transports are allowed, 
otherwise all endpoints are 
allowed.

No

ice_isSecure Returns true if the proxy uses 
only secure endpoints, otherwise 
false.

No

ice_compress Returns a new proxy whose pro-
tocol compression capability is 
determined by the boolean argu-
ment. If true, the proxy uses 
protocol compression if it is sup-
ported by the endpoint. If 
false, protocol compression is 
never used.

No

Table 30.1. The semantics of core proxy methods.

Method Description Remote
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ice_timeout Returns a new proxy with the 
given timeout value in millisec-
onds. A value of -1 disables tim-
eouts. See Section 30.12 for more 
information on timeouts.

No

ice_router Returns a new proxy configured 
with the given router proxy. See 
Chapter 40 for more information 
on routers.

No

ice_getRouter Returns the router that is config-
ured for the proxy (nil if no router 
is configured).

No

ice_locator Returns a new proxy configured 
with the given locator proxy. See 
Chapter 36 for more information 
on locators.

No

ice_getLocator Returns the locator that is config-
ured for the proxy (nil if no loca-
tor is configured).

No

ice_locatorCacheTimeout For indirect proxies, returns a 
new proxy with the specified tim-
eout. For direct and fixed proxies, 
the operation is a no-op and 
returns the same proxy that was 
passed to the operation.

No

ice_getLocatorCacheTimeout Returns the locator cache timeout 
value in seconds. For direct and 
fixed reference, this operation 
always returns zero.

No

ice_collocationOptimized Returns a new proxy configured 
for collocation optimization. If 
true, collocated optimizations 
are enabled. The default value is 
true. For AMI invocations, the 
optimization setting is ignored—
AMI invocations implicitly dis-
able the collocation optimization.

No

ice_isCollocationOptimized Returns true if the proxy uses 
collocation optimization, other-
wise false.

No

Table 30.1. The semantics of core proxy methods.

Method Description Remote
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30.10.2 Endpoints
Proxy endpoints are the client-side equivalent of object adapter endpoints (see 
Section 30.4.6). A proxy endpoint identifies the protocol information used to 
contact a remote object, as shown in the following example:

tcp -h www.zeroc.com -p 10000

This endpoint states that an object is reachable via TCP on the host 
www.zeroc.com and the port 10000.

A proxy must have, or be able to obtain, at least one endpoint in order to be 
useful. As defined in Section 2.2.2, a direct proxy contains one or more endpoints:

MyObject:tcp -h www.zeroc.com -p 10000:ssl -h www.zeroc.com -p 10001

In this example the object with the identity MyObject is available at two sepa-
rate endpoints, one using TCP and the other using SSL.

If a stringified proxy does not contain the -h option (that is, not host is speci-
fied), invocations on the proxy attempt to locate the server using the hostname 
returned by gethostname.

An indirect proxy uses a locator (see Chapter 36) to retrieve the endpoints 
dynamically. One style of indirect proxy contains an adapter identifier:

ice_connectionId Returns a new proxy having the 
given connection identifier. See 
Section 34.3.3 for more informa-
tion.

No

ice_getConnection Returns an object representing 
the connection used by the proxy. 
See Section 34.5 for more infor-
mation.

No

ice_connectionCached Enables or disables connection 
caching for the proxy. See 
Section 34.3.4 for more informa-
tion

No

ice_isConnectionCached Returns true if the proxy uses 
connection caching, otherwise 
false.

No

Table 30.1. The semantics of core proxy methods.

Method Description Remote
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MyObject @ MyAdapter

When this proxy requires the endpoints associated with MyAdapter, it requests 
them from the locator.

30.10.3 Endpoint Filtering
A proxy’s configuration determines how its endpoints are used. For example, a 
proxy configured for secure communication will only use endpoints having a 
secure protocol, such as SSL.

The factory functions described in Table 30.2 allow applications to manipulate 
endpoints indirectly. Calling one of these functions returns a new proxy whose 
endpoints have been filtered accordingly.

After calling a factory function, the remaining endpoints are randomized as a 
simple form of load balancing. In addition, the endpoints of an insecure proxy9 are 
ordered such that insecure endpoints appear before secure endpoints. Since an 

Table 30.2. Proxy factory functions and their effects on endpoints.

Option Description

ice_secure Selects only endpoints using a secure protocol (e.g., 
SSL).

ice_datagram Selects only endpoints using a datagram protocol 
(e.g., UDP).

ice_batchDatagram Selects only endpoints using a datagram protocol 
(e.g., UDP).

ice_twoway Selects only endpoints capable of making twoway 
invocations (e.g., TCP, SSL). For example, this 
removes datagram endpoints.

ice_oneway Selects only endpoints capable of making reliable 
oneway invocations (e.g., TCP, SSL). For example, 
this removes datagram endpoints.

ice_batchOneway Selects only endpoints capable of making reliable 
oneway batch invocations (e.g., TCP, SSL). For exam-
ple, this removes datagram endpoints.
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attempt to establish a connection tries the endpoints in the order they appear in the 
proxy, this effectively means that insecure endpoints are tried before secure 
endpoints.

No exception is raised if a factory function results in a proxy containing no 
endpoints. Rather, the Ice run time returns a NoEndpointException when connec-
tion establishment (see Section 34.3) is attempted for such a proxy.

An application can also create a proxy with a specific set of endpoints using 
the ice_endpoints factory function, whose only argument is a sequence of 
Ice::Endpoint objects. At present, an application is not able to create new 
instances of Ice::Endpoint, but rather can only incorporate instances obtained 
by calling ice_getEndpoints on a proxy. Note that ice_getEndpoints 
may return an empty sequence if the proxy has no endpoints, as is the case with an 
indirect proxy.

30.11 The Ice::Context Parameter

In Sections 6.11.1 and 10.11.1, methods on a proxy are overloaded with a trailing 
parameter of type const Ice::Context & (C++), java.util.Map 
(Java), or Ice.Context (C# and VB). The Slice definition of this parameter is 
as follows:

module Ice { 
    local dictionary<string, string> Context; 
};

As you can see, a context is a dictionary that maps strings to strings or, conceptu-
ally, a context is a collection of name–value pairs. The contents of this dictionary 
(if any) are implicitly marshaled with every request to the server, that is, if the 
client populates a context with a number of name–value pairs and uses that 
context for an invocation, the name–value pairs that are sent by the client are 
available to the server.

On the server side, the operation implementation can access the received 
Context via the ctx member of the Ice::Current parameter (see Section 30.6) 
and extract the name–value pairs that were sent by the client.

9. An insecure proxy is one that has not been explicitly configured as secure. Proxies are insecure 
by default, and can be configured for secure invocations by calling ice_secure(true).
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30.11.1 Passing Context Explicitly
Contexts provide a means of sending an unlimited number of parameters from 
client to server without having to mention these parameters in the signature of an 
operation. For example, consider the following definition:

struct Address { 
    // ... 
}; 
 
interface Person { 
    string setAddress(Address a); 
    // ... 
};

Assuming that the client has a proxy to a Person object, it could do something 
along the following lines:

PersonPrx p = ...; 
Address a = ...; 
 
Ice::Context ctx; 
ctx["write policy"] = "immediate"; 
 
p->setAddress(a, ctx);

In Java, the same code would looks as follows:

PersonPrx p = ...; 
Address a = ...; 
 
java.util.Map ctx = new java.util.HashMap(); 
ctx.put("write policy", "immediate"); 
 
p.setAddress(a, ctx);

In C#, the code is almost identical:

PersonPrx p = ...; 
Address a = ...; 
 
Ice.Context ctx = new Ice.Context(); 
ctx["write policy"] = "immediate"; 
 
p.setAddress(a, ctx);
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On the server side, we can extract the policy value set by the client to influence 
how the implementation of setAddress works. A C++ implementation might 
look like:

void 
PersonI::setAddress(const Address& a, const Ice::Current& c) 
{ 
    Ice::Context::const_iterator i = c.ctx.find("write policy"); 
    if (i != c.ctx.end() && i->second == "immediate") { 
 
        // Update the address details and write through to the  
        // data base immediately... 
 
    } else { 
     
        // Write policy was not set (or had a bad value), use 
        // some other database write strategy. 
    } 
}

For this example, the server examines the value of the context with the key 
"write policy" and, if that value is "immediate", writes the update sent by the 
client straight away; if the write policy is not set or contains a value that is not 
recognized, the server presumably applies a more lenient write policy (such as 
caching the update in memory and writing it later). The Java version of the opera-
tion implementation is essentially identical, so we do not show it here.

30.11.2 Passing Context Implicitly
Instead of passing a context explicitly with an invocation, you can also use an 
implicit context. Implicit contexts allow you to set a context on a particular proxy 
once and, thereafter, whenever you use that proxy to invoke an operation, the 
previously-set context is sent with each invocation. The proxy base class provides 
a member function, ice_context, to do this:

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
            Ice::ObjectPrx 
                ice_context(const Ice::Context&) const; 
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            // ... 
        }; 
    } 
}

For Java, the corresponding function is:

package Ice; 
 
public interface ObjectPrx { 
    ObjectPrx ice_context(java.util.Map newContext); 
    // ... 
}

For C#, the corresponding method is:

namespace Ice 
{ 
    public interface ObjectPrx 
    { 
        ObjectPrx ice_context(Context newContext); 
        // ... 
    } 
}

ice_context creates a new proxy that implicitly stores the passed context. 
Note that the return type of ice_context is ObjectPrx, that is, before you 
can use the newly-created proxy, you must down-cast it to the correct type. For 
example, in C++:

Ice::Context ctx; 
ctx["write policy"] = "immediate"; 
 
PersonPrx p1 = ...; 
PersonPrx p2 = PersonPrx::uncheckedCast(p1->ice_context(ctx)); 
 
Address a = ...; 
 
p1->setAddress(a);       // Sends no context 
 
p2->setAddress(a);       // Sends ctx implicitly 
 
Ice::Context ctx2; 
ctx2["write policy"] = "delayed"; 
 
p2->setAddress(a, ctx2); // Sends ctx2



30.11 The Ice::Context Parameter 825

As the example illustrates, once we have created the p2 proxy, any invocation via 
p2 implicitly sends the previously-set context. The final line of the example illus-
trates that it is possible to explicitly send a context for an invocation even if the 
proxy has an implicit context—an explicit context always overrides any implicit 
context.

30.11.3 Retrieving Implicit Context
You can retrieve the implicit context of a proxy by calling ice_getContext. 
The call returns the currently-set context of the proxy. (If a proxy has no implicit 
context, the returned dictionary is empty.) For C++, the signature is:

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
            Ice::Context ice_getContext() const; 
            // ... 
        }; 
    } 
}

For Java, the signature is:

package Ice; 
 
public interface ObjectPrx { 
    java.util.Map ice_getContext(); 
    // ... 
}

For C#, the signature is:

namespace Ice 
{ 
    public interface ObjectPrx 
    { 
        Context ice_getContext(); 
    } 
}

30.11.4 Default Contexts
In addition to the explicit and implicit context passed we described in the 
preceding sections, you can also establish a default context on a communicator 



826 The Ice Run Time in Detail

when you create the communicator with initialize (see Section 30.3). Thereafter, 
all proxies obtained via that communicator send the default context of the commu-
nicator (provided you have not set an implicit context on a proxy and you are not 
passing an explicit context). The communicator provides a getDefaultContext 
operation that allows you to retrive the default context. (If you do not set a context 
on the communicator, this operation returns an empty dictionary.):

module Ice { 
    local interface Communicator 
    { 
        nonmutating Context getDefaultContext(); 
 
        // ... 
    }; 
};

Here is an example that illustrates this:

Ice::InitializationData id; 
id.defaultContext["write policy"] = "immediate"; 
Ice::CommunicatorPtr ic = initialize(id); 
 
Address a = ...; 
PersonPrx p1 = ...; 
 
Ice.Context ctx; 
ctx["write policy"] = "cached"; 
PersonPrx p2 = PersonPrx::uncheckedCast(p1->ice_context(ctx)); 
 
ctx.clear(); 
PersonPrx p3 = PersonPrx::uncheckedCast(p2->ice_context(ctx)); 
 
p1->setAddress(a); // Sends immediate write policy 
p2->setAddress(a); // Sends cached write policy 
p3->setAddress(a); // Sends an empty context

Here, p1 uses the default context established on the communicator, whereas p2 
uses an implicit context. Also note that p3 sends an empty context, not the default 
context established for the communicator. This makes sense: an empty implicit 
context is no different from a non-empty implicit context, so the implicit context 
still overrides the default context, even when it is empty.

If you want to create a proxy that sends the default context from a proxy that 
has an implicit context, you can use the ice_defaultContext method on the 
proxy:



30.11 The Ice::Context Parameter 827

Ice::InitializationData id; 
id.defaultContext["write policy"] = "immediate"; 
Ice::CommunicatorPtr ic = initialize(id); 
 
Address a = ...; 
PersonPrx p1 = ...; 
 
ctx["write policy"] = "cached"; 
PersonPrx p2 = PersonPrx::uncheckedCast(p1->ice_context(ctx)); 
 
ctx.clear(); 
PersonPrx p3 = PersonPrx::uncheckedCast(p2->ice_context(ctx)); 
 
PersonPrx p4 = PersonPrx::uncheckedCast(p2->ice_defaultContext()); 
 
p1->setAddress(a); // Sends immediate write policy 
p2->setAddress(a); // Sends cached write policy 
p3->setAddress(a); // Sends an empty context 
p4->setAddress(a); // Sends immediate write policy

In this example, p1 and p4 both use the default context of the communicator.

30.11.5 Context Use Cases
The purpose of Ice::Context is to permit services to be added to Ice that require 
some contextual information with every request. Such contextual information can 
be used by services such as a transaction service (to provide the context of a 
currently established transaction) or a security service (to provide an authorization 
token to the server). IceStorm (see Chapter 42) uses the context to provide an 
optional cost parameter to the service that influences how the service propagates 
messages to down-stream subscribers.

In general, services that require such contextual information can be imple-
mented much more elegantly using contexts because this hides explicit Slice 
parameters that would otherwise have to be supplied by the application 
programmer with every call.

In addition, contexts, because they are optional, permit a single Slice defini-
tion to apply to implementations that use the context as well as to implementations 
that do not use it. In this way, to add transactional semantics to an existing service, 
you do not need to modify the Slice definitions to add extra parameters to all oper-
ations. This not only is convenient for clients but also prevents the type system 
from being split into two halves: without contexts, we would need different Slice 
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definitions for transactional and non-transactional implementations of what, 
conceptually, is a single service.

Finally, implicit contexts permit context information to be passed by through 
intermediate parts of a system without cooperation of those intermediate parts. For 
example, suppose you set an implicit context on a proxy and then pass that proxy 
to another system component. When that component uses the proxy to invoke an 
operation, the implicit context will still be sent. In other words, implicit contexts 
allow you to transparently propagate information via intermediaries that are igno-
rant of the presence of any context.

30.11.6 A Word of Warning
Contexts are a powerful mechanism for transparent propagation of context infor-
mation, if used correctly. In particular, you may be tempted to use contexts as a 
means of versioning an application as it evolves over time. For example, version 2 
of your application may accept two parameters on an operation that, in version 1, 
used to accept only a single parameter. Using contexts, you could supply the 
second parameter as a name–value pair to the server and avoid changing the Slice 
definition of the operation in order to maintain backward compatibility.

We strongly urge you to resist any temptation to use contexts in this manner. 
The strategy is fraught with problems:

• Missing context

There is nothing that would compel a client to actually send a context when 
the server expects to receive a context: if a client forgets to send a context, the 
server, somehow, has to make do without it (or throw an exception).

• Missing or incorrect keys

Even if the client does send a context, there is no guarantee that it has set the 
correct key. (For example, a simple spelling error can cause the client to send 
a value with the wrong key.)

• Incorrect values

The value of a context is a string, but the application data that is to be sent 
might be a number, or it might be something more complex, such as a struc-
ture with several members. This forces you to encode the value into a string 
and decode the value again on the server side. Such parsing is tedious and 
error prone, and far less efficient than sending strongly-typed parameters. In 
addition, the server has to deal with string values that fail to decode correctly 
(for example, because of a encoding error made by the client).
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None of the preceding problems can arise if you use proper Slice parameters: 
parameters cannot be accidentally omitted and they are strongly typed, making it 
much less likely for the client to accidentally send a meaningless value.

If you are concerned about how to evolve an application over time without 
breaking backward compatibility, Ice facets are better suited to this task (see 
Chapter 32). Contexts are meant to be used to transmit simple tokens (such as a 
transaction identifier) for services that cannot be reasonably implemented without 
them; you should restrict your use of contexts to that purpose and resist any temp-
tation to use contexts for any other purpose.

Finally, be aware that, if a request is routed via one or more Ice routers, 
contexts may be dropped by intermediate routers if they consider them illegal. 
This means that, in general, you cannot rely on an arbitrary context value that is 
created by an application to actually still be present when a request arrives at the 
server—only those context values that are known to routers and that are consid-
ered legitimate are passed on. It follows that you should not abuse contexts to pass 
things that really should be passed as parameters.

30.12 Connection Timeouts

A synchronous remote invocation does not complete on the client side until the 
server has finished processing it. Occasionally, it is useful to be able to force an 
invocation to terminate after some time, even if it has not completed. Proxies 
provide the ice_timeout operation for this purpose:

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
            Ice::ObjectPrx ice_timeout(Ice::Int t) const; 
            // ... 
        }; 
    } 
}

For Java (and, analogously, for C#), the corresponding method is:
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package Ice; 
 
public interface ObjectPrx { 
    ObjectPrx ice_timeout(int t); 
    // ... 
}

The ice_timeout operation creates a proxy with a timeout from an existing 
proxy. For example:

Filesystem::FilePrx myFile = ...; 
FileSystem::FilePrx timeoutFile 
    = FileSystem::FilePrx::uncheckedCast( 
        myFile->ice_timeout(5000)); 
 
try { 
    Lines text = timeoutFile->read();   // Read with timeout 
} catch(const Ice::TimeoutException&) { 
    cerr << "invocation timed out" << endl; 
} 
 
Lines text = myFile->read();            // Read without timeout

The parameter to ice_timeout determines the timeout value in milliseconds. A 
value of −1 indicates no timeout. In the preceding example, the timeout is set to 
five seconds; if an invocation of read via the timeoutFile proxy does not 
complete within five seconds, the operation terminates with an Ice::Timeou-
tException. On the other hand, invocations via the myFile proxy are unaf-
fected by the timeout, that is, ice_timeout sets the timeout on a per-proxy basis.

The timeout value set on a proxy affects all networking operations: reading 
and writing of data as well as opening and closing of connections. If any of these 
operations does not complete within the timeout, the client receives an exception. 
Note that, if the Ice run time encounters a recoverable error condition and trans-
parently retries an invocation, this means that the timeout applies separately to 
each attempt. Similarly, if a large amount of data is sent with an operation invoca-
tion in several write system calls, the timeout applies to each write, not to the 
invocation overall.

Timeouts that expire during reading or writing of data are indicated by a 
TimeoutException. For opening and closing of connections, the Ice run time 
reserves separate exceptions:

• ConnectTimeoutException

This exception indicates that a connection could not be established within the 
specified time.
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• CloseTimeoutException

This exception indicates that a connection could not be closed within the spec-
ified time.

If no timeout is established for a proxy via ice_timeout, the Ice run time uses 
default values that you can change with the following configuration properties:

• Ice.Override.ConnectTimeout

This property defines the default timeout for connection establishment. If not 
defined, its default value is −1 (no timeout). If a proxy has multiple endpoints, 
the timeout applies to each endpoint separately.

• Ice.Override.Timeout

This property defines the default timeout for invocations. If no value is 
defined for Ice.Override.ConnectTimeout, the value of 
Ice.Override.Timeout is also used as the timeout for connection estab-
lishment. If not defined, the default value is −1 (no timeout).

Note that timeouts are “soft” timeouts, in the sense that they are not precise, real-
time timeouts. (The precision is limited by the capabilities of the underlying oper-
ating system.) You should also be aware that timeouts are considered fatal error 
conditions by the Ice run time and result in connection closure on the client side. 
Furthermore, any other requests pending on the same connection also fail with an 
exception. Timeouts are meant to be used to prevent a client from blocking indefi-
nitely in case something has gone wrong with the server; they are not meant as a 
mechanism to routinely abort requests that take longer than intended.

For information on using timeouts with asynchronous requests, refer to 
Section 31.3.5.

30.13 Oneway Invocations

As mentioned in Chapter 2, the Ice run time supports oneway invocations. A 
oneway invocation is sent on the client side by writing the request to the client’s 
local transport buffers; the invocation completes and returns control to the 
application code as soon as it has been accepted by the local transport. Of course, 
this means that a oneway invocation is unreliable: it may never be sent (for 
example, because of a network failure) or it may not be accepted in the server (for 
example, because the target object does not exist).

This is an issue in particular if you use active connection management (see 
Section 34.4): if a server closes a connection at the wrong moment, it is possible 
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for the client to lose already-buffered oneway requests. We therefore recommend 
that you disable active connection management for the server side if clients use 
oneway (or batched oneway—see Section 30.15) requests. In addition, if clients 
use oneway requests and your application initiates server shutdown, it is the 
responsibility of your application to ensure either that it can cope with the poten-
tial loss of buffered oneway requests, or that it does not shut down the server at the 
wrong moment (while clients have still have oneway requests that are buffered, 
but not yet sent).

If anything goes wrong with a oneway request, the client-side application code 
does not receive any notification of the failure; the only errors that are reported to 
the client are local errors that occur on the client side during call invocation (such 
as failure to establish a connection, for example).

Oneway invocations are received and processed on the server side like any 
other incoming request. In particular, there is no way for the server-side 
application code to distinguish a oneway invocation from a twoway invocation, 
that is, oneway invocation is transparent on the server side.

Oneway invocations do not incur any return traffic from the server to the 
client: the server never sends a reply message in response to a oneway invocation 
(see Chapter 33). This means that oneway invocations can result in large effi-
ciency gains, especially for large numbers of small messages, because the client 
does not have to wait for the reply to each message to arrive before it can send the 
next message.

In order to be able to invoke an operation as oneway, two conditions must be 
met:

• The operation must have a void return type, must not have any out-parame-
ters, and must not have an exception specification.

This requirement reflects the fact that the server does not send a reply for a 
oneway invocation to the client: without such a reply, there is no way to return 
any values or exceptions to the client.

If you attempt to invoke an operation that returns values to the client as a 
oneway operation, the Ice run time throws a TwowayOnlyException.
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• The proxy on which the operation is invoked must support a stream-oriented 
transport (such as TCP or SSL).

Oneway invocations require a stream-oriented transport. (To get something 
like a oneway invocation for datagram transports, you need to use a datagram 
invocation—see Section 30.14.)

If you attempt to create a oneway proxy for an object that does not offer a 
stream-oriented transport, the Ice run time throws a NoEndpointException.

Despite their theoretical unreliablity, in practice, oneway invocations are reliable 
(but not infallible [19]): they are sent via a stream-oriented transport, so they 
cannot get lost except when the connection is shutting down (see Section 34.6.2) 
or fails entirely. In particular, the transport uses its usual flow control, so the client 
cannot overrun the server with messages. On the client-side, the Ice run time will 
block if the client’s transport buffers fill up, so the client-side application code 
cannot overrun its local transport.

Consequently, oneway invocations normally do not block the client-side 
application code and return immediately, provided that the client does not consis-
tently generate messages faster than the server can process them. If the rate at 
which the client invokes operations exceeds the rate at which the server can 
process them, the client-side application code will eventually block in an opera-
tion invocation until sufficient room is available in the client’s transport buffers to 
accept the invocation.

Regardless of whether the client exceeds the rate at which the server can 
process incoming oneway invocations, the execution of oneway invocations in the 
server proceeds asynchronously: the client’s invocation completes before the 
message even arrives at the server.

One thing you need to keep in mind about oneway invocations is that they may 
appear to be reordered in the server: because oneway invocations are sent via a 
stream-oriented transport, they are guaranteed to be received in the order in which 
they were sent. However, the server’s concurrency model may dispatch each invo-
cation in its own thread; because threads are scheduled preemptively, this may 
cause an invocation sent later by the client to be dispatched and executed before an 
invocation that was sent earlier.

There are two ways to force oneway requests to be dispatched in the order they 
were received:

1. Use only one thread in the server thread pool by setting the property 
Ice.ThreadPool.Server.SizeMax=1. Be aware that this configura-
tion could have a serious impact on performance because it serializes all 
requests.
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2. Use the thread-per-connection concurrency model in the server by setting the 
property Ice.ThreadPerConnection=1. This configuration serializes 
all requests received over the same connection, but also presents a potential 
scalability issue because a new thread is created for each connection.

For these reasons, oneway invocations are usually best suited to simple updates 
that are otherwise stateless (that is, do not depend on the surrounding context or 
the state established by previous invocations). Refer to Section 30.9 for more 
information on concurrency models and threading.

Creating Oneway Proxies

Ice selects between twoway, oneway, and datagram (see Section 30.14) invoca-
tions via the proxy that is used to invoke the operation. By default, all proxies are 
created as twoway proxies. To invoke an operation as oneway, you must create a 
separate proxy for oneway dispatch from a twoway proxy.

For C++, all proxies are derived from a common 
IceProxy::Ice::Object class (seeSection 6.11.1). The proxy base class 
contains a method to create a oneway proxy, called ice_oneway:

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
            Ice::ObjectPrx ice_oneway() const; 
            // ... 
        }; 
    } 
}

For Java and C#, proxies are derived from the Ice.ObjectPrx interface (see 
Section 10.11.2) and the definition of ice_oneway is:

package Ice; 
 
public interface ObjectPrx { 
    ObjectPrx ice_oneway(); 
    // ... 
}

We can call ice_oneway to create a oneway proxy and then use the proxy to 
invoke an operation as follows. (We show the C++ version here—the Java and C# 
versions are analogous.)
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Ice::ObjectPrx o = communicator->stringToProxy(/* ... */); 
 
// Get a oneway proxy. 
// 
Ice::ObjectPrx oneway; 
try { 
    oneway = o->ice_oneway(); 
} catch (const Ice::NoEndPointException&) { 
    cerr << "No endpoint for oneway invocations" << endl; 
} 
 
// Down-cast to actual type. 
// 
PersonPrx onewayPerson = PersonPrx::uncheckedCast(oneway); 
 
// Invoke an operation as oneway. 
// 
try { 
    onewayPerson->someOp(); 
} catch (const Ice::TwowayOnlyException&) { 
    cerr << "someOp() is not oneway" << endl; 
}

Note that we use an uncheckedCast to down-cast the proxy from 
ObjectPrx to PersonPrx: for a oneway proxy, we cannot use a checked-
Cast because a checkedCast requires a reply from the server but, of course, a 
oneway proxy does not permit that reply. If instead you want to use a safe down-
cast, you can first down-cast the twoway proxy to the actual object type and then 
obtain the oneway proxy:

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */); 
 
// Safe down-cast to actual type. 
// 
PersonPrx person = PersonPrx::checkedCast(o); 
 
if (person) { 
    // Get a oneway proxy. 
    // 
    PersonPrx onewayPerson; 
    try { 
        onewayPerson 
            = PersonPrx::uncheckedCast(person->ice_oneway()); 
    } catch (const Ice::NoEndPointException&) { 
        cerr << "No endpoint for oneway invocations" << endl; 
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    } 
 
    // Invoke an operation as oneway. 
    // 
    try { 
        onewayPerson->someOp(); 
    } catch (const Ice::TwowayOnlyException&) { 
        cerr << "someOp() is not oneway" << endl; 
    } 
}

Note that, while the second version of this code is somewhat safer (because it uses 
a safe down-cast), it is also slower (because the safe down-cast incurs the cost of 
an additional twoway message).

30.14 Datagram Invocations

Datagram invocations are the equivalent of oneway invocations for datagram 
transports. As for oneway invocations, datagram invocations can be sent only for 
operations that have a void return type and do not have out-parameters or an 
exception specification. (Attempts to use a datagram invocation with an operation 
that does not meet these criteria result in a TwowayOnlyException.) In addition, 
datagram invocations can only be used if the proxy’s endpoints include at least 
one UDP transport; otherwise, the Ice run time throws a NoEndpointException.

The semantics of datagram invocations are similar to oneway invocations: no 
return traffic flows from the server to the client and proceed asynchronously with 
respect to the client; a datagram invocation completes as soon as the client’s trans-
port has accepted the invocation into its buffers. However, datagram invocations 
have additional error semantics:

• Individual invocations may be lost or received out of order.

On the wire, datagram invocations are sent as true datagrams, that is, indi-
vidual datagrams may be lost, or arrive at the server out of order. As a result, 
not only may operations be dispatched out of order, an individual invocation 
out of a series of invocations may be lost. (This cannot happen for oneway 
invocations because, if a connection fails, all invocations are lost once the 
connection breaks down.)
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• UDP packets may be duplicated by the transport.

Because of the nature of UDP routing, it is possible for datagrams to arrive in 
duplicate at the server. This means that, for datagram invocations, Ice does not 
guarantee at-most-once semantics (see page 16): if UDP datagrams are dupli-
cated, the same invocation may be dispatched more than once in the server.

• UDP packets are limited in size.

The maximum size of an IP datagram is 65,535 bytes. Of that, the IP header 
consumes 20 bytes, and the UDP header consumes 8 bytes, leaving 
65,507 bytes as the maximum payload. If the marshaled form of an invoca-
tion, including the Ice request header (see Chapter 33) exceeds that size, the 
invocation is lost. (Exceeding the size limit for a UDP datagram is indicated to 
the application by a DatagramLimitException.)

Because of their unreliable nature, datagram invocations are best suited to simply 
update messages that are otherwise stateless. In addition, due to the high proba-
bility of loss of datagram invocations over wide area networks, you should restrict 
use of datagram invocations to local area networks, where they are less like to be 
lost. (Of course, regardless of the probability of loss, you must design your 
application such that it can tolerate lost or duplicated messages.)

Creating Datagram Proxies

To create a datagram proxy, you must call ice_datagram on the proxy, for 
example:

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */); 
 
// Get a datagram proxy. 
// 
Ice::ObjectPrx datagram; 
try { 
    datagram = o->ice_datagram(); 
} catch (const Ice::NoEndPointException&) { 
    cerr << "No endpoint for datagram invocations" << endl; 
} 
 
// Down-cast to actual type. 
// 
PersonPrx datagramPerson = PersonPrx::uncheckedCast(datagram); 
 
// Invoke an operation as a datagram. 
// 
try { 
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    datagramPerson->someOp(); 
} catch (const Ice::TwowayOnlyException&) { 
    cerr << "someOp() is not oneway" << endl; 
}

As for the oneway example in Section 30.13, you can choose to first do a safe 
down-cast to the actual type of interface and then obtain the datagram proxy, 
rather than relying on an unsafe down-cast, as shown here. However, doing so 
may be disadvantageous for two reasons:

• Safe down-casts are sent via a stream-oriented transport. This means that 
using a safe down-cast will result in opening a connection for the sole purpose 
of verifying that the target object has the correct type. This is expensive if all 
the other traffic to the object is sent via datagrams.

• If the proxy does not offer a stream-oriented transport, the checkedCast 
fails with a NoEndpointException, so you can use this approach only for 
proxies that offer both a UDP endpoint and a TCP/IP and/or SSL endpoint.

30.15 Batched Invocations

Oneway and datagram invocations are normally sent as a separate message, that is, 
the Ice run time sends the oneway or datagram invocation to the server immedi-
ately, as soon as the client makes the call. If a client sends a number of oneway or 
datagram invocations in succession, the client-side run time traps into the OS 
kernel for each message, which is expensive. In addition, each message is sent 
with its own message header (see Chapter 33), that is, for n messages, the band-
width for n message headers is consumed. In situations where a client sends a 
number of oneway or datagram invocations, the additional overhead can be 
considerable.

To avoid the overhead of sending many small messages, you can send oneway 
and datagram invocations in a batch: instead of being sent as a separate message, a 
batch invocation is placed into a client-side buffer by the Ice run time. Successive 
batch invocations are added to the buffer and accumulated on the client side until 
the client explicitly flushes them. The relevant APIs are part of the proxy 
interface:

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
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            Ice::ObjectPrx ice_batchOneway() const; 
            Ice::ObjectPrx ice_batchDatagram() const; 
            // ... 
        }; 
    } 
}

The ice_batchOneway and ice_batchDatagram methods convert a 
proxy to a batch proxy. Once you obtain a batch proxy, messages sent via that 
proxy are buffered in the client-side run time instead of being sent immediately. 
Once the client has invoked one or more operations on batch proxies, it can explic-
itly flush the batched invocations by calling Communicator::flushBatchRe-
quests:

module Ice { 
    local interface Communicator { 
        void flushBatchRequests(); 
        // ... 
    }; 
};

This causes the batched messages to be sent “in bulk”, preceded by a single 
message header. On the server side, batched messages are dispatched by a single 
thread, in the order in which they were written into the batch. This means that 
messages from a single batch cannot appear to be reordered in the server. More-
over, either all messages in a batch are delivered or none of them. (This is true 
even for batched datagrams.)

For batched datagram invocations, you need to keep in mind that, if the data 
for the invocations in a batch substantially exceeds the PDU size of the network, it 
becomes increasingly likely for an individual UDP packet to get lost due to frag-
mentation. In turn, loss of even a single packet causes the entire batch to be lost. 
For this reason, batched datagram invocations are most suitable for simple inter-
faces with a number of operations that each set an attribute of the target object (or 
interfaces with similar semantics). (Batched oneway invocations do not suffer 
from this risk because they are sent over stream-oriented transports, so individual 
packets cannot be lost.)

Batched invocations are more efficient if you also enable compression for the 
transport: many isolated and small messages are unlikely to compress well, 
whereas batched messages are likely to provide better compression because the 
compression algorithm has more data to work with.10

As for oneway invocations (see page 831), you should disable server-side 
active connection management (ACM). With server-side ACM enabled, it is 
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possible for a server to close the connection at the wrong moment and not process 
a batch (with no indication being returned to the client that the batch was lost).

30.16 Testing Proxies for Dispatch Type

The proxy interface offers a number of operations that allow you test the dispatch 
mode of a proxy. (The Java and C# versions of these methods are analogous, so 
we do not show them here.)

namespace IceProxy { 
    namespace Ice { 
        class Object : /* ... */ { 
        public: 
            bool ice_isTwoway() const; 
            bool ice_isOneway() const; 
            bool ice_isDatagram() const; 
            bool ice_isBatchOneway() const; 
            bool ice_isBatchDatagram() const; 
            // ... 
        }; 
    } 
}

These operations allow you to test the dispatch mode of an individual proxy.

30.17 Location Services

In Section 2.2.2 we described briefly how the Ice run time uses an intermediary, 
known as a location service, to convert the symbolic information in an indirect 
proxy into an endpoint that it can use to communicate with a server. This section 
expands on that introduction to explain in more detail how the Ice run time inter-
acts with a location service. You can create your own location service or you can 
use IceGrid, which is an implementation of a location service and provides many 

10.Regardless of whether you used batched messages or not, you should enable compression only on 
lower-speed links. For high-speed LAN connections, the CPU time spent doing the compression 
and decompression is typically longer than the time it takes to just transmit the uncompressed 
data.
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other useful features as well (see Chapter 36). Describing how to implement a 
location service is outside the scope of this book.

30.17.1 Locators
A locator is an Ice object that is implemented by a location service. A locator 
object must support the Slice interface Ice::Locator, which defines operations 
that satisfy the location requirements of the Ice run time. Applications do not 
normally use these operations directly, but the locator object may support an 
implementation-specific interface derived from Ice::Locator that provides addi-
tional functionality. For example, IceGrid’s locator object implements the derived 
interface IceGrid::Query (see Section 36.5.5).

30.17.2 Client Semantics
On the first use of an indirect proxy in an application, the Ice run time may issue a 
remote invocation on the locator object. This activity is transparent to the 
application, as shown in Figure 30.6.

Figure 30.6. Locating an object.

1. The client invokes the operation initialOp on an indirect proxy.

2. The Ice run time checks an internal cache to determine whether a query has 
already been issued for the symbolic information in the proxy. If so, the 
cached endpoint is used and an invocation on the locator object is avoided. 
Otherwise, the Ice run time issues a locate request to the locator.
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3. If the object is successfully located, its current endpoints are returned, the 
client establishes a connection to the proper server, and the invocation 
proceeds as usual. If the object’s endpoints cannot be determined, the client 
application receives an exception. NotRegisteredException is raised when 
an identity, object adapter identifier or replica group identifier is not known. A 
client may also receive NoEndpointException if the location service failed to 
determine the current endpoints.

As far as the Ice run time is concerned, the locator simply converts the informa-
tion in an indirect proxy into usable endpoints. Whether the locator’s implementa-
tion is more sophisticated than a simple lookup table is irrelevant to the Ice run 
time. However, the act of performing this conversion may have additional seman-
tics that the application must be prepared to accept.

For example, when using IceGrid as your location service, the target server 
may be launched automatically if it is not currently running, and the locate request 
does not complete until that server is started and ready to receive requests. As a 
result, the initial request on an indirect proxy may incur additional overhead as all 
of this activity occurs.

Error Recovery

If an error such as a connection failure occurs while a client is using an indirect 
proxy, the Ice run time clears the endpoints it has cached for that proxy and reis-
sues a request to the locator. This request may result in a different set of endpoints; 
the actual behavior is determined by the locator implementation. If one of the new 
endpoints allows the Ice run time to successfully establish a connection, the 
application continues without interruption. Otherwise, the application receives an 
exception that indicates the cause of the failure.

Replication

An indirect proxy may substitute a replica group identifier (see page 15) in place 
of the object adapter identifier. In fact, the Ice run time does not distinguish 
between these two cases and considers a replica group identifier as equivalent to 
an object adapter identifier for the purposes of resolving the proxy. The location 
service implementation must be able to distinguish between replica groups and 
object adapters using only this identifier.

Connections and Requests

When using replication, the objective of the Ice run time is to establish a connec-
tion. Replication is a more sophisticated means of selecting an endpoint for a 
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connection; it does not provide the ability to distribute requests made on a single 
proxy among the replicas. Once a connection is established, the client communi-
cates only with the server at that endpoint, just as if replication was never 
involved. All requests made via the proxy that initiated the connection are sent to 
the same server until that connection is closed.

After the connection is closed, such as by active connection management (see 
Section 34.4), subsequent use of the proxy causes the Ice run time to establish a 
new connection. Whether that new connection uses a different endpoint than 
previous connections depends on a number of factors, but it is possible for the 
client to connect to a different server than for previous requests.

30.17.3 Configuring a Client
An Ice client application must supply a proxy for the locator object, which it can 
do in several ways:

• by explicitly configuring an indirect proxy using the ice_locator proxy 
method (see Section 30.10.1)

• by calling setDefaultLocator on a communicator, after which all proxies 
use the given locator by default

• by defining the Ice.Default.Locator configuration property, which 
causes all proxies to use the given locator by default

The Ice run time’s efforts to resolve an indirect proxy can be traced by setting the 
following configuration properties:

Ice.Trace.Network=2 
Ice.Trace.Protocol=1 
Ice.Trace.Location=2

See Appendix C for more information on these properties.

30.17.4 Server Semantics
A location service must know the endpoints of any object adapter whose identifier 
can be used in an indirect proxy. For example, suppose a client uses the following 
proxy:

Object1@PublicAdapter

The Ice run time in the client sends the identifier PublicAdapter to the 
locator, as described in Section 30.17.2, and expects to receive the associated 
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endpoints. The only way the location service can know these endpoints is if it is 
given them. When you consider that an object adapter’s endpoints may not specify 
fixed ports, and therefore the endpoint addresses may change each time the object 
adapter is activated, it is clear that the best source of endpoint information is the 
object adapter itself. As a result, an object adapter that is properly configured (see 
Section 30.17.5) contacts the locator during activation to supply its identifier and 
current endpoints. More specifically, the object adapter registers itself with an 
object implementing the Ice::LocatorRegistry interface, whose proxy the 
object adapter obtains from the locator.

Registration Requirements

A location service may require that all object adapters be pre-registered via some 
implementation-specific mechanism. (IceGrid behaves this way by default.) This 
implies that activation can fail if the object adapter supplies an identifier that is 
unknown to the location service. In such a situation, the object adapter’s activate 
operation raises NotRegisteredException.

In a similar manner, an object adapter that participates in a replica group (see 
page 15) includes the group’s identifier in the locator request that is sent during 
activation. If the location service requires replica group members to be configured 
in advance, activate raises NotRegisteredException if the object adapter’s 
identifier is not one of the group’s registered participants (see Section 36.8.2).

30.17.5 Configuring a Server
An object adapter must be able to obtain a locator proxy in order to register itself 
with a location service. Each object adapter can be configured with its own locator 
proxy by defining its Locator property, as shown in the example below for the 
object adapter named SampleAdapter:

SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Alternatively, a server may call setLocator on the object adapter prior to activa-
tion. If the object adapter is not explicitly configured with a locator proxy, it uses 
the default locator as provided by its communicator (see Section 30.17.3).

Two other configuration properties influence an object adapter’s interactions 
with a location service during activation:
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• AdapterId

Configuring a non-empty identifier for the AdapterId property causes the 
object adapter to register itself with the location service. A locator proxy must 
also be configured.

• ReplicaGroupId

Configuring a non-empty identifier for the ReplicaGroupId property indi-
cates that the object adapter is a member of a replica group (see page 15). For 
this property to have an effect, AdapterId must also be configured with a 
non-empty value.

We can use these properties as shown below:

SampleAdapter.AdapterId=SampleAdapterId 
SampleAdapter.ReplicaGroupId=SampleGroupId 
SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Refer to Section 30.17.4 for information on the pre-registration requirements a 
location service may enforce.

30.17.6 Process Registration
An activation service, such as an IceGrid node (see Chapter 36), needs a reliable 
way to gracefully deactivate a server. One approach is to use a platform-specific 
mechanism, such as POSIX signals. This works well on POSIX platforms when 
the server is prepared to intercept signals and react appropriately (see 
Section 29.11). On Windows platforms, it works less reliably for C++ servers, and 
not at all for Java servers. For these reasons, the Ice run time provides an alterna-
tive that is both portable and reliable.

Ice::Process

The Slice interface Ice::Process allows an activation service to request a 
graceful shutdown of the server:

module Ice { 
interface Process { 
    ["ami"] idempotent void shutdown(); 
    void writeMessage(string message, int fd); 
}; 
};

When shutdown is invoked, the object implementing this interface is expected to 
initiate the termination of its server process. The activation service may expect the 
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server to terminate within a certain period of time, after which it may terminate 
the server abruptly.

Configuration Requirements

For an activation service to use the Ice::Process interface to shut down a server, 
it must have a proxy to an object implemented in that server.

The simplest and most-common way for a server to register an Ice::Process 
proxy is to set the object adapter property RegisterProcess to a non-zero 
value. For example, an object adapter named ShutdownAdapter is configured 
as shown below:

ShutdownAdapter.RegisterProcess=1

This setting causes a newly-activated object adapter to create a servant imple-
menting the Ice::Process interface, add that servant to the active servant map 
using a UUID for the identity, and invoke an operation on the location service to 
register the proxy. A server should configure at most one of its object adapters 
with this property.

The object adapter also requires a value for the Ice.ServerId property, 
which allows the activation service to uniquely identify the server:

Ice.ServerId=SampleServerId 
ShutdownAdapter.RegisterProcess=1

Security Considerations

The Ice::Process servant responds to the shutdown request by invoking shut-
down on the communicator. This presents a potential security hole: if a hostile 
client obtained the proxy, it could make a denial-of-service attack by shutting 
down the server. It is therefore important that careful consideration be given to the 
server’s endpoints in order to minimize the risk of an attack. Specifically, an 
object adapter can be configured with secure endpoints, or a separate object 
adapter can be dedicated to the Ice::Process servant and configured with an 
endpoint that is accessible only to the activation service. Since the activation 
service is normally running on the same host as the server, a reasonably secure 
choice for an endpoint would select the localhost interface (-h 127.0.0.1) so 
that only a process on the same host could use it.
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30.18 The Ice::Logger Interface

Depending on the setting of various properties (see Chapter 28), the Ice run time 
produces trace, warning, or error messages. These messages are written via the 
Ice::Logger interface:

module Ice { 
    local interface Logger { 
        void print(string message); 
        void trace(string category, string message); 
        void warning(string message); 
        void error(string message); 
    }; 
};

A default logger is instantiated when you create a communicator. The default 
logger logs to the standard error output. The trace operation accepts a category 
parameter in addition to the error message; this allows you to separate trace output 
from different subsystems by sending the output through a filter.

You can obtain the logger that is attached to a communicator:

module Ice { 
    local interface Communicator { 
        Logger getLogger(); 
    }; 
};

To install a logger other than the default one, you can pass it in an Initial-
izationData parameter to initialize (see Section 30.3) when you create 
a communicator.

Changing the Logger object that is attached to a communicator allows you to 
integrate Ice messages into your own message handling system. For example, for 
a complex application, you might have an already existing logging framework. To 
integrate Ice messages into that framework, you can create your own Logger 
implementation that logs messages to the existing framework.

When you destroy a communicator, its logger is not destroyed. This means 
that you can safely use a logger even beyond the lifetime of its communicator.

For convenience, Ice provides two platform-specific logger implementations: 
one that logs its messages to the Unix syslog facility, and another that uses the 
Windows event log. You can activate the syslog implementation by setting the 
Ice.UseSyslog property, and the Windows event log implementation by 
setting the Ice.UseEventLog property. Both implementations use the value of 
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the Ice.ProgramName property to identify the application to the log 
subsystem.

The syslog logger implementation is available in C++, Java, and C#, 
whereas the Windows event log implementation is only available in C++. See 
Section 8.3.2 for additional information on using these logger implementations in 
C++.

30.19 The Ice::Stats Interface

The Ice run time reports bytes sent and received over the wire on every operation 
invocation via the Ice::Stats interface:

module Ice { 
    local interface Stats { 
        void bytesSent(string protocol, int num); 
        void bytesReceived(string protocol, int num); 
    }; 
 
    local interface Communicator { 
        Stats getStats(); 
        // ... 
    }; 
};

The Ice run time calls bytesReceived as it reads from the network and bytes-
Sent as it writes to the network. A very simple implementation of the Stats inter-
face could look like the following:

class MyStats : public virtual Ice::Stats { 
public: 
    virtual void bytesSent(const string& prot, Ice::Int num) 
    { 
        cerr << prot << ": sent " << num << "bytes" << endl; 
    } 
 
    virtual void bytesReceived(const string& prot, Ice::Int) 
    { 
        cerr << prot << ": received " << num << "bytes" << endl; 
    } 
};
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To register your implementation, you must pass it in an Initialization-
Data parameter when you call initialize to create the communicator (see 
Section 30.3):

Ice::InitializationData id; 
id.stats = new MyStats; 
Ice::CommunicatorPtr ic = Ice::initialize(id);

You can install a Stats object on either the client or the server side (or both). Here 
is some example output produced by installing a MyStats object in a simple 
server:

tcp: received 14 bytes 
tcp: received 32 bytes 
tcp: sent 26 bytes 
tcp: received 14 bytes 
tcp: received 33 bytes 
tcp: sent 25 bytes 
...

In practice, your Stats implementation will probably be a bit more sophisticated: 
for example, the object can accumulate statistics in member variables and make 
the accumulated statistics available via member functions, instead of simply 
printing everything to the standard error output.

30.20 Location Transparency

One of the useful features of the Ice run time is that it is location transparent: the 
client does not need to know where the implementation of an Ice object resides; an 
invocation on an object automatically is directed to the correct target, whether the 
object is implemented in the local address space, in another address space on the 
same machine, or in another address space on a remote machine. Location trans-
parency is important because it allows us to change the location of an object 
implementation without breaking client programs and, by using IceGrid (see 
Chapter 36), addressing information such as domain names and port numbers can 
be externalized so they do not appear in stringified proxies.

For invocations that cross address space boundaries (or more accurately, cross 
communicator boundaries), the Ice run time dispatches requests via the appro-
priate transport. However, for invocations that are via proxies for which the 
proxies and the servants that process the invocation share the same communicator 
(so-called collocated invocations), the Ice run, by default, does not send the invo-
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cation via the transport specified in the proxy. Instead, collocated invocations are 
short-cut inside the Ice run time and dispatched directly.11 (This is the default 
behavior. You can disable the collocation optimization by creating a proxy that 
disables the collocation optimization—see page 818.)

The reason for this is efficiency: if collocated invocations were sent via 
TCP/IP, for example, invocations would still be sent via the operating system 
kernel (using the back plane instead of a network) and would incur the full cost of 
creating TCP/IP connections, marshaling requests into packets, trapping in and 
out of the kernel, and so on. By optimizing collocated requests, much of this over-
head can be avoided, so collocated invocations are almost as fast as a local func-
tion call.

For efficiency reasons, collocated invocations are not completely location 
transparent, that is, a collocated call has semantics that differ in some ways from 
calls that cross address-space boundaries. Specifically, collocated invocations 
differ from ordinary invocations in the following respects:

• Collocated invocations are dispatched in the calling thread instead of being 
dispatched using the server’s concurrency model.

• The object adapter holding state is ignored: collocated invocations proceed 
normally even if the target object’s adapter is in the holding state.

• For collocated invocations, classes and exceptions are never sliced. Instead, 
the receiver always receives a class or exception as the derived type that was 
sent by the sender.

• If a collocated invocation throws an exception that is not in an operation’s 
exception specification, the original exception is raised in the client instead of 
UnknownUserException. (This applies to the C++ mapping only.)

• Class factories are ignored for collocated invocations.

• Timeouts on invocations are ignored.

In practice, these differences rarely matter. The most likely cause of surprises with 
collocated invocations is dispatch in the calling thread, that is, a collocated invoca-
tion behaves like a local, synchronous procedure call. This can cause problems if, 
for example, the calling thread acquires a lock that an operation implementation 
tries to acquire as well: unless you use recursive mutexes (see Chapter 29), this 
will cause deadlock.

11.Note that if the proxy and the servant do not use the same communicator, the invocation is not 
collocated, even though caller and callee are in the same address space.
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You can create a proxy that disables the collocation optimization by calling 
ice_collocationOptimized(false).

30.21 C++ String Conversion

For languages other than C++, Ice encodes strings in their native Unicode repre-
sentation, so applications can transparently use characters from non-English 
alphabets. However, for C++, the string encoding depends on which mapping is 
chosen for a particular string, the default mapping to std::string, or the alter-
native mapping to std::wstring (see Section 6.6.1).12 This section explains 
how strings are encoded by the Ice run time, and how you can achieve automatic 
conversion of strings into a particular encoding.13

On the wire, Ice transmits all strings as Unicode strings in UTF-8 encoding 
(see Chapter 33). However, the native C++ representation for strings that contain 
non-English characters depends on the platform, as well as on locale settings and 
whether you use the narrow or wide mapping for Slice strings. By default, the Ice 
run time encodes strings as follows:

• Narrow strings (that is, strings mapped to std::string) are presented to 
the application in UTF-8 encoding and, similarly, the application is expected 
to provide narrow strings in UTF-8 encoding to the Ice run time for transmis-
sion.

With this default behavior, the application code is responsible for converting 
between the native codeset for 8-bit characters and UTF-8. For example, if the 
native codeset is ISO Latin-1, the application is responsible for converting 
between UTF-8 and narrow (8-bit) characters in ISO Latin-1 encoding.

Also note that the default behavior does not require the application to do 
anything if it only uses characters in the ASCII range. (This is because a string 
containing only characters in the ASCII range is also a valid UTF-8 string.)

• Wide strings (that is, strings mapped to std::wstring) are automatically 
encoded as Unicode by the Ice run time as appropriate for the platform. For 
example, for AIX in 32-bit mode, the Ice run time converts between UTF-8 
and UTF-16 in big-endian representation whereas, for AIX in 64-bit mode, the 

12.The remainder of this section is not relevant to languages other than C++.

13.See the demo directory in the Ice for C++ distribution for an example of using string converters.
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Ice run time converts between UTF-8 and UTF-32 in big-endian representa-
tion.
With this default behavior, wide strings are transparently converted between 
their one-the-wire representation and their native C++ representation as appro-
priate, so application code need not do anything special. (The exception is if 
an application uses a non-Unicode encoding, such as Shift-JIS, as its native 
codeset.)

The default behavior of the run time can be changed by providing application-
specific string converters. If you install such converters, all Slice strings will be 
passed to the appropriate converter when they are marshaled and unmarshaled. 
Therefore, the string converters allow you to convert all strings transparently into 
their native representation without having to insert explicit conversion calls when-
ever a strings cross a Slice interface boundary.

You can install string converters on a per-communicator basis when you create 
a communicator by setting the stringConverter and wstringConverter 
members of the InitializationData structure (see Section 30.3). Any 
strings that use the default (std::string) mapping are passed through the 
specified stringConverter, and any strings that use the wide 
(std::wstring) mapping are passed through the specified 
wstringConverter.

The string converters are defined as follows:

namespace Ice { 
 
class ICE_API UTF8Buffer { 
public: 
    virtual Byte* getMoreBytes(size_t howMany, 
                               Byte* firstUnused) = 0; 
    virtual ~UTF8Buffer() {} 
}; 
 
template<typename charT> 
class BasicStringConverter : public IceUtil::Shared { 
public: 
    virtual Byte* 
        toUTF8(const charT* sourceStart, const charT* sourceEnd, 
               UTF8Buffer&) const = 0; 
 
    virtual void fromUTF8(const Byte* sourceStart, 
                          const Byte* sourceEnd, 
                          std::basic_string<charT>& target) const; 
}; 
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typedef BasicStringConverter<char> StringConverter; 
typedef IceUtil::Handle<StringConverter> StringConverterPtr; 
 
typedef BasicStringConverter<wchar_t> WstringConverter; 
typedef IceUtil::Handle<WstringConverter> WstringConverterPtr; 
 
}

As you can see, both narrow and wide string converters are simply templates with 
either a narrow or a wide character (char or wchar_t) as the template param-
eter.

30.21.1 Converting to UTF-8
If you have a string converter installed, the Ice run time calls the toUTF method 
whenever it needs to convert a native string into UTF-8 representation for trans-
mission. The sourceStart and sourceEnd pointers point at the first byte 
and one-beyond-the-last byte of the source string, respectively. The implementa-
tion of toUTF8 must return a pointer to the first unused byte following the 
converted string.

Your implementation of toUTF8 must allocate the returned string by calling 
the getMoreBytes member function of the UTF8Buffer class that is passed 
as the third argument. (getMoreBytes throws a MemoryLimitException 
if it cannot allocate enough memory). The firstUnused parameter must point 
at the first unused byte of the allocated memory region. You can make several 
calls to getMoreBytes to incrementally allocate memory for the converted 
string. If you do, getMoreBytes may relocate the buffer in memory. (If it does, 
it copies the part of the string that was converted so far into the new memory 
region.) The function returns a pointer to the first unused byte of the (possibly 
relocated) memory.

Conversion with toUTF8 can fail because no more memory is available, in 
which case you should throw a MemoryLimitException. Conversion can 
also fail because the encoding of the source string is internally incorrect. In that 
case, you should throw a StringConversionFailed exception from 
toUTF8.

The Ice run time deallocates the returned string once it has marshaled it.
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30.21.2 Converting from UTF-8
During unmarshaling, the Ice run time calls the fromUTF8 member function on 
the corresponding string converter. The function converts a UTF-8 string into its 
native form as a std::string. (The string into which the function must place 
the converted characters is passed to fromUTF8 as the target parameter.)

30.22 A Comparison of the Ice and CORBA Run Time

The CORBA equivalent of the server-side functionality of Ice is the Portable 
Object Adapter (POA). The most striking difference between Ice and the POA is 
the simplicity of the Ice APIs: Ice is just as fully featured as the POA but achieves 
this functionality with much simpler interfaces and far fewer operations. Here are 
a few of the more notable differences:

• Ice object adapters are not hierarchical, whereas POAs are arranged into a 
hierarchy. It is unclear why CORBA chose to put its adapters into a hierarchy. 
The hierarchy complicates the POA interfaces but the feature does not provide 
any apparent benefit: the inheritance of object adapters has no meaning. In 
particular, POA policies are not inherited from the parent adapter. POA hierar-
chies can be used to control the order of destruction of POAs. However, it is 
simpler and easier to explicitly destroy adapters in the correct order, as is done 
in Ice.

• The POA uses a complex policy mechanism to control the behavior of object 
adapters. The policies can be combined in numerous ways, despite the fact 
that most combinations do not make sense. This not only is a frequent source 
of programming errors, but also complicates the API with additional excep-
tion semantics for many of its operations.

• The CORBA run time does not provide access to the ORB object (the equiva-
lent of the Ice communicator) during method dispatch. Yet, access to the ORB 
object is frequently necessary inside operation implementations. As a result, 
programmers are forced to keep the ORB object in global variable and, if 
multiple ORBs are used, there is no way to identify the correct ORB for a 
particular request. The Ice run time eliminates these problems by always 
providing access to the communicator via the adapter that is passed as part of 
the Current object.
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• The POA attaches implementation techniques to object adapters. For example, 
an object adapter that uses a servant locator cannot also use an active servant 
map.

The POA also distinguishes between servant locators (which are similar to Ice 
servant locators) and servant activators (which work like the incrementally 
initializing servant locator in Section 30.8.1). Yet, there is no need to distin-
guish the two concepts: a servant activator is simply a special case of a servant 
locator that can be implemented trivially.

Similarly, default servants must be registered with a POA by making a special 
API call when, in fact, there is no need to cater for default servants as a sepa-
rate concept. As shown in Section 30.8.2, with Ice, you can use a trivial 
servant locator to achieve the same effect.

• The POA uses separate POA manager objects to control adapter states. This 
not only complicates the APIs considerably, it also makes it possible to 
combine hierarchies of object adapters with groupings of POA managers in 
meaningless ways, leading to undefined behavior. Ice does not use separate 
objects to control adapter states and so eliminates the associated complexities 
without loss of functionality.

• The POA interfaces have the notion of a default Root POA that is used unless 
the programmer overrides it explicitly. This misfeature is a frequent source of 
errors, due to inappropriate policies that were chosen for the Root POA. 
(Users of CORBA will probably have been bitten by implicit activation of 
objects on the Root POA, instead of the intended POA.)

• The POA provides the concept of implicit activation as well as the notion of 
system-generated object identities as part of the object adapter policies. This 
design is a frequent source of programming errors because it leads to many 
implicit activities behind the scenes, some of them with surprising side effects. 
(It is sad to see that all this complexity was added to avoid a single line of 
code during object activation.) Ice does not provide a notion of implicit activa-
tion or implicit generation of object identities. Instead, servants are given an 
identity explicitly and are activated explicitly, which avoids the complexity 
and confusion.

• CORBA has no notion of datagrams, or of batched invocations, both of which 
can provide substantial performance gains.

• CORBA provides no standardized way to integrate ORB messages into 
existing logging frameworks and does not provide access to network statistics.
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In summary, the Ice run time provides all the functionality of the POA (and more) 
with an API that is a fraction in size. By cleanly separating orthogonal concepts 
and by providing a minimal but sufficient API, Ice not only provides a simpler and 
easier-to use API, but also results in binaries that are smaller in size. This not only 
reduces the memory requirements of Ice binaries, but also contributes to better 
performance due to reduced working set size.

30.23 Summary

In this chapter, we explored the server-side run time in detail. Communicators are 
the main handle to the Ice run time. They provide access to a number of run time 
resources and allow you to control the life cycle of a server. Object adapters 
provide a mapping between abstract Ice objects and concrete servants. Various 
implementation techniques are at your disposal to control the trade-off between 
performance and scalability; in particular, servant locators are a central mecha-
nism that permits you to choose an implementation technique that matches the 
requirements of your application.

Ice provides both oneway and datagram invocations. These provide perfor-
mance gains in situations where an application needs to provide numerous state-
less updates. Batching such invocations permits you to increase performance even 
further.

The Ice logging mechanism is user extensible, so you can integrate Ice 
message into arbitrary logging frameworks, and the Ice::Stats interface permits 
you to collect statistics for network bandwidth consumption.

Finally, even though Ice is location transparent, in the interest of efficiency, 
collocated invocations do not behave in all respects like remote invocations. You 
need to be aware of these differences, especially for applications that are sensitive 
to thread context.
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Chapter 31
Asynchronous Programming

31.1 Chapter Overview

This chapter describes the asynchronous programming facilities in Ice. 
Section 31.2 gives a brief overview of the capabilities and demonstrates how to 
modify Slice definitions to enable asynchronous support in language mappings. 
The client-side facilities are presented in Section 31.3 and are followed by a 
discussion of the server-side facilities in Section 31.4.

31.2 Introduction

Modern middleware technologies attempt to ease the programmer’s transition to 
distributed application development by making remote invocations as easy to use 
as traditional method calls: a method is invoked on an object and, when the 
method completes, the results are returned or an exception is raised. Of course, in 
a distributed system the object’s implementation may reside on another host, and 
consequently there are some semantic differences that the programmer must be 
aware of, such as the overhead of remote invocations and the possibility of 
network-related errors. Despite those issues, the programmer’s experience with 
object-oriented programming is still relevant, and this synchronous programming 
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model, in which the calling thread is blocked until the operation returns, is 
familiar and easily understood.

Ice is inherently an asynchronous middleware platform that simulates 
synchronous behavior for the benefit of applications (and their programmers). 
When an Ice application makes a synchronous twoway invocation on a proxy for a 
remote object, the operation’s in parameters are marshaled into a message that is 
written to a transport, and the calling thread is blocked in order to simulate a 
synchronous method call. Meanwhile, the Ice run-time operates in the back-
ground, processing messages until the desired reply is received and the calling 
thread can be unblocked to unmarshal the results.

There are many cases, however, in which the blocking nature of synchronous 
programming is too restrictive. For example, the application may have useful 
work it can do while it awaits the response to a remote invocation; using a 
synchronous invocation in this case forces the application to either postpone the 
work until the response is received, or perform this work in a separate thread. 
When neither of these alternatives are acceptable, the asynchronous facilities 
provided with Ice are an effective solution for improving performance and scal-
ability, or simplifying complex application tasks.

31.2.1 Asynchronous Method Invocation
Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. Using AMI, a remote 
invocation does not block the calling thread while the Ice run-time awaits the 
reply. Instead, the calling thread can continue its activities, and the application is 
notified by the Ice run-time when the reply eventually arrives. Notification occurs 
via a callback to an application-supplied programming-language object1. AMI is 
described in detail in Section 31.3.

31.2.2 Asynchronous Method Dispatch
The number of simultaneous synchronous requests a server is capable of 
supporting is determined by the server’s concurrency model (see Section 30.9). If 
all of the threads are busy dispatching long-running operations, then no threads 

1. Polling for a response is not supported by the Ice run-time, but it can be implemented easily by 
the application if desired.
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are available to process new requests and therefore clients may experience an 
unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI, 
addresses this scalability issue. Using AMD, a server can receive a request but 
then suspend its processing in order to release the dispatch thread as soon as 
possible. When processing resumes and the results are available, the server sends 
a response explicitly using a callback object provided by the Ice run-time.

In practical terms, an AMD operation typically queues the request data (i.e., 
the callback object and operation arguments) for later processing by an application 
thread (or thread pool). In this way, the server minimizes the use of dispatch 
threads and becomes capable of efficiently supporting thousands of simultaneous 
clients.

An alternate use case for AMD is an operation that requires further processing 
after completing the client’s request. In order to minimize the client’s delay, the 
operation returns the results while still in the dispatch thread, and then continues 
using the dispatch thread for additional work.

See Section 31.4 for more information on AMD.

31.2.3 Controlling Code Generation using Metadata
A programmer indicates a desire to use an asynchronous model (AMI, AMD, or 
both) by annotating Slice definitions with metadata (Section 4.17). The 
programmer can specify this metadata at two levels: for an interface or class, or 
for an individual operation. If specified for an interface or class, then asynchro-
nous support is generated for all of its operations. Alternatively, if asynchronous 
support is needed only for certain operations, then the generated code can be mini-
mized by specifying the metadata only for those operations that require it.

Synchronous invocation methods are always generated in a proxy; specifying 
AMI metadata merely adds asynchronous invocation methods. In contrast, speci-
fying AMD metadata causes the synchronous dispatch methods to be replaced 
with their asynchronous counterparts. This semantic difference between AMI and 
AMD is ultimately practical: it is beneficial to provide a client with synchronous 
and asynchronous versions of an invocation method, but doing the equivalent in a 
server would require the programmer to implement both versions of the dispatch 
method, which has no tangible benefits and several potential pitfalls.

Consider the following Slice definitions:
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["ami"] interface I { 
  bool isValid(); 
  float computeRate(); 
}; 
 
interface J { 
  ["amd"]        void startProcess(); 
  ["ami", "amd"] int endProcess(); 
};

In this example, all proxy methods of interface I are generated with support for 
synchronous and asynchronous invocations. In interface J, the startProcess 
operation uses asynchronous dispatch, and the endProcess operation supports 
asynchronous invocation and dispatch.

Specifying metadata at the operation level, rather than at the interface or class 
level, not only minimizes the amount of generated code, but more importantly, it 
minimizes complexity. Although the asynchronous model is more flexible, it is 
also more complicated to use. It is therefore in your best interest to limit the use of 
the asynchronous model to those operations for which it provides a particular 
advantage, while using the simpler synchronous model for the rest.

31.2.4 Transparency
The use of an asynchronous model does not affect what is sent “on the wire.” 
Specifically, the invocation model used by a client is transparent to the server, and 
the dispatch model used by a server is transparent to the client. Therefore, a server 
has no way to distinguish a client’s synchronous invocation from an asynchronous 
invocation, and a client has no way to distinguish a server’s synchronous reply 
from an asynchronous reply.

31.3 Using AMI

In this section, we describe the Ice implementation of AMI and how to use it. We 
begin by discussing a way to (partially) simulate AMI using oneway invocations. 
This is not a technique that we recommend, but it is an informative exercise that 
highlights the benefits of AMI and illustrates how it works. Next, we explain the 
AMI mapping and illustrate its use with examples.
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31.3.1 Simulating AMI using Oneways
As we discussed at the beginning of the chapter, synchronous invocations are not 
appropriate for certain types of applications. For example, an application with a 
graphical user interface typically must avoid blocking the window system’s event 
dispatch thread because blocking makes the application unresponsive to user 
commands. In this situation, making a synchronous remote invocation is asking 
for trouble.

The application could avoid this situation using oneway invocations (see 
Section 30.13), which by definition cannot return a value or have any out parame-
ters. Since the Ice run-time does not expect a reply, the invocation blocks only as 
long as it takes to marshal and copy the message into the local transport buffer. 
However, the use of oneway invocations may require unacceptable changes to the 
interface definitions. For example, a twoway invocation that returns results or 
raises user exceptions must be converted into at least two operations: one for the 
client to invoke with oneway semantics that contains only in parameters, and one 
(or more) for the server to invoke to notify the client of the results.

To illustrate these changes, suppose that we have the following Slice defini-
tion:

interface I { 
  int op(string s, out long l); 
};

In its current form, the operation op is not suitable for a oneway invocation 
because it has an out parameter and a non-void return type. In order to accommo-
date a oneway invocation of op, we can change the Slice definitions as shown 
below:

interface ICallback { 
  void opResults(int result, long l); 
}; 
 
interface I { 
  void op(ICallback* cb, string s); 
};

We made several modifications to the original definition:

• We added interface ICallback, containing an operation opResults whose 
arguments represent the results of the original twoway operation. The server 
invokes this operation to notify the client of the completion of the operation.
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• We modified I::op to be compliant with oneway semantics: it now has a void 
return type, and takes only in parameters.

• We added a parameter to I::op that allows the client to supply a proxy for its 
callback object.

As you can see, we have made significant changes to our interface definitions to 
accommodate the implementation requirements of the client. One ramification of 
these changes is that the client must now also be a server, because it must create an 
instance of ICallback and register it with an object adapter in order to receive 
notifications of completed operations.

A more severe ramification, however, is the impact these changes have on the 
type system, and therefore on the server. Whether a client invokes an operation 
synchronously or asynchronously should be irrelevant to the server; this is an arti-
fact of behavior that should have no impact on the type system. By changing the 
type system as shown above, we have tightly coupled the server to the client, and 
eliminated the ability for op to be invoked synchronously.

To make matters even worse, consider what would happen if op could raise 
user exceptions. In this case, ICallback would have to be expanded with addi-
tional operations that allow the server to notify the client of the occurrence of each 
exception. Since exceptions cannot be used as parameter or member types in 
Slice, this quickly becomes a difficult endeavor, and the results are likely to be 
equally difficult to use.

At this point, you will hopefully agree that this technique is flawed in many 
ways, so why do we bother describing it in such detail? The reason is that the Ice 
implementation of AMI uses a strategy similar to the one described above, with 
several important differences:

1. No changes to the type system are required in order to use AMI. The on-the-
wire representation of the data is identical, therefore synchronous and asyn-
chronous clients and servers can coexist in the same system, using the same 
operations.

2. The AMI solution accommodates exceptions in a reasonable way.

3. Using AMI does not require the client to also be a server.

31.3.2 Language Mappings
An operation for which the AMI metadata has been specified supports both 
synchronous and asynchronous invocation models. In addition to the proxy 
method for synchronous invocation, the code generator creates a proxy method for 
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asynchronous invocation, plus a supporting callback class. The generated code 
uses a pattern similar to the Slice modifications we made to the example in 
Section 31.3.1: the out parameters and return value are removed, leaving only in 
parameters for the invocation; the application supplies a callback object that is 
invoked with the results of the operation. In this case, however, the callback object 
is a purely local entity that is invoked by the Ice run-time in the client. The name 
of the callback class is constructed so that it cannot conflict with a user-defined 
Slice identifier.

C++ Mapping

The C++ mapping emits the following code for each AMI operation:

1. An abstract callback class used by the Ice run-time to notify the application 
about the completion of an operation. The name of the class is formed using 
the pattern AMI_class_op. For example, an operation named foo defined 
in interface I results in a class named AMI_I_foo. The class is generated in 
the same scope as the interface or class containing the operation. Two methods 
are provided:

void ice_response(<params>);

Indicates that the operation completed successfully. The parameters represent 
the return value and out parameters of the operation. If the operation has a 
non-void return type, then the first parameter of the ice_response method 
supplies the return value of the operation. Any out parameters present in the 
operation follow the return value, in the order of declaration.

void ice_exception(const Ice::Exception &);

Indicates that a local or user exception was raised.

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method has a void return type. The first parameter 
is a smart pointer to an instance of the callback class described above. The 
remaining parameters comprise the in parameters of the operation, in the 
order of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["ami"] int foo(short s, out long l); 
};

The callback class generated for operation foo is shown below:
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namespace Demo { 
    class AMI_I_foo : public ... { 
    public: 
        virtual void ice_response(Ice::Int, Ice::Long) = 0; 
        virtual void ice_exception(const Ice::Exception&) = 0; 
    }; 
 
    typedef IceUtil::Handle<AMI_I_foo> AMI_I_fooPtr; 
}

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

void foo_async(const AMI_I_fooPtr&, Ice::Short);

Java Mapping

The Java mapping emits the following code for each AMI operation:

1. An abstract callback class used by the Ice run-time to notify the application 
about the completion of an operation. The name of the class is formed using 
the pattern AMI_class_op. For example, an operation named foo defined 
in interface I results in a class named AMI_I_foo. The class is generated in 
the same scope as the interface or class containing the operation. Three 
methods are provided:

public void ice_response(<params>);

Indicates that the operation completed successfully. The parameters represent 
the return value and out parameters of the operation. If the operation has a 
non-void return type, then the first parameter of the ice_response method 
supplies the return value of the operation. Any out parameters present in the 
operation follow the return value, in the order of declaration.

public void ice_exception(Ice.LocalException ex);

Indicates that a local exception was raised.

public void ice_exception(Ice.UserException ex);

Indicates that a user exception was raised.

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method has a void return type. The first parameter 
is a reference to an instance of the callback class described above. The 
remaining parameters comprise the in parameters of the operation, in the 
order of declaration.
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For example, suppose we have defined the following operation:

interface I { 
  ["ami"] int foo(short s, out long l); 
};

The callback class generated for operation foo is shown below:

public abstract class AMI_I_foo extends ... { 
    public abstract void ice_response(int __ret, long l); 
    public abstract void ice_exception(Ice.LocalException ex); 
    public abstract void ice_exception(Ice.UserException ex); 
}

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

public void foo_async(AMI_I_foo __cb, short s);

C# Mapping

The C# mapping emits the following code for each AMI operation:

1. An abstract callback class used by the Ice run-time to notify the application 
about the completion of an operation. The name of the class is formed using 
the pattern AMI_class_op. For example, an operation named foo defined 
in interface I results in a class named AMI_I_foo. The class is generated in 
the same scope as the interface or class containing the operation. Two methods 
are provided:

public abstract void ice_response(<params>);

Indicates that the operation completed successfully. The parameters represent 
the return value and out parameters of the operation. If the operation has a 
non-void return type, then the first parameter of the ice_response method 
supplies the return value of the operation. Any out parameters present in the 
operation follow the return value, in the order of declaration.

public abstract void ice_exception(Ice.Exception ex);

Indicates that an exception was raised.

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method has a void return type. The first parameter 
is a reference to an instance of the callback class described above. The 
remaining parameters comprise the in parameters of the operation, in the order 
of declaration.
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For example, suppose we have defined the following operation:

interface I { 
  ["ami"] int foo(short s, out long l); 
};

The callback class generated for operation foo is shown below:

namespace IceInternal 
{ 
    public abstract class OutgoingAsync 
    { 
        public abstract void ice_exception(Ice.Exception ex); 
 
        // ... 
    } 
} 
 
namespace Demo 
{ 
    public abstract class AMI_I_foo : IceInternal.OutgoingAsync 
    { 
        public abstract void ice_response(int __ret, long l); 
 
        // Mapping-internal code here... 
    } 
}

A concrete implementation of the AMI_I_foo class must provide implementa-
tions for both the generated ice_response and the inherited 
ice_exception abstract methods.

The proxy method for asynchronous invocation of operation foo is generated 
as follows:

void foo_async(AMI_I_foo __cb, short s); 
void foo_async(AMI_I_foo __cb, short s, Ice.Context __ctx);

As usual, the version of the operation without a context parameter forwards an 
empty context to the version with a context parameter.

Visual Basic Mapping

The Visual Basic mapping emits the following code for each AMI operation:

1. An abstract callback class used by the Ice run-time to notify the application 
about the completion of an operation. The name of the class is formed using 
the pattern AMI_class_op. For example, an operation named foo defined 
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in interface I results in a class named AMI_I_foo. The class is generated in 
the same scope as the interface or class containing the operation. Two methods 
are provided:

Public MustOverride Sub ice_response(<params>)

Indicates that the operation completed successfully. The parameters represent 
the return value and out parameters of the operation. If the operation has a 
non-void return type, then the first parameter of the ice_response method 
supplies the return value of the operation. Any out parameters present in the 
operation follow the return value, in the order of declaration.

Public MustOverride Sub ice_exception(ByVal ex As Ice.Exception)

Indicates that an exception was raised.

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method has a void return type. The first parameter 
is a reference to an instance of the callback class described above. The 
remaining parameters comprise the in parameters of the operation, in the order 
of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["ami"] int foo(short s, out long l); 
};

The callback class generated for operation foo is shown below:

Namespace IceInternal 
 
    Public MustInherit Class OutgoingAsync 
 
        Public MustOverride Sub ice_exception( _ 
                                    ByVal ex As Ice.Exception) 
        ' ... 
 
    End Class 
 
End Namespace 
 
namespace Demo 
 
    Public MustInherit Class AMI_I_foo 
        Inherits IceInternal.OutgoingAsync 
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        Public MustOverride Sub ice_response( _ 
                                        ByVal __ret As Integer, _ 
                                        ByVal l As Long) 
        ' Mapping-internal code here... 
    End Class 
 
End Namespace

A concrete implementation of the AMI_I_foo class must provide implementa-
tions for both the generated ice_response and the inherited 
ice_exception abstract methods.

The proxy method for asynchronous invocation of operation foo is generated 
as follows:

Sub foo_async(ByVal __cb As AMI_I_foo, ByVal s As Short) 
 
Sub foo_async(ByVal __cb As AMI_I_foo, ByVal s As Short, _ 
              ByVal __ctx As Ice.Context)

As usual, the version of the operation without a context parameter forwards an 
empty context to the version with a context parameter.

Python Mapping

For each AMI operation, the Python mapping emits an additional proxy method 
having the mapped name of the operation with the suffix _async. This method 
has a void return type. The first parameter is a reference to a callback object, as 
described below. The remaining parameters comprise the in parameters of the 
operation, in the order of declaration.

The asynchronous proxy method requires its callback object to define two 
methods:

def ice_response(self, <params>)

Indicates that the operation completed successfully. The parameters represent 
the return value and out parameters of the operation. If the operation has a 
non-void return type, then the first parameter of the ice_response method 
supplies the return value of the operation. Any out parameters present in the 
operation follow the return value, in the order of declaration.

def ice_exception(self, ex)

Indicates that a local or user exception was raised.

For example, suppose we have defined the following operation:
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interface I { 
  ["ami"] int foo(short s, out long l); 
};

The method signatures required for the callback object of operation foo are shown 
below:

class ... 
    # 
    # Operation signatures: 
    # 
    # def ice_response(self, _result, l) 
    # def ice_exception(self, ex)

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

def foo_async(self, __cb, s)

31.3.3 Example
To demonstrate the use of AMI in Ice, let us define the Slice interface for a simple 
computational engine:

module Demo { 
    sequence<float> Row; 
    sequence<Row> Grid; 
 
    exception RangeError {}; 
 
    interface Model { 
        ["ami"] Grid interpolate(Grid data, float factor) 
            throws RangeError; 
    }; 
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way. In the sections below, we present C++, 
Java, C#, Visual Basic, and Python clients that invoke interpolate using AMI.

C++ Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:
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class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate 
{ 
public: 
    virtual void ice_response(const Demo::Grid& result) 
    { 
        cout << "received the grid" << endl; 
        // ... postprocessing ... 
    } 
 
    virtual void ice_exception(const Ice::Exception& ex) 
    { 
        try { 
            ex.ice_throw(); 
        } catch (const Demo::RangeError& e) { 
            cerr << "interpolate failed: range error" << endl; 
        } catch (const Ice::LocalException& e) { 
            cerr << "interpolate failed: " << e << endl; 
        } 
    } 
};

The implementation of ice_response reports a successful result, and 
ice_exception displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo::ModelPrx model = ...; 
AMI_Model_interpolatePtr cb = new AMI_Model_interpolateI; 
Demo::Grid grid; 
initializeGrid(grid); 
model->interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a Model object, the client instantiates a callback 
object, initializes a grid and invokes the asynchronous version of interpolate. 
When the Ice run-time receives the response to this request, it invokes the callback 
object supplied by the client.

Java Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

class AMI_Model_interpolateI extends Demo.AMI_Model_interpolate { 
    public void ice_response(float[][] result) 
    { 
        System.out.println("received the grid"); 
        // ... postprocessing ... 
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    } 
 
    public void ice_exception(Ice.UserException ex) 
    { 
        assert(ex instanceof Demo.RangeError); 
        System.err.println("interpolate failed: range error"); 
    } 
 
    public void ice_exception(Ice.LocalException ex) 
    { 
        System.err.println("interpolate failed: " + ex); 
    } 
}

The implementation of ice_response reports a successful result, and the 
ice_exception methods display a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo.ModelPrx model = ...; 
AMI_Model_interpolate cb = new AMI_Model_interpolateI(); 
float[][] grid = ...; 
initializeGrid(grid); 
model.interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a Model object, the client instantiates a callback 
object, initializes a grid and invokes the asynchronous version of interpolate. 
When the Ice run-time receives the response to this request, it invokes the callback 
object supplied by the client.

C# Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

using System; 
 
class AMI_Model_interpolateI : Demo.AMI_Model_interpolate { 
    public override void ice_response(float[][] result) 
    { 
        Console.WriteLine("received the grid"); 
        // ... postprocessing ... 
    } 
 
    public override void ice_exception(Ice.Exception ex) 
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    { 
        Console.Error.WriteLine("interpolate failed: " + ex); 
    } 
}

The implementation of ice_response reports a successful result, and the 
ice_exception method displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo.ModelPrx model = ...; 
AMI_Model_interpolate cb = new AMI_Model_interpolateI(); 
float[][] grid = ...; 
initializeGrid(grid); 
model.interpolate_async(cb, grid, 0.5);

Visual Basic Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

imports System 
 
Class AMI_Model_interpolateI 
    Inherits Demo.AMI_Model_interpolate 
 
    Public Overrides Sub ice_response(ByVal result As Single()()) 
        Console.WriteLine("received the grid") 
        ' ... postprocessing ... 
    End Sub 
 
 
    Public Overrides Sub ice_exception(ByVal ex As Ice.Exception) 
        Console.Error.WriteLine("interpolate failed: " & ex) 
    End Sub 
 
End Class

The implementation of ice_response reports a successful result, and the 
ice_exception method displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Dim model As Demo.ModelPrx = ... 
Dim cb As AMI_Model_interpolate = New AMI_Model_interpolateI 
Dim grid As Single()() = ... 
initializeGrid(grid) 
model.interpolate_async(cb, grid, 0.5)



31.3 Using AMI 873

Python Client

We must first define our callback implementation class:

class AMI_Model_interpolateI(object): 
    def ice_response(self, result): 
        print "received the grid" 
        # ... postprocessing ... 
 
  def ice_exception(self, ex): 
      try: 
          raise ex 
      except Demo.RangeError, e: 
          print "interpolate failed: range error" 
      except Ice.LocalException, e: 
          print "interpolate failed: " + str(e)

The implementation of ice_response reports a successful result, and the 
ice_exception method displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

model = ... 
cb = AMI_Model_interpolateI() 
grid = ... 
initializeGrid(grid) 
model.interpolate_async(cb, grid, 0.5)

31.3.4 Concurrency Issues
Support for asynchronous invocations in Ice is enabled by the client thread pool 
(see Section 30.9), whose threads are primarily responsible for processing reply 
messages. It is important to understand the concurrency issues associated with 
asynchronous invocations:

• A callback object must not be used for multiple simultaneous invocations. An 
application that needs to aggregate information from multiple replies can 
create a separate object to which the callback objects delegate.

• Calls to the callback object are made by threads from the Ice run time’s client 
thread pool, therefore synchronization may be necessary if the application 
might interact with the callback object at the same time as the reply arrives.

• The number of threads in the client thread pool determines the maximum 
number of simultaneous callbacks possible for asynchronous invocations. The 
default size of the client thread pool is one, meaning invocations on callback 
objects are serialized. If the size of the thread pool is increased, the application 
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may require synchronization, such as when multiple callback objects delegate 
to a single shared object.

• AMI invocations are always made without collocation optimization, regard-
less of the optimization setting of the proxy (see Section 30.20).

31.3.5 Timeouts
Supporting the use of timeouts for asynchronous invocations presents a special 
challenge for the Ice run time. Unlike synchronous invocations, for which the Ice 
run time simply blocks the calling thread for the specified timeout period, asyn-
chronous invocations must return control to the calling thread as soon as possible.

Consequently, the Ice run time is forced to use another mechanism: a dedi-
cated thread that, among other duties, periodically reviews pending asynchronous 
invocations. If an invocation has a timeout that has expired, the dedicated thread 
terminates the invocation by reporting Ice::TimeoutException to the 
ice_exception method of the invocation’s callback object. For example, we 
can handle this exception in C++ as shown below:

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate 
{ 
public: 
    // ... 
 
    virtual void ice_exception(const Ice::Exception& ex) 
    { 
        try { 
            ex.ice_throw(); 
        } catch (const Demo::RangeError& e) { 
            cerr << "interpolate failed: range error" << endl; 
        } catch (const Ice::TimeoutException&) { 
            cerr << "interpolate failed: timeout" << endl; 
        } catch (const Ice::LocalException& e) { 
            cerr << "interpolate failed: " << e << endl; 
        } 
    } 
};

The configuration property Ice.MonitorConnections, whose value is 
specified in seconds, determines the frequency with which the dedicated thread 
performs these reviews. If the property is set to zero, the thread is disabled and 
AMI timeouts do not occur.
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The use of a dedicated thread to monitor pending asynchronous invocations 
means the precision of invocation timeouts is dependent on the value of the 
Ice.MonitorConnections property. For example, if you make an asynchro-
nous invocation using a proxy with a timeout of 5000ms and Ice.Monitor-
Connections is set to 30, it can take up to thirty seconds for the timeout to be 
reported to the callback object. You can improve the accuracy of AMI timeouts by 
setting Ice.MonitorConnections to a value that is closer to your timeout, 
just be careful that you do not cause the dedicated thread to consume too much 
processing time.

31.3.6 Error Handling
It is important to remember that all errors encountered by an AMI invocation are 
reported back via the ice_exception callback, even if the error condition is 
encountered “on the way out”, when the operation is invoked. The reason for this 
is consistency: if an invocation, such as foo_async could throw exceptions, you 
would have to handle exceptions in two places in your code: at the point of call for 
exception that are encountered “on the way out”, and in ice_exception for 
error conditions that are detected after the call is initiated.

Where this matters is if you want to send off a number of AMI calls, each of 
which depends on the preceding call to have succeeded. For example:

p1->foo_async(cb1); 
p2->bar_async(cb2);

If bar depends for its correct working on the successful completion of foo, this 
code will not work because the bar invocation will be sent regardless of whether 
foo failed or not.

In such cases, where you need to be sure that one call is dispatched only if a 
preceding call succeeds, you must instead invoke bar from within foo’s 
ice_response implementation, instead of from the main-line code.

31.4 Using AMD

This section describes the language mappings for AMD and continues the 
example introduced in Section 31.3.



876 Asynchronous Programming

31.4.1 Language Mappings
As we discussed in Section 31.3.2, the language mappings for AMI continue to 
allow applications to use the synchronous invocation model if desired: specifying 
the AMI metadata for an operation leaves the proxy method for synchronous invo-
cation intact, and causes an additional proxy method to be generated in support of 
asynchronous invocation.

The language mappings for an AMD operation, however, do not allow the 
implementation to use both dispatch models. Specifying the AMD metadata 
causes the method for synchronous dispatch to be replaced with a method for 
asynchronous dispatch.

The asynchronous dispatch method has a signature similar to that of AMI: the 
return type is void, and the arguments consist of a callback object and the opera-
tion’s in parameters. In AMI the callback object is supplied by the application, but 
in AMD the callback object is supplied by the Ice run-time and provides methods 
for returning the operation’s results or reporting an exception. The implementation 
is not required to invoke the callback object before the dispatch method returns; 
the callback object can be invoked at any time by any thread, but may only be 
invoked once. The name of the callback class is constructed so that it cannot 
conflict with a user-defined Slice identifier.

The details for each language mapping are provided below.

C++ Mapping

The C++ mapping emits the following code for each AMD operation:

1. A callback class used by the implementation to notify the Ice run-time about 
the completion of an operation. The name of this class is formed using the 
pattern AMD_class_op. For example, an operation named foo defined in 
interface I results in a class named AMD_I_foo. The class is generated in the 
same scope as the interface or class containing the operation. Several methods 
are provided:

void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.
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void ice_exception(const Ice::Exception &);

This version of ice_exception allows the server to report a user or local 
exception.

void ice_exception(const std::exception &);

This version of ice_exception allows the server to report a standard 
exception.

void ice_exception()

This version of ice_exception allows the server to report an unknown 
exception.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a smart pointer to an instance of the 
callback class described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["amd"] int foo(short s, out long l); 
};

The callback class generated for operation foo is shown below:

class AMD_I_foo : public ... { 
public: 
    void ice_response(Ice::Int, Ice::Long); 
    void ice_exception(const Ice::Exception&); 
    void ice_exception(const std::exception&); 
    void ice_exception(); 
};

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

void foo_async(const AMD_I_fooPtr&, Ice::Short);

Java Mapping

The Java mapping emits the following code for each AMD operation:

1. A callback interface used by the implementation to notify the Ice run-time 
about the completion of an operation. The name of this interface is formed 
using the pattern AMD_class_op. For example, an operation named foo 
defined in interface I results in an interface named AMD_I_foo. The inter-
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face is generated in the same scope as the interface or class containing the 
operation. Two methods are provided:

public void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

public void ice_exception(java.lang.Exception ex);

The ice_exception method allows the server to report an exception. With 
respect to exceptions, there is less compile-time type safety in an AMD imple-
mentation because there is no throws clause on the dispatch method and any 
exception type could conceivably be passed to ice_exception. However, 
the Ice run-time validates the exception value using the same semantics as for 
synchronous dispatch (see Section 4.10.4).

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a reference to an instance of the call-
back interface described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["amd"] int foo(short s, out long l); 
};

The callback interface generated for operation foo is shown below:

public interface AMD_I_foo { 
    void ice_response(int __ret, long l); 
    void ice_exception(java.lang.Exception ex); 
}

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

void foo_async(AMD_I_foo __cb, short s);

C# Mapping

The C# mapping emits the following code for each AMD operation:
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1. A callback interface used by the implementation to notify the Ice run-time 
about the completion of an operation. The name of this interface is formed 
using the pattern AMD_class_op. For example, an operation named foo 
defined in interface I results in an interface named AMD_I_foo. The inter-
face is generated in the same scope as the interface or class containing the 
operation. Two methods are provided:

public void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

public void ice_exception(System.Exception ex);

The ice_exception method allows the server to report an exception.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a reference to an instance of the call-
back interface described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["amd"] int foo(short s, out long l); 
};

The callback interface generated for operation foo is shown below:

public interface AMD_I_foo 
{ 
    void ice_response(int __ret, long l); 
    void ice_exception(System.Exception ex); 
}

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

public abstract void foo_async(AMD_I_foo __cb, short s, 
                               Ice.Current __current);

Visual Basic Mapping

The Visual Basic mapping emits the following code for each AMD operation:
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1. A callback interface used by the implementation to notify the Ice run-time 
about the completion of an operation. The name of this interface is formed 
using the pattern AMD_class_op. For example, an operation named foo 
defined in interface I results in an interface named AMD_I_foo. The inter-
face is generated in the same scope as the interface or class containing the 
operation. Two methods are provided:

Public Sub ice_response(<params>)

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

Public Sub ice_exception(ByVal ex As System.Exception)

The ice_exception method allows the server to report an exception.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a reference to an instance of the call-
back interface described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I { 
  ["amd"] int foo(short s, out long l); 
};

The callback interface generated for operation foo is shown below:

Public Interface AMD_I_foo 
 
    Sub ice_response(ByVal __ret As Integer, ByVal l As Long) 
    Sub ice_exception(ex As _System.Exception) 
 
End Interface

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

Sub foo_async(ByVal __cb As AMD_I_foo, _ 
              ByVal s As Short, _ 
              ByVal __current As Ice.Current)
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Python Mapping

For each AMD operation, the Python mapping emits a dispatch method with the 
same name as the operation and the suffix _async. This method returns None. 
The first parameter is a reference to a callback object, as described below. The 
remaining parameters comprise the in parameters of the operation, in the order of 
declaration.

The callback object defines two methods:

• def ice_response(self, <params>)

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

• def ice_exception(self, ex)

The ice_exception method allows the server to report an exception.

For example, suppose we have defined the following operation:

interface I { 
  ["amd"] int foo(short s, out long l); 
};

The callback interface generated for operation foo is shown below:

class ... 
    # 
    # Operation signatures. 
    # 
    # def ice_response(self, _result, l) 
    # def ice_exception(self, ex)

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

def foo_async(self, __cb, s)

31.4.2 Exceptions
There are two processing contexts in which the logical implementation of an 
AMD operation may need to report an exception: the dispatch thread (i.e., the 
thread that receives the invocation), and the response thread (i.e., the thread that 
sends the response)2. Although we recommend that the callback object be used to 
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report all exceptions to the client, it is legal for the implementation to raise an 
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be 
caught by the Ice run-time; the application’s run-time environment determines 
how such an exception is handled. Therefore, a response thread must ensure that it 
traps all exceptions and sends the appropriate response using the callback object. 
Otherwise, if a response thread is terminated by an uncaught exception, the 
request may never be completed and the client might wait indefinitely for a 
response.

Whether raised in a dispatch thread or reported via the callback object, user 
exceptions are validated as described in Section 4.10.2, and local exceptions may 
undergo the translation described in Section 4.10.4.

31.4.3 Example
In this section, we continue the example we started in Section 31.3.3, but first we 
must modify the operation to add AMD metadata:

module Demo { 
    sequence<float> Row; 
    sequence<Row> Grid; 
 
    exception RangeError {}; 
 
    interface Model { 
        ["ami", "amd"] Grid interpolate(Grid data, float factor) 
            throws RangeError; 
    }; 
};

The sections below provide implementations of the Model interface in C++, Java, 
C#, Visual Basic, and Python.

C++ Servant

Our servant class derives from Demo::Model and supplies a definition for the 
interpolate_async method:

2. These are not necessarily two different threads: the response can also be sent from the dispatch 
thread if desired.
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class ModelI : virtual public Demo::Model, 
               virtual public IceUtil::Mutex { 
public: 
    virtual void interpolate_async( 
        const Demo::AMD_Model_interpolatePtr&, 
        const Demo::Grid&, 
        Ice::Float, 
        const Ice::Current&); 
 
private: 
  std::list<JobPtr> _jobs; 
};

The implementation of interpolate_async uses synchronization to safely 
record the callback object and arguments in a Job that is added to a queue:

void ModelI::interpolate_async( 
    const Demo::AMD_Model_interpolatePtr& cb, 
    const Demo::Grid& data, 
    Ice::Float factor, 
    const Ice::Current& current) 
{ 
    IceUtil::Mutex::Lock sync(*this); 
    JobPtr job = new Job(cb, data, factor); 
    _jobs.push_back(job); 
}

After queuing the information, the operation returns control to the Ice run-time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute to perform 
the interpolation. Job is defined as follows:

class Job : public IceUtil::Shared { 
public: 
    Job( 
        const Demo::AMD_Model_interpolatePtr&, 
        const Demo::Grid&, 
        Ice::Float); 
    void execute(); 
 
private: 
    bool interpolateGrid(); 
 
    Demo::AMD_Model_interpolatePtr _cb; 
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    Demo::Grid _grid; 
    Ice::Float _factor; 
}; 
typedef IceUtil::Handle<Job> JobPtr;

The implementation of execute uses interpolateGrid (not shown) to 
perform the computational work:

Job::Job( 
    const Demo::AMD_Model_interpolatePtr& cb, 
    const Demo::Grid& grid, 
    Ice::Float factor) : 
    _cb(cb), _grid(grid), _factor(factor) 
{ 
} 
 
void Job::execute() 
{ 
    if(!interpolateGrid()) { 
        _cb->ice_exception(Demo::RangeError()); 
        return; 
    } 
    _cb->ice_response(_grid); 
}

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

Java Servant

Our servant class derives from Demo._ModelDisp and supplies a definition for 
the interpolate_async method that creates a Job to hold the callback 
object and arguments, and adds the Job to a queue. The method is synchronized 
to guard access to the queue:

public final class ModelI extends Demo._ModelDisp { 
    synchronized public void interpolate_async( 
        Demo.AMD_Model_interpolate cb, 
        float[][] data, 
        float factor, 
        Ice.Current current) 
            throws RangeError 
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    { 
        _jobs.add(new Job(cb, data, factor)); 
    } 
 
    java.util.LinkedList _jobs = new java.util.LinkedList(); 
}

After queuing the information, the operation returns control to the Ice run-time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

class Job { 
    Job(Demo.AMD_Model_interpolate cb, 
        float[][] grid, 
        float factor) 
    { 
        _cb = cb; 
        _grid = grid; 
        _factor = factor; 
    } 
 
    void execute() 
    { 
        if(!interpolateGrid()) { 
            _cb.ice_exception(new Demo.RangeError()); 
            return; 
        } 
        _cb.ice_response(_grid); 
    } 
 
    private boolean interpolateGrid() { 
        // ... 
    } 
 
    private Demo.AMD_Model_interpolate _cb; 
    private float[][] _grid; 
    private float _factor; 
}

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.
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If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

C# Servant

Our servant class derives from Demo._ModelDisp and supplies a definition for 
the interpolate_async method that creates a Job to hold the callback 
object and arguments, and adds the Job to a queue. The method uses a lock state-
ment to guard access to the queue:

public class ModelI : Demo.ModelDisp_ 
{ 
    public override void interpolate_async( 
        Demo.AMD_Model_interpolate cb, 
        float[][] data, 
        float factor, 
        Ice.Current current) 
    { 
        lock(this) 
        { 
            _jobs.Add(new Job(cb, data, factor)); 
        } 
    } 
 
    private System.Collections.ArrayList _jobs 
                = new System.Collections.ArrayList(); 
}

After queuing the information, the operation returns control to the Ice run-time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

public class Job { 
    public Job(Demo.AMD_Model_interpolate cb, 
               float[][] grid, float factor) 
    { 
        _cb = cb; 
        _grid = grid; 
        _factor = factor; 
    } 
 
    public void execute() 
    { 
        if (!interpolateGrid()) { 
            _cb.ice_exception(new Demo.RangeError()); 
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            return; 
        } 
        _cb.ice_response(_grid); 
    } 
 
    private boolean interpolateGrid() 
    { 
        // ... 
    } 
 
    private Demo.AMD_Model_interpolate _cb; 
    private float[][] _grid; 
    private float _factor; 
}

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

Visual Basic Servant

Our servant class derives from Demo._ModelDisp and supplies a definition for 
the interpolate_async method that creates a Job to hold the callback 
object and arguments, and adds the Job to a queue. The method uses a lock state-
ment to guard access to the queue:

Public Class ModelI 
    Inherits Demo.ModelDisp_ 
 
    Public Overrides Sub interpolate_async( _ 
        ByVal cb As Demo.AMD_Model_interpolate, _ 
        ByVal data As Single()(), _ 
        ByVal factor As Single, _ 
        ByVal current As Ice.Current) 
 
        SyncLock Me 
            _jobs.Add(New Job(cb, data, factor)) 
        End SyncLock 
    } 
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    Private _jobs As System.Collections.ArrayList _ 
                = New System.Collections.ArrayList 
 
End Class

After queuing the information, the operation returns control to the Ice run-time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

Public Class Job 
 
    Public Sub New(ByVal cb As Demo.AMD_Model_interpolate, _ 
                   ByVal grid As Single()(), _ 
                   float factor) 
        _cb = cb 
        _grid = grid 
        _factor = factor 
    End Sub 
 
    Public Sub execute() 
        if Not interpolateGrid() Then 
            _cb.ice_exception(New Demo.RangeError) 
            Return 
        End If 
        _cb.ice_response(_grid) 
    End Sub 
 
    Private Function interpolateGrid() As Boolean 
        ' ... 
    End Function 
 
    Private _cb As Demo.AMD_Model_interpolate 
    Private _grid As Single()() 
    private _factor As Single 
 
End Class

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.
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Python Servant

Our servant class derives from Demo.Model and supplies a definition for the 
interpolate_async method that creates a Job to hold the callback object 
and arguments, and adds the Job to a queue. The method uses a lock to guard 
access to the queue:

class ModelI(Demo.Model): 
    def __init__(self): 
        self._mutex = threading.Lock() 
        self._jobs = [] 
 
    def interpolate_async(self, cb, data, factor, current=None): 
        self._mutex.acquire() 
        try: 
            self._jobs.append(Job(cb, data, factor)) 
        finally: 
            self._mutex.release()

After queuing the information, the operation returns control to the Ice run-time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

class Job(object): 
    def __init__(self, cb, grid, factor): 
        self._cb = cb 
        self._grid = grid 
        self._factor = factor 
 
    def execute(self): 
        if not self.interpolateGrid(): 
            self._cb.ice_exception(Demo.RangeError()) 
            return 
        self._cb.ice_response(self._grid) 
 
    def interpolateGrid(self): 
        # ...

If interpolateGrid returns False, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.
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31.5 Summary

Synchronous remote invocations are a natural extension of local method calls that 
leverage the programmer’s experience with object-oriented programming and ease 
the learning curve for programmers who are new to distributed application devel-
opment. However, the blocking nature of synchronous invocations makes some 
application tasks more difficult, or even impossible, therefore Ice provides a 
straightforward interface to its asynchronous facilities.

Using asynchronous method invocation, a calling thread is able to invoke an 
operation and regain control immediately, without blocking while the operation is 
in progress. When the results are received, the Ice run-time notifies the application 
via a callback.

Similarly, asynchronous method dispatch allows a servant to send the results 
of an operation at any time, not necessarily within the operation implementation. 
A servant can improve scalability and conserve thread resources by queuing time-
consuming requests for processing at a later time.
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Chapter 32
Facets and Versioning

32.1 Introduction

Facets provide a general-purpose mechanism for non-intrusively extending the 
type system of an application. This is particularly useful for versioning an applica-
tion. Section 32.2 introduces the facet concept and presents the relevant APIs. 
Section 32.3 presents a few traditional approaches to versioning and their prob-
lems. Sections 32.4 to 32.6 show how to use facets to implement versioning, and 
Section 32.7 discusses design choices when adding versioning to a system.

32.2 Concept and APIs

Up to this point, we have presented an Ice object as a single conceptual entity, that 
is, as an object with a single most-derived interface and a single identity, with the 
object being implemented by a single servant. However, an Ice object is more 
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correctly viewed as a collection of one or more sub-objects known as facets, as 
shown in Figure 32.1.

Figure 32.1. An Ice object with five facets sharing a single object identity.

Figure 32.1 shows a single Ice object with five facets. Each facet has a name, 
known as the facet name. Within a single Ice object, all facets must have unique 
names. Facet names are arbitrary strings that are assigned by the server that imple-
ments an Ice object. A facet with an empty facet name is legal and known as the 
default facet. Unless you arrange otherwise, an Ice object has a single default 
facet; by default, operations that involve Ice objects and servants operate on the 
default facet.

Note that all the facets of an Ice object share the same single identity, but have 
different facet names. Recall the definition of Ice::Current we saw in 
Section 30.6 once more:

module Ice { 
    local dictionary<string, string> Context; 
 
    enum OperationMode { Normal, \Nonmutating, \Idempotent }; 
 
    local struct Current { 
        ObjectAdapter   adapter; 
        Identity        id; 
        string          facet; 
        string          operation; 
        OperationMode   mode; 

"" (Default Facet)

"Facet 2"

"That Facet"

"This Facet"

"Facet 1"

Ice Object

Facets

Facets
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        Context         ctx; 
        int             requestId; 
    }; 
};

By definition, if two facets have the same id field, they are part of the same Ice 
object. Also by definition, if two facets have the same id field, their facet fields 
have different values.

Even though Ice objects usually consist of just the default facet, it is entirely 
legal for an Ice object to consist of facets that all have non-empty names (that is, it 
is legal for an Ice object not to have a default facet).

Each facet has a single most-derived interface. There is no need for the inter-
face types of the facets of an Ice object to be unique. It is legal for two facets of an 
Ice object to implement the same most-derived interface.

Each facet is implemented by a servant. All the usual implementation tech-
niques for servants are available to implement facets—for example, you can 
implement a facet using a servant locator. Typically, each facet of an Ice object has 
a separate servant, although, if two facets of an Ice object have the same type, they 
can also be implemented by a single servant (for example, using a default servant, 
as described in Section 30.8.2).

32.2.1 Server-Side Facet Operations
On the server side, the object adapter offers a number of operations to support 
facets:

namespace Ice { 
  dictionary<string, Object> FacetMap; 
 
  local interface ObjectAdapter { 
     Object*  addFacet(Object servant, Identity id, string facet); 
     Object*  addFacetWithUUID(Object servant, string facet); 
     Object   removeFacet(Identity id, string facet); 
     Object   findFacet(Identity id, string facet); 
 
     FacetMap findAllFacets(Identity id); 
     FacetMap removeAllFacets(Identity id); 
     // ... 
  }; 
};

These operations have the same semantics as the corresponding “normal” opera-
tions (add, addWithUUID, remove, and find), but also accept a facet name. The 
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corresponding “normal” operations are simply convenience operations that supply 
an empty facet name. For example, remove(id) is equivalent to 
removeFacet(id, ""), that is, remove(id) operates on the default facet.

findAllFacets returns a dictionary of <facet-name, servant> pairs that 
contains all the facets for the given identity.

removeAllFacets removes all facets for a given identity from the active 
servant map, that is, it removes the corresponding Ice object entirely. The opera-
tion returns a dictionary of <facet–name, servant> pairs that contains all the 
removed facets.

These operations are sufficient for the server to create Ice objects with any 
number of facets. For example, assume that we have the following Slice defini-
tions:

module Filesystem { 
    // ... 
 
    interface File extends Node { 
        nonmutating Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
}; 
 
module FilesystemExtensions { 
    // ... 
 
    class DateTime extends TimeOfDay { 
        // ... 
    }; 
 
    struct Times { 
        DateTime createdDate; 
        DateTime accessedDate; 
        DateTime modifiedDate; 
    }; 
 
    interface Stat { 
        nonmutating Times getTimes(); 
    }; 
};

Here, we have a File interface that provides operations to read and write a file, 
and a Stat interface that provides access to the file creation, access, and modifica-
tion time. (Note that the Stat interface is defined in a different module and could 
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also be defined in a different source file.) If the server wants to create an Ice object 
that contains a File instance as the default facet and a Stat instance that provides 
access to the time details of the file, it could use:

// Create a File instance. 
// 
Filesystem::FilePtr file = new FileI(); 
 
// Create a Stat instance. 
// 
FilesystemExceptions::DateTimePtr dt 
    = new FilesystemExtensions::DateTime(); 
FilesystemExtensions::Times times; 
times.createdDate = dt; 
times.accessedDate = dt; 
times.modifiedDate = dt; 
FilesystemExtensions::StatPtr stat = new StatI(times); 
 
// Register the File instance as the default facet. 
// 
Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file); 
 
// Register the Stat instance as a facet with name "Stat". 
// 
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

The first few lines simply create and initialize a FileI and StatI instance. 
(The details of this do not matter here.) All the action is in the last two statements:

Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file); 
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

This registers the FileI instance with the object adapter as usual. (In this case, 
we let the Ice run time generate a UUID as the object identity.) Because we are 
calling addWithUUID (as opposed to addFacetWithUUID), the instance 
becomes the default facet.

The second line adds a facet to the instance with the facet name Stat. Note 
that we call ice_getIdentity on the File proxy to pass an object identity to 
addFacet. This guarantees that the two facets share the same object identity.

Note that, in general, it is a good idea to use ice_getIdentity to obtain the 
identity of an existing facet when adding a new facet. That way, it is guaranteed 
that the facets share the same identity. (If you accidentally pass a different identity 
to addFacet, you will not add a facet to an existing Ice object, but instead register 
a new Ice object; using ice_getIdentity makes this mistake impossible.)
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32.2.2 Client-Side Facet Operations
On the client side, which facet a request is addressed to is implicit in the proxy 
that is used to send the request. For an application that does not use facets, the 
facet name is always empty so, by default, requests are sent to the default facet.

The client can use a checkedCast to obtain a proxy for a particular facet. 
For example, assume that the client obtains a proxy to a File instance as shown in 
Section 32.2.1. The client can cast between the File facet and the Stat facet (and 
back) as follows:

// Get a File proxy. 
// 
Filesystem::FilePrx file = ...; 
 
// Get the Stat facet. 
// 
FilesystemExtensions::StatPrx stat 
    = FilesystemExtensions::StatPrx::checkedCast(file, "Stat"); 
 
// Go back from the Stat facet to the File facet. 
// 
Filesystem::FilePrx file2 
    = Filesystem::FilePrx::checkedCast(stat, ""); 
 
assert(file2 == file); // The two proxies are identical.

This example illustrates that, given any facet of an Ice object, the client can navi-
gate to any other facet by using a checkedCast with the facet name.

If an Ice object does not provide the specified facet, checkedCast returns 
null:

FilesystemExtensions::StatPrx stat 
    = FilesystemExtensions::StatPrx::checkedCast(file, "Stat"); 
 
if (!stat) { 
    // No Stat facet on this object, handle error... 
} else { 
    FilesystemExtensions::Times times = stat->getTimes(); 
 
    // Use times struct... 
}

Note that checkedCast also returns a null proxy if a facet exists, but the cast is 
to the wrong type. For example:
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// Get a File proxy. 
// 
Filesystem::FilePrx file = ...; 
 
// Cast to the wrong type. 
// 
SomeTypePrx prx = SomeTypePrx::checkedCast(file, "Stat"); 
 
assert(!prx); // checkedCast returns a null proxy.

If you want to distinguish between non-existence of a facet and the facet being of 
the incorrect type, you can first obtain the facet as type Object and then down-
cast to the correct type:

// Get a File proxy. 
// 
Filesystem::FilePrx file = ...; 
 
// Get the facet as type Object. 
// 
Ice::ObjectPrx obj = Ice::ObjectPrx::checkedCast(file, "Stat"); 
if (!obj) { 
    // No facet with name "Stat" on this Ice object. 
} else { 
    FilesystemExtensions::StatPrx stat = 
        FilesystemExtensions::StatPrx::checkedCast(file); 
    if (!stat) { 
        // There is a facet with name "Stat", but it is not 
        // of type FilesystemExtensions::Stat. 
    } else { 
        // Use stat... 
    } 
}

This last example also illustrates that

StatPrx::checkedCast(prx, "")

is not the same as

StatPrx::checkedCast(prx)

The first version explicitly requests a cast to the default facet. This means that the 
Ice run time first looks for a facet with the empty name and then attempts to down-
cast that facet (if it exists) to the type Stat.

The second version requests a down-cast that preserves whatever facet is 
currently effective in the proxy. For example, if the prx proxy currently holds the 
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facet name “Joe”, then (if prx points at an object of type Stat) the run time 
returns a proxy of type StatPrx that also stores the facet name “Joe”.

It follows that, to navigate between facets, you must always use the two-argu-
ment version of checkedCast, whereas, to down-cast to another type while 
preserving the facet name, you must always use the single-argument version of 
checkedCast.

You can always check what the current facet of a proxy is by calling 
ice_getFacet:

Ice::ObjectPrx obj = ...; 
 
cout << obj->ice_getFacet() << endl; // Print facet name

This prints the facet name. (For the default facet, ice_getFacet returns the empty 
string.)

32.2.3 Exception Semantics
As we pointed out on page 107, ObjectNotExistException and FacetNotExis-
tException have the following semantics:

• ObjectNotExistException

This exception is raised only if no facets exist at all for a given object identity.
• FacetNotExistException

This exception is raised only if at least one facet exists for a given object iden-
tity, but not the specific facet that is the target of an operation invocation.

If you are using servant locators (see Section 30.7) or default servants 
(Section 30.8.2), you must take care to preserve these semantics. In particular, if 
you return null from a servant locator’s locate operation, this appears to the client 
as an ObjectNotExistException. If the object identity for a request is known 
(that is, there is at least one facet with that identity), but no facet with the specified 
name exists, you must explicitly throw a FacetNotExistException from acti-
vate instead of simply returning null.

32.3 The Versioning Problem

Once you have developed and deployed a distributed application, and once the 
application has been in use for some time, it is likely that you will want to make 
some changes to the application. For example, you may want to add new function-
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ality to a later version of the application, or you may want to change some existing 
aspect of the application. Of course, ideally, such changes are accomplished 
without breaking already deployed software, that is, the changes should be back-
ward compatible. Evolving an application in this way is generally known as 
versioning.

Versioning is an aspect that previous middleware technologies have addressed 
only poorly (if at all). One of the purposes of facets is to allow you to cleanly 
create new versions of an application without compromising compatibility with 
older, already deployed versions.

32.3.1 Versioning by Addition
Suppose that we have deployed our file system application and want to add extra 
functionality to a new version. Specifically, let us assume that the original version 
(version 1) only provides the basic functionality to use files, but does not provide 
extra information, such as the modification date or the file size. The question is 
then, how can we upgrade the existing application with this new functionality? 
Here is a small excerpt of the original (version 1) Slice definitions once more:

// Version 1 
 
module Filesystem { 
    // ... 
 
    interface File extends Node { 
        nonmutating Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
};

Your first attempt at upgrading the application might look as follows:

// Version 2 
 
module Filesystem { 
    // ... 
 
    class DateTime extends TimeOfDay {  // New in version 2 
        // ... 
    }; 
 
    struct Times {                      // New in version 2 
        DateTime createdDate; 
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        DateTime accessedDate; 
        DateTime modifiedDate; 
    }; 
 
    interface File extends Node { 
        nonmutating Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
 
        nonmutating Times getTimes();   // New in version 2 
    }; 
};

Note that the version 2 definition does not change anything that was present in 
version 1; instead, it only adds two new types and adds an operation to the File 
interface. Version 1 clients can continue to work with both version 1 and version 2 
File objects because version 1 clients do not know about the getTimes operation 
and therefore will not call it; version 2 clients, on the other hand, can take advan-
tage of the new functionality. The reason this works is that the Ice protocol 
invokes an operation by sending the operation name as a string on the wire (rather 
than using an ordinal number or hash value to identify the operation). Ice guaran-
tees that any future version of the protocol will retain this behavior, so it is safe to 
add a new operation to an existing interface without recompiling all clients.

However, this approach contains a pitfall: the tacit assumption built into this 
approach is that no version 2 client will ever use a version 1 object. If the assump-
tion is violated (that is, a version 2 client uses a version 1 object), the version 2 
client will receive an OperationNotExistException when it invokes the new 
getTimes operation because that operation is supported only by version 2 objects.

Whether you can make this assumption to make depends on your application. 
In some cases, it may be possible to ensure that version 2 clients will never access 
a version 1 object, for example, by simultaneously upgrading all server’s from 
version 1 to version 2, or by taking advantage of application-specific constraints 
that ensure that version 2 clients only contact version 2 object. However, for some 
applications, doing this is impractical.

Note that you could write version 2 clients to catch and react to an 
OperationNotExistException when they invoke the getTimes operation: if the 
operation succeeds, the client is dealing with a version 2 object, and if the opera-
tion raises OperationNotExistsException, the client is dealing with a version 1 
object. However, doing this can be rather intrusive to the code, loses static type 
safety, and is rather inelegant. (There is no other way to tell a version 1 object 
from a version 2 object because both versions have the same type ID.)
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In general, versioning addition makes sense when you need to add an opera-
tion or two to an interface, and you can be sure that version 2 clients do not access 
version 1 objects. Otherwise, other approaches are needed.

32.3.2 Versioning by Derivation
Given that the limitations of the preceding approach, you may decide to upgrade 
the application as follows instead:

module Filesystem {     // Version 1 
    // ... 
 
    interface File extends Node { 
        nonmutating Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
}; 
 
module FilesystemV2 {   // New in version 2 
    // ... 
 
    class DateTime extends TimeOfDay { 
        // ... 
    }; 
 
    struct Times { 
        DateTime createdDate; 
        DateTime accessedDate; 
        DateTime modifiedDate; 
    }; 
 
    interface File extends Filesystem::File { 
        nonmutating Times getTimes(); 
    }; 
};

The idea is to present the new functionality in an interface that is derived from the 
version 1 interface. The version 1 types are unchanged and the new functionality 
is presented via new types that are backward compatible: a version 2 File object 
can be passed where a version 1 File object is expected because 
FilesystemV2::File is derived from Filesystem::File. Even better, if a 
version 2 component of the system receives a proxy of formal type File-
system::File, it can determine at run time whether the actual run-time type is 
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FilesystemV2::File by attempting a down-cast: if the down-cast succeeds, it is 
dealing with a version 2 object; if the down-cast fails, it is dealing with a version 1 
object. This is essentially the same as versioning by addition, but it is cleaner as 
far as the type system is concerned because the two different versions can be 
distinguished via their type IDs.

At this point, you may think that versioning by derivation solves the problem 
elegantly. Unfortunately, the truth turns out to be a little harsher:

• As the system evolves further, and new versions are added, each new version 
adds a level of derivation to the inheritance tree. After a few versions, particu-
larly if your application also uses inheritance for its own purposes, the 
resulting inheritance graph very quickly turns into a complex mess. (This 
becomes most obvious if the application uses multiple inheritance—after a 
few versioning steps, the resulting inheritance hierarchy is usually so complex 
that it exceeds the ability of humans to comprehend it.)

• Real-life versioning requirements are not as simple as adding a new operation 
to an object. Frequently, versioning requires changes such as adding a field to 
a structure, adding a parameter to an operation, changing the type of a field or 
a parameter, renaming an operation, or adding a new exception to an opera-
tion. However, versioning by derivation (and versioning by addition) can 
handle none of these changes.

• Quite often, functionality that is present in an earlier version needs to be 
removed for a later version (for example, because the older functionality has 
been supplanted by a different mechanism or turned out to be inappropriate). 
However, there is no way to remove functionality through versioning by deri-
vation. The best you can do is to re-implement a base operation in the derived 
implementation of an interface and throw an exception. However, the depre-
cated operation may not have an exception specification, or if it does, the 
exception specification may not include suitable exception. And, of course, 
doing this perverts the type system: after all, if an interface has an operation 
that throws an exception whenever the operation is invoked, why does the 
operation exist in the first place?

There are other, more subtle reasons why versioning by derivation is unsuitable in 
real-life situations. Suffice it to say here that experience has shown the idea to be 
unworkable: projects that have tried to use this technique for anything but the 
most trivial versioning requirements have inevitably failed.
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32.3.3 Explicit Versioning
Yet another twist on the versioning theme is to explicitly version everything, for 
example:

module Filesystem { 
    // ... 
 
    interface FileV1 extends NodeV1 { 
        nonmutating LinesV1 read(); 
        idempotent void write(LinesV1 text) throws GenericErrorV1; 
    }; 
 
    class DateTimeV2 extends TimeOfDayV2 { 
        // ... 
    }; 
 
    struct TimesV2 { 
        DateTimeV2 createdDate; 
        DateTimeV2 accessedDate; 
        DateTimeV2 modifiedDate; 
    }; 
 
    interface FileV2 extends NodeV2 { 
        nonmutating LinesV2 read(); 
        idempotent void write(LinesV2 text) throws GenericErrorV2; 
        nonmutating TimesV2 getTimes(); 
    }; 
};

In essence, this approach creates as many separate definitions of each data type, 
interface, and operation as there are versions. It is easy to see that this approach 
does not work very well:

• Because, at the time version 1 is produced, it is unknown what might need to 
change for version 2 and later versions, everything has to be tagged with a 
version number. This very quickly leads to an incomprehensible type system.

• Because every version uses its own set of separate types, there is no type 
compatibility. For example, a version 2 type cannot be passed where a 
version 1 type is expected without explicit copying.

• Client code must be written to explicitly deal with each separate version. This 
pollutes the source code at all points where a remote call is made or a Slice 
data type is passed; the resulting code quickly becomes incomprehensible.
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Other approaches, such as placing the definitions for each version into a separate 
module (that is, versioning the enclosing module instead of each individual type) 
do little to mitigate these problems; the type incompatibility issues and the need to 
explicitly deal with versioning remain.

32.4 Versioning with Facets

A negative aspect of all the approaches in Section 32.3 is that they change the type 
system in intrusive ways. In turn, this forces unacceptable programming contor-
tions on clients. Facets allow you to solve the versioning problem more elegantly 
because they do not change an existing type system but extend it instead. We 
already saw this approach in operation on page 894, where we added date infor-
mation about a file to our file system application without disturbing any of the 
existing definitions.

In the most general sense, facets provide a mechanism for implementing 
multiple interfaces for a single object. The key point is that, to add a new interface 
to an object, none of the existing definitions have to be touched, so no compati-
bility issues can arise. More importantly, the decision as to which facet to use is 
made at run time instead of at compile time. In effect, facets implement a form a 
late binding and, therefore, are coupled to the type system more loosely than any 
of the previous approaches.

Used judiciously, facets can handle versioning requirements more elegantly 
than other mechanisms. Apart from the straight extension of an interface as shown 
in Section 32.2.1, facets can also be used for more complex changes. For example, 
if you need to change the parameters of an operation or modify the fields of a 
structure, you can create a new facet with operations that operate on the changed 
data types. Quite often, the implementation of a version 2 facet in the server can 
even re-use much of the version 1 functionality, by delegating some version 2 
operations to a version 1 implementation.

32.5 Facet Selection

Given that we have decided to extend an application with facets, we have to deal 
with the question of how clients select the correct facet. The answer typically 
involves an explicit selection of a facet sometime during client start-up. For 
example, in our file system application, clients always begin their interactions 
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with the file system by creating a proxy to the root directory. Let us assume that 
our versioning requirements have led to version 1 and version 2 definitions of 
directories as follows:

module Filesystem { // Original version 
    // ... 
 
    interface Directory extends Node { 
        nonmutating NodeSeq list(); 
        // ... 
    }; 
}; 
 
module FilesystemV2 { 
    // ... 
 
    enum NodeType { Directory, File }; 
 
    class NodeDetails { 
        NodeType type; 
        string name; 
        DateTime createdTime; 
        DateTime accessedTime; 
        DateTime modifiedTime; 
        // ... 
    }; 
 
    interface Directory extends Filesystem::Node { 
       nonmutating NodeDetailsSeq list(); 
       // ... 
    }; 
};

In this case, the semantics of the list operation have changed in version 2. A 
version 1 client uses the following code to obtain a proxy to the root directory:

// Create a proxy for the root directory 
// 
Ice::ObjectPrx base 
    = communicator()->stringToProxy("RootDir:default -p 10000"); 
if (!base) 
    throw "Could not create proxy"; 
 
// Down-cast the proxy to a Directory proxy 
// 
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Filesystem::DirectoryPrx rootDir 
    = Filesystem::DirectoryPrx::checkedCast(base); 
if (!rootDir) 
    throw "Invalid proxy";

For a version 2 client, the bootstrap code is almost identical—instead of down-
casting to Filesystem::Directory, the client selects the “V2” facet during the 
down-cast to the type FileSystemV2::Directory:

// Create a proxy for the root directory 
// 
Ice::ObjectPrx base 
    = communicator()->stringToProxy("RootDir:default -p 10000"); 
if (!base) 
    throw "Could not create proxy"; 
 
// Down-cast the proxy to a V2 Directory proxy 
// 
FilesystemV2::DirectoryPrx rootDir 
    = FilesystemV2::DirectoryPrx::checkedCast(base, "V2"); 
if (!rootDir) 
    throw "Invalid proxy";

Of course, we can also create a client that can deal with both version 1 and 
version 2 directories: if the down-cast to version 2 fails, the client is dealing with a 
version 1 server and can adjust its behavior accordingly.

32.6 Behavioral Versioning

On occasion, versioning requires changes in behavior that are not manifest in the 
interface of the system. For example, we may have an operation that performs 
some work, such as:

interface Foo { 
    void doSomething(); 
};

The same operation on the same interface exists in both versions, but the behavior 
of doSomething in version 2 differs from that in version 1. The question is, how 
do we best deal with such behavioral changes?

Of course, one option is to simply create a version 2 facet and to carry that 
facet alongside the original version 1 facet. For example:
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module V2 { 
 
    interface Foo {    // V2 facet 
        void doSomething(); 
    }; 
};

This works fine, as far as it goes: a version 2 client asks for the “V2” facet and 
then calls doSomething to get the desired effect. Depending on your circum-
stances, this approach may be entirely reasonable. However, if there are such 
behavioral changes on several interfaces, the approach leads to a more complex 
type system because it duplicates each interface with such a change.

A better alternative can be to create two facets of the same type, but have the 
implementation of those facets differ. With this approach, both facets are of type 
::Foo::doSomething. However, the implementation of doSomething checks 
which facet was used to invoke the request and adjusts its behavior accordingly:

void 
FooI::doSomething(const Ice::Current& c) 
{ 
    if(c.facet == "V2") { 
        // Provide version 2 behavior... 
    } else { 
        // Provide version 1 behavior... 
    } 
}

This approach avoids creating separate types for the different behaviors, but has 
the disadvantage that version 1 and version 2 objects are no longer distinguishable 
to the type system. This can matter if, for example, an operation accepts a Foo 
proxy as a parameter. Let us assume that we also have an interface FooProcessor 
as follows:

interface FooProcessor { 
    void processFoo(Foo* w); 
};

If FooProcessor also exists as a version 1 and version 2 facet, we must deal with 
the question of what should happen if a version 1 Foo proxy is passed to a 
version 2 processFoo operation because, at the type level, there is nothing to 
prevent this from happening.

You have two options to deal with this situation:
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• Define working semantics for mixed-version invocations. In this case, you 
must come up with sensible system behavior for all possible combinations of 
versions.

• If some of the mixed-version combinations are disallowed (such as passing a 
version 1 Foo proxy to a version 2 processFoo operation), you can detect the 
version mismatch in the server by looking at the Current::facet member 
and throwing an exception to indicate a version mismatch. Simultaneously, 
write your clients to ensure they only pass a permissible version to 
processFoo. Clients can ensure this by checking the facet name of a proxy 
before passing it to processFoo and, if there is a version mismatch, changing 
either the Foo proxy or the FooProcessor proxy to a matching facet:

FooPrx fooPrx foo = ...;        // Get a Foo... 
FooProcessorPrx fooP = ...;     // Get a FooProcessor... 
 
string fooFacet = foo->ice_getFacet(); 
string fooPFacet = fooP->ice_getFacet(); 
if(fooFacet != fooPFacet) { 
    if(fooPFacet == "V2") { 
        error("Cannot pass a V1 Foo to a V2 FooProcessor"); 
    } else { 
        // Upgrade FooProcessor from V1 to V2 
        fooP = FooProcessorPrx::checkedCast(fooP, "V2"); 
        if(!fooP) { 
            error("FooProcessor does not have a V2 facet"); 
        } else { 
            fooP->processFoo(foo); 
        } 
    } 
}

32.7 Design Considerations

Facets allow you to add versioning to a system, but they are merely a mechanism, 
not a solution. You still have to make a decision as to how to version something. 
For example, at some point, you may want to deprecate a previous version’s 
behavior; at that point, you must make a decision how to handle requests for the 
deprecated version. For behavioral changes, you have to decide whether to use 
separate interfaces or use facets with the same interface. And, of course, you must 
have compatibility rules to determine what should happen if, for example, a 
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version 1 object is passed to an operation that implements version 2 behavior. In 
other words, facets cannot do your thinking for you and are no panacea for the 
versioning problem.

The biggest advantage of facets is also the biggest drawback: facets delay the 
decision about the types that are used and their behavior until run time. While this 
provides a lot of flexibility, it is significantly less type safe than having explicit 
types that can be statically checked at compile time: if you have a problem relating 
to incorrect facet selection, the problem will be visible only at run time and, more-
over, will be visible only if you actually execute the code that contains the 
problem, and execute it with just the right data.

Another danger of facets is to abuse them. As an extreme example, here is an 
interface that provides an arbitrary collection of objects of arbitrary type:

interface Collection {};

Even though this interface is empty, it can provide access to an unlimited number 
of objects of arbitrary type in the form of facets. While this example is extreme, it 
illustrates the design tension that is created by facets: you must decide, for a given 
versioning problem, how and at what point of the type hierarchy to split off a facet 
that deals with the changed functionality. The temptation may be to “simply add 
another facet” and be done with it. However, if you do that, your objects are in 
danger of being nothing more than loose conglomerates of facets without rhyme 
or reason, and with little visibility of their relationships in the type system.

In object modeling terms, the relationship among facets is weaker than an is-a 
relationship (because facets are often not type compatible among each other). On 
the other hand, the relationship among facets is stronger than a has-a relationship 
(because all facets of an Ice object share the same object identity).

It is probably best to treat the relationship of a facet to its Ice object with the 
same respect as an inheritance relationship: if you were omniscient and could 
have designed your system for all current and future versions simultaneously, 
many of the operations that end up on separate facets would probably have been in 
the same interface instead. In other words, adding a facet to an Ice object most 
often implies that the facet has an is-partly-a relationship with its Ice object. In 
particular, if you think about the life cycle of an Ice object and find that, when an 
Ice object is deleted, all its facets must be deleted, this is a strong indication of a 
correct design. On the other hand, if you find that, at various times during an Ice 
object’s life cycle, it has a varying number of facets of varying types, that is a 
good indication that you are using facets incorrectly.

Ultimately, the decision comes down to deciding whether the trade-off of 
static type safety versus dynamic type safety is worth the convenience and back-
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ward compatibility. The answer depends strongly on the design of your system 
and individual requirements, so we can only give broad advice here. Finally, there 
will be a point where no amount of facet trickery will get past the point when “yet 
one more version will be the straw that breaks the camel’s back.” At that point, it 
is time to stop supporting older versions and to redesign the system.

32.8 Summary

Facets provide a way to extend a type system by loosely coupling new type 
instances to existing ones. This shifts the type selection process from compile to 
run time and implements a form of late binding. Due to their loose coupling 
among each other, facets are better suited to solve the versioning problem than 
other approaches. However, facets are not a panacea that would solve the 
versioning problem for free, and careful design is still necessary to come up with 
versioned systems that remain understandable and maintain consistent semantics.
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Chapter 33
The Ice Protocol

33.1 Chapter Overview

The Ice protocol definition consists of three major parts:

• a set of data encoding rules that determine how the various data types are seri-
alized

• a number of message types that are interchanged between client and server, 
together with rules as to what message is to be sent under what circumstances

• a set of rules that determine how client and server agree on a particular 
protocol and encoding version

Section 33.2 describes the encoding rules, Section 33.3 describes the various 
protocol messages, Section 33.4 describes compression, and Section 33.5 explains 
how the protocol and encoding are versioned and how client and server agree on a 
common version. (Both encoding and protocol specifications are currently at 
version 1.0.) Finally, Section 33.6 provides a comparison of the Ice protocol and 
encoding with those used by CORBA.
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33.2 Data Encoding

The key goals of the Ice data encoding are simplicity and efficiency. In keeping 
with these principles, the encoding does not align primitive types on word bound-
aries and therefore eliminates the wasted space and additional complexity that 
alignment requires. The Ice data encoding simply produces a stream of contiguous 
bytes; data contains no padding bytes and need not be aligned on word bound-
aries.

Data is always encoded using little-endian byte order for numeric types. (Most 
machines use a little-endian byte order, so the Ice data encoding is “right” more 
often than not.) Ice does not use a “receiver makes it right” scheme because of the 
additional complexity this would introduce. Consider, for example, a chain of 
receivers that merely forward data along the chain until that data arrives at an ulti-
mate receiver. (Such topologies are common for event distribution services.) The 
Ice protocol permits all the intermediates to forward the data without requiring it 
to be unmarshaled: the intermediates can forward requests by simply copying 
blocks of binary data. With a “receiver makes it right” scheme, the intermediates 
would have to unmarshal and remarshal the data whenever the byte order of the 
next receiver in the chain differs from the byte order of the sender, which is ineffi-
cient.

Ice requires clients and servers that run on big-endian machines to incur the 
extra cost of byte swapping data into little-endian layout, but that cost is insignifi-
cant compared to the overall cost of sending or receiving a request.

33.2.1 Sizes
Many of the types involved in the data encoding, as well as several protocol 
message components, have an associated size or count. A size is a non-negative 
number. Sizes and counts are encoded in one of two ways:

1. If the number of elements is less than 255, the size is encoded as a single byte 
indicating the number of elements.

2. If the number of elements is greater than or equal to 255, the size is encoded as 
a byte with value 255, followed by an int indicating the number of elements.

Using this encoding to indicate sizes is significantly cheaper than always using an 
int to store the size, especially when marshaling sequences of short strings: 
counts of up to 254 require only a single byte instead of four. This comes at the 
expense of counts greater than 254, which require five bytes instead of four. 
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However, for sequences or strings of length greater than 254, the extra byte is 
insignificant.

33.2.2 Encapsulations
An encapsulation is used to contain variable-length data that an intermediate 
receiver may not be able to decode, but that the receiver can forward to another 
recipient for eventual decoding. An encapsulation is encoded as if it were the 
following structure:

struct Encapsulation { 
    int size; 
    byte major; 
    byte minor; 
    // [... size - 6 bytes ...] 
};

The size member specifies the size of the encapsulation in bytes (including the 
size, major, and minor fields). The major and minor fields specify the encoding 
version of the data contained in the encapsulation (see Section 33.5.2). The 
version information is followed by size-6 bytes of encoded data.

All the data in an encapsulation is context-free, that is, nothing inside an 
encapsulation can refer to anything outside the encapsulation. This property 
allows encapsulations to be forwarded among address spaces as a blob of data.

Encapsulations can be nested, that is, contain other encapsulations.
An encapsulations can be empty, in which case its byte count is 6.

33.2.3 Slices
Exceptions and classes are subject to slicing if the receiver of a value only 
partially understands the received value (that is, only has knowledge of a base 
type, but not of the actual run-time derived type). To allow the receiver of an 
exception or class to ignore those parts of a value that it does not understand, 
exception and class values are marshaled as a sequence of slices (one slice for 
each level of the inheritance hierarchy). A slice is a byte count encoded as a fixed-
length four-byte integer, followed by the data for the slice. (The byte count 
includes the four bytes occupied by the count itself, so an empty slice has a byte 
count of four and no data.) The receiver of a value can skip over a slice by reading 
the byte count b, and then discarding the next b−4 bytes in the input stream.

A slice can be empty, in which case its byte count is 4.
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33.2.4 Basic Types
The basic types are encoded as shown in Table 33.1. Integer types (short, int, 
long) are represented as two’s complement numbers, and floating point types 
(float, double) use the IEEE standard formats [6]. All numeric types use a little-
endian byte order.

33.2.5 Strings
Strings are encoded as a size (see Section 33.2.1), followed by the string contents 
in UTF8 format [23]. Strings are not NUL-terminated. An empty string is encoded 
with a size of zero.

33.2.6 Sequences
Sequences are encoded as a size (see Section 33.2.1) representing the number of 
elements in the sequence, followed by the elements encoded as specified for their 
type.

33.2.7 Dictionaries
Dictionaries are encoded as a size (see Section 33.2.1) representing the number of 
key–value pairs in the dictionary, followed by the pairs. Each key–value pair is 

Table 33.1. Encoding for basic types.

Type Encoding

bool A single byte with value 1 for true, 0 for false

byte An uninterpreted byte

short Two bytes (LSB, MSB)

int Four bytes (LSB .. MSB)

long Eight bytes (LSB .. MSB)

float Four bytes (23-bit fractional mantissa, 8-bit expo-
nent, sign bit)

double Eight bytes (52-bit fractional mantissa, 11-bit expo-
nent, sign bit)
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encoded as if it were a struct containing the key and value as members, in that 
order.

33.2.8 Enumerators
Enumerated values are encoded depending on the number of enumerators:

• If the enumeration has 1 - 127 enumerators, the value is marshaled as a byte.

• If the enumeration has 128 - 32767 members, the value is marshaled as a 
short.

• If the enumeration has more than 32767 members, the value is marshaled as 
an int.

The value is the ordinal value of the corresponding enumerator, with the first 
enumerator value encoded as zero.

33.2.9 Structures
The members of a structure are encoded in the order they appear in the struct 
declaration, as specified for their types.

33.2.10 Exceptions
Exceptions are marshaled as shown in Figure 33.1

Figure 33.1. Marshaling format for exceptions.

Every exception instance is preceded by a single byte that indicates whether the 
exception uses class members: the byte value is 1 if any of the exception members 

Uses classes (bool)

Type ID (string)

Slice for members

… }Repeating group: one pair of Type 
ID and slice containing members 
for each level of the inheritance 
hierarchy

Class instances
(optional)
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are classes (or if any of the exception members, recursively, contain class 
members) and 0, otherwise.

Following the header byte, the exception is marshaled as a sequence of pairs: 
the first member of each pair is the type ID for an exception slice, and the second 
member of the pair is a slice containing the marshaled members of that slice. The 
sequence of pairs is marshaled in derived-to-base order, with the most-derived 
slice first, and ending with the least-derived slice. Within each slice, data members 
are marshaled as for structures: in the order in which they are defined in the Slice 
definition.

Following the sequence of pairs, any class instances that are used by the 
members of the exception are marshaled. This final part is optional: it is present 
only if the header byte is 1. (See Section 33.2.11 for a detailed explanation of how 
class instances are marshaled.)

To illustrate the marshaling, consider the following exception hierarchy:

exception Base { 
    int baseInt; 
    string baseString; 
}; 
 
exception Derived extends Base { 
    bool derivedBool; 
    string derivedString; 
    double derivedDouble; 
};

Assume that the exception members are initialized to the values shown in 
Table 33.2.

Table 33.2. Member values of an exception of type Derived.

Member Type Value
Marshaled Size 

(in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8
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From Table 33.2, we can see that the total size of the members of Base is 10 bytes, 
and the total size of the members of Derived is 16 bytes. None of the exception 
members are classes. An instance of this exception has the on-the-wire representa-
tion shown in Table 33.3. (The size, type, and byte offset of the marshaled repre-
sentation is indicated for each component.)

Note that the size of each string is one larger than the actual string length. This is 
because each string is preceded by a count of its number of bytes, as explained in 
Section 33.2.5.

The receiver of this sequence of values uses the header byte to decide whether 
it eventually must unmarshal any class instances contained in the exception (none 
in this example) and then examines the first type ID (::Derived). If the receiver 
recognizes that type ID, it can unmarshal the contents of the first slice, followed 
by the remaining slices; otherwise, the receiver reads the byte count that follows 
the unknown type (20) and then skips 20−4 bytes in the input stream, which is the 
start of the type ID for the second slice (::Base). If the receiver does not recog-
nize that type ID either, it again reads the byte count following the type ID (14), 
skips 14−4 bytes, and attempts to read another type ID. (This can happen only if 
client and server have been compiled with mismatched Slice definitions that 
disagree in the exception specification of an operation.) In this case, the receiver 

Table 33.3. Marshaled representation of the exception in Table 33.2.

Marshaled Value Size in Bytes Type Byte offset

0 (no class members) 1 bool 0

"::Derived" (type ID) 10 string 1

20 (byte count for slice) 4 int 11

1 (derivedBool) 1 bool 15

"World!" (derivedString) 7 string 16

3.14 (derivedDouble) 8 double 23

"::Base" (type ID) 7 string 31

14 (byte count for slice) 4 int 38

99 (baseInt) 4 int 42

"Hello" (baseString) 6 string 46
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will eventually encounter an unmarshaling error, which it can report with a 
MarshalException.

If an exception contains class members, these members are marshaled 
following the exception slices as described in the following section.

33.2.11 Classes
The marshaling for classes is complex, due to the need to deal with the pointer 
semantics for graphs of classes, as well as the need for the receiver to slice classes 
of unknown derived type. In addition, the marshaling for classes uses a type ID 
compression scheme to avoid repeatedly marshaling the same type IDs for large 
graphs of class instances.

Basic Marshaling Format

Classes are marshaled similar to exceptions: each instance is divided into a 
number of pairs containing a type ID and a slice (one pair for each level of the 
inheritance hierarchy) and marshaled in derived-to-base order. Only data members 
are marshaled—no information is sent that would relate to operations. Unlike 
exceptions, no header byte precedes a class. Instead, each marshaled class 
instance is preceded by a (non-zero) positive integer that provides an identity for 
the instance. The sender assigns this identity during marshaling such that each 
marshaled instance has a different identity. The receiver uses that identity to 
correctly reconstruct graphs of classes. Unlike for exceptions, the sequence of 
type ID and slice pairs is not terminated by an empty ID. The overall marshaling 
format for classes is shown in Figure 33.2.

Figure 33.2. Marshaling format for classes.

Class type ID

Slice for members

… }Repeating group: one pair of Type 
ID and slice containing members 
for each level of the inheritance 
hierarchy

Identity (int)
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Class Type IDs

Unlike for exception type IDs, class type IDs are not simple strings. Instead, a 
class type ID is marshaled as a boolean followed by either a string or a size, to 
conserve bandwidth. To illustrate this, consider the following class hierarchy:

class Base { 
    // ... 
}; 
 
class Derived extends Base { 
    // ... 
};

The type IDs for the class slices are ::Derived and ::Base. Suppose the sender 
marshals three instances of ::Derived as part of a single request. (For example, 
two instances could be out-parameters and one instance could be the return 
value.)

The first instance that is sent on the wire contains the type IDs ::Derived and 
::Base preceding their respective slices. Because marshaling proceeds in derived-
to-base order, the first type ID that is sent is ::Derived. Every time the sender 
sends a type ID that it has not sent previously in the same request, it sends the 
boolean value false, followed by the type ID. Internally, the sender also assigns 
a unique positive number to each type ID. These numbers start at 1 and increment 
by one for each type ID that has not been marshaled previously. This means that 
the first type ID is encoded as the boolean value false, followed by ::Derived, 
and the second type ID is encoded as the boolean value false, followed by 
::Base.

When the sender marshals the remaining two instances, it consults a lookup 
table of previously-marshaled type IDs. Because both type IDs were sent previ-
ously in the same request (or reply), the sender encodes all further occurrences of 
::Derived as the value true followed by the number 1 encoded as a size (see 
Section 33.2.1), and it encodes all further occurrences of ::Base as the value 
true followed by the number 2 encoded as a size.

When the receiver reads a type ID, it first reads its boolean marker:

• If the boolean is false, the receiver reads a string and enters that string into a 
lookup table that maps integers to strings. The first new class type ID received 
in a request is numbered 1, the second new class type ID is numbered 2, and 
so on.
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• If the boolean value is true, the receiver reads a number encoded as a size 
and uses that number to index into the lookup table to retrieve the corre-
sponding class type ID.

Note that this numbering scheme is re-established for each new encapsulation. (As 
we will see in Section 33.3, parameters, return values, and exceptions are always 
marshaled inside an enclosing encapsulation.) For subsequent or nested encapsu-
lation, the numbering scheme restarts, with the first new type ID being assigned 
the value 1. In other words, each encapsulation uses its own independent 
numbering scheme for class type IDs to satisfy the constraint that encapsulations 
must not depend on their surrounding context.

Encoding class type IDs in this way provides significant savings in bandwidth: 
whenever an ID is marshaled a second and subsequent time, it is marshaled as a 
two-byte value (assuming no more than 254 distinct type IDs per request) instead 
of as a string. Because type IDs can be long, especially if you are using nested 
modules, the savings are considerable.

Simple Class Marshaling Example

To make the preceding discussion more concrete, consider the following class 
definitions:

interface SomeInterface { 
     void op1(); 
}; 
 
class Base { 
    int baseInt; 
    void op2(); 
    string baseString; 
}; 
 
class Derived extends Base implements SomeInterface { 
    bool derivedBool; 
    string derivedString; 
    void op3(); 
    double derivedDouble; 
};

Note that Base and Derived have operations, and that Derived also implements 
the interface SomeInterface. Because marshaling of classes is concerned with 
state, not behavior, the operations op1, op2, and op3 are simply ignored during 
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marshaling and the on-the-wire representation is as if the classes had been defined 
as follows:

class Base { 
    int baseInt; 
    string baseString; 
}; 
 
class Derived extends Base { 
    bool derivedBool; 
    string derivedString; 
    double derivedDouble; 
};

Suppose the sender marshals two instances of Derived (for example, as two in-
parameters in the same request). The member values are as shown in Table 33.4.

The sender arbitrarily assigns a non-zero identity (see page 918) to each instance. 
Typically, the sender will simply consecutively number the instances starting at 1. 
For this example, assume that the two instances have the identities 1 and 2. The 

Table 33.4. Member values for two instances of class Derived.

Member Type Value
Marshaled Size 

(in bytes)

First instance baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8

Second 
instance

baseInt int 115 4

baseString string "Cave" 5

derivedBool bool false 1

derivedString string "Canem" 6

derivedDouble double 6.32 8
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marshaled representation for the two instances (assuming that they are marshaled 
immediately following each other) is shown in Table 33.5.

Table 33.5. Marshaled representation of the two instances in Table 33.4.

Marshaled Value Size in Bytes Type Byte offset

1 (identity) 4 int 0

0 (marker for class type ID) 1 bool 4

"::Derived" (class type ID) 10 string 5

20 (byte count for slice) 4 int 15

1 (derivedBool) 1 bool 19

"World!" (derivedString) 7 string 20

3.14 (derivedDouble) 8 double 27

0 (marker for class type ID) 1 bool 35

"::Base" (type ID) 7 string 36

14 (byte count for slice) 4 int 43

99 (baseInt) 4 int 47

"Hello" (baseString) 6 string 51

0 (marker for class type ID) 1 bool 57

"::Ice::Object" (class type ID) 14 string 58

5 (byte count for slice) 4 int 72

0 (number of dictionary entries) 1 size 76

2 (identity) 4 int 77

1 (marker for class type ID) 1 bool 81

1 (class type ID) 1 size 82

19 (byte count for slice) 4 int 83

0 (derivedBool) 1 bool 87

"Canem" (derivedString) 6 string 88
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Note that, because classes (like exceptions) are sent as a sequence of slices, the 
receiver of a class can slice off any derived parts of a class it does not understand. 
Also note that (as shown in Table 33.5) each class instance contains three slices. 
The third slice is for the type ::Ice::Object, which is the base type of all 
classes. The class type ID ::Ice::Object has the number 3 in this example 
because it is the third distinct type ID that is marshaled by the sender. (See entries 
at byte offsets 58 and 118 in Table 33.5.) All class instances have this final slice of 
type ::Ice::Object.

Marshaling a separate slice for ::Ice::Object dates back to Ice versions 1.3 
and earlier. In those versions, classes carried a facet map that was marshaled as if 
it were defined as follows:

module Ice { 
    class Object; 
 
    dictionary<string, Object> FacetMap; 
 
    class Object { 
        FacetMap facets; // No longer exists 
    }; 
};

6.32 (derivedDouble) 8 double 94

1 (marker for class type ID) 1 bool 102

9 (byte count for slice) 4 int 103

2 (class type ID) 1 size 107

115 (baseInt) 4 int 108

"Cave" (baseString) 5 string 112

1 (marker for class type ID) 1 bool 117

3 (class type ID) 1 size 118

5 (byte count for slice) 4 int 119

0 (number of dictionary entries) 1 size 123

Table 33.5. Marshaled representation of the two instances in Table 33.4.

Marshaled Value Size in Bytes Type Byte offset
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As of Ice version 1.4, this facet map is always empty, that is, the count of entries 
for the dictionary that is marshaled in the ::Ice::Object slice is always zero. If a 
receiver receives a class instance with a non-empty facet map, it must throw a 
MarshalException.

Note that if a class has no data members, a type ID and slice for that class is 
still marshaled. The byte count of the slice will be 4 in this case, indicating that 
the slice contains no data.

Marshaling Pointers

Classes support pointer semantics, that is, you can construct graphs of classes. It 
follows that classes can arbitrarily point at each other. The class identity (see 
page 918) is used to distinguish instances and pointers as follows:

• A class identity of 0 denotes a null pointer.

• A class identity > 0 precedes the marshaled contents of an instance (see 
page 918).

• A class identity < 0 denotes a pointer to an instance.

Identity values less than zero are pointers. For example, if the receiver receives the 
identity −57, this means that the corresponding class member that is currently 
being unmarshaled will eventually point at the instance with identity 57.

For structures, classes, exceptions, sequences, and dictionary members that do 
not contain class members, the Ice protocol uses a simple depth-first traversal 
algorithm to marshal the members. For example, structure members are marshaled 
in the order of their Slice definition; if a structure member itself is of complex 
type, such as a sequence, the sequence is marshaled in toto where it appears inside 
its enclosing structure. For complex types that contain class members, this depth-
first marshaling is suspended: instead of marshaling the actual class instance at 
this point, a negative identity is marshaled that indicates which class instance that 
member must eventually denote. For example, consider the following definitions:

class C { 
    // ... 
}; 
 
struct S { 
    int i; 
    C firstC; 
    C secondC; 
    C thirdC; 
    int j; 
};
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Suppose we initialize a structure of type S as follows:

S myS; 
myS.i = 99; 
myS.firstC = new C;             // New instance 
myS.secondC = 0;                // null 
myS.thirdC = myS.firstC;        // Same instance as previously 
myS.j = 100;

When this structure is marshaled, the contents of the three class members are not 
marshaled in-line. Instead, the sender marshals the negative identities of the corre-
sponding instances. Assuming that the sender has assigned the identity 78 to the 
instance assigned to myS.firstC, myS is marshaled as shown in Table 33.6.

Note that myS.firstC and myS.thirdC both use the identity −78. This allows 
the receiver to recognize that firstC and thirdC point at the same class 
instance (rather than at two different instances that happen to have the same 
contents).

Marshaling the negative identities instead of the contents of an instance allows 
the receiver to accurately reconstruct the class graph that was sent by the sender. 
However, this begs the question of when the actual instances are to be marshaled 
as described at the beginning of this section. As we will see in Section 33.3, 
parameters and return values are marshaled as if they were members of a struc-
ture. For example, if an operation invocation has five input parameters, the client 
marshals the five parameters end-to-end as if they were members of a single struc-
ture. If any of the five parameters are class instances, or are of complex type 
(recursively) containing class instances, the sender marshals the parameters in 
multiple passes: the first pass marshals the parameters end-to-end, using the usual 
depth-first algorithm:

Table 33.6. Marshaled representation of myS.

Marshaled Value Size in Bytes Type Byte offset

99 (myS.i) 4 int 0

-78 (myS.firstC) 4 int 4

0 (myS.secondC) 4 int 8

-78 (mys.thirdC) 4 int 12

100 (myS.j) 4 int 16
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• If the sender encounters a class member during marshaling, it checks whether 
it has marshaled the same instance previously for the current request or reply:

• If the instance has not been marshaled before, the sender assigns a new iden-
tity to the instance and marshals the negative identity.

• Otherwise, if the instance was marshaled previously, the sender sends the 
same negative identity that is previously sent for that instance.

In effect, during marshaling, the sender builds an identity table that is indexed 
by the address of each instance; the lookup value for the instance is its iden-
tity.

Once the first pass ends, the sender has marshaled all the parameters, but has not 
yet marshaled any of the class instances that may be pointed at by various param-
eters or members. The identity table at this point contains all those instances for 
which negative identities (pointers) were marshaled, so whatever is in the identity 
table at this point are the classes that the receiver still needs. The sender now 
marshals those instances in the identity table, but with positive identities and 
followed by their contents, as described on page 920. The outstanding instances 
are marshaled as a sequence, that is, the sender marshals the number of instances 
as a size (see Section 33.2.1), followed by the actual instances.

In turn, the instances just sent may themselves contain class members; when 
those class members are marshaled, the sender assigns an identity to new 
instances or uses a negative identity for previously marshaled instances as usual. 
This means that, by the end of the second pass, the identity table may have grown, 
necessitating a third pass. That third pass again marshals the outstanding class 
instances as a size followed by the actual instances. The third pass contains all 
those instances that were not marshaled in the second pass. Of course, the third 
pass may trigger yet more passes until, finally, the sender has sent all outstanding 
instances, that is, marshaling is complete. At this point, the sender terminates the 
sequence of passes by marshaling an empty sequence (the value 0 encoded as a 
size).

To illustrate this with an example, consider the definitions shown in 
Section 4.11.7 on page 128 once more:

enum UnaryOp { UnaryPlus, UnaryMinus, Not }; 
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or }; 
 
class Node { 
    idempotent long eval(); 
}; 
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class UnaryOperator extends Node { 
    UnaryOp operator; 
    Node operand; 
}; 
 
class BinaryOperator extends Node { 
    BinaryOp op; 
    Node operand1; 
    Node operand2; 
}; 
 
class Operand { 
    long val; 
};

These definitions allow us to construct expression trees. Suppose the client initial-
izes a tree to the shape shown in Figure 33.3, representing the expression 
(1 + 6 / 2) ∗ (9 − 3). The values outside the nodes are the identities assigned by the 
client.

Figure 33.3. Expression tree for the expression (1 + 6 / 2) ∗ (9 − 3). Both p1 and p2 denote the root 
node.

The client passes the root of the tree to the following operation in the parameters 
p1 and p2, as shown on page 927. (Even though it does not make sense to pass the 
same parameter value twice, we do it here for illustration purposes):

interface Tree { 
    void sendTree(Node p1, Node p2); 
};

∗

+ −
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The client now marshals the two parameters p1 and p2 to the server, resulting in 
the value -1 being sent twice in succession. (The client arbitrarily assigns an 
identity to each node. The value of the identity does not matter, as long as each 
node has a unique identity. For simplicity, the Ice implementation numbers 
instances with a counter that starts counting at 1 and increments by one for each 
unique instance.) This completes the marshaling of the parameters and results in a 
single instance with identity 1 in the identity table. The client now marshals a 
sequence containing a single element, node 1, as described on page 920. In turn, 
node 1 results in nodes 2 and 3 being added to the identity table, so the next 
sequence of nodes contains two elements, nodes 2 and 3. The next sequence of 
nodes contains nodes 4, 5, 6, and 7, followed by another sequence containing 
nodes 8 and 9. At this point, no more class instances are outstanding, and the 
client marshals an empty sequence to indicate to the receiver that the final 
sequence has been marshaled.

Within each sequence, the order in which class instances are marshaled is 
irrelevant. For example, the third sequence could equally contain nodes 7, 6, 4, 
and 5, in that order. What is important here is that each sequence contains nodes 
that are an equal number of “hops” away from the initial node: the first sequence 
contains the initial node(s), the second sequence contains all nodes that can be 
reached by traversing a single link from the initial node(s), the third sequence 
contains all nodes that can be reached by traversing two links from the initial 
node(s), and so on.



33.2 Data Encoding 929

Now consider the same example once more, but with different parameter 
values for sendTree: p1 denotes the root of the tree, and p2 denotes the − operator 
of the right-hand sub-tree, as shown in Figure 33.4.

Figure 33.4. The expression tree of Figure 33.3, with p1 and p2 denoting different nodes.

The graph that is marshaled is exactly the same, but instances are marshaled in a 
different order and with different identities:

• During the first pass, the client sends the identities -1 and -2 for the param-
eter values.

• The second pass marshals a sequence containing nodes 1 and 2.

• The third pass marshals a sequence containing nodes 3, 4, and 5.

• The fourth pass marshals a sequence containing nodes 6 and 7.

• The fifth pass marshals a sequence containing nodes 8 and 9.

• The final pass marshals an empty sequence.

In this way, any graph of nodes can be transmitted (including graphs that contain 
cycles). The receiver reconstructs the graph by filling in a patch table during 
unmarshaling:

• Whenever the receiver unmarshals a negative identity, it adds that identity to a 
patch table; the lookup value is the memory address of the parameter or 
member that eventually will point at the corresponding instance.

• Whenever the receiver unmarshals an actual instance, it adds the instance to 
an unmarshaled table; the lookup value is the memory address of the instanti-
ated class. The receiver then uses the address of the instance to patch any 
parameters or members with the actual memory address.
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Note that the receiver may receive negative identities that denote class instances 
that have been unmarshaled already (that is, point “backward” in the unmar-
shaling stream), as well as instances that are yet to be unmarshaled (that is, point 
“forward” in the unmarshaling stream). Both scenarios are possible, depending on 
the order in which instances are marshaled, as well as their in-degree.

To provide another example, consider the following definition:

class C { 
    // ... 
}; 
 
sequence<C> CSeq;

Suppose the client marshals a sequence of 100 C instances to the server, with each 
instance being distinct. (That is, the sequence contains 100 pointers to 100 
different instances, not 100 pointers to the same single instance.) In that case, the 
sequence is marshaled as a size of 100, followed by 100 negative identities, 
-1 to -100. Following that, the client marshals a single sequence containing the 
100 instances, each instance with its positive identity in the range 1 to 100, and 
completes by marshaling an empty sequence.

On the other hand, if the client sends a sequence of 100 elements that all point 
to the same single class instance, the client marshals the sequence as a size of 100, 
followed by 100 negative identities, all with the value -1. The client then 
marshals a sequence containing a single element, namely instance 1, and 
completes by marshaling an empty sequence.

Class Graphs and Slicing

It is important to note that when a graph of class instances is sent, it always forms 
a connected graph. However, when the receiver rebuilds the graph, it may end up 
with a disconnected graph, due to slicing. Consider:

class Base { 
    // ... 
}; 
 
class Derived extends Base { 
    // ... 
    Base b; 
}; 
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interface Example { 
    void op(Base p); 
};

Suppose the client has complete type knowledge, that is, understands both types 
Base and Derived, but the server only understands type Base, so the derived part 
of a Derived instance is sliced. The client can instantiate classes to be sent as 
parameter p as follows:

DerivedPtr p = new Derived; 
p->b = new Derived; 
ExamplePrx e = ...; 
e->op(p);

As far as the client is concerned, the graph looks like the one shown in 
Figure 33.5.

Figure 33.5. Sender-side view of a graph containing derived instances.

However, the server does not understand the derived part of the instances and 
slices them. Yet, the server unmarshals all the class instances, leading to the situa-
tion where the class graph has become disconnected, as shown in Figure 33.6.

Figure 33.6. Receiver-side view of the graph in Figure 33.5.

Of course, more complex situations are possible, such that the receiver ends up 
with multiple disconnected graphs, each containing many instances.

Exceptions with Class Members

If an exception contains class members, its header byte (see page 915) is 1 and the 
exception members are followed by the outstanding class instances as described 
on the preceding pages, that is, the actual exception members are followed by one 
or more sequences that contain the outstanding class instances, followed by an 
empty sequence that serves as an end marker.

p

p
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33.2.12 Proxies
The first component of an encoded proxy is a value of type Ice::Identity. If the 
proxy is a nil value, the category and name members are empty strings, and no 
additional data is encoded. The encoding for a non-null proxy consists of general 
parameters followed by endpoint parameters.

General Proxy Parameters

The general proxy parameters are encoded as if they were members of the 
following structure:

struct ProxyData { 
    Ice::Identity id; 
    Ice::StringSeq facet; 
    byte mode; 
    bool secure; 
};

The general proxy parameters are described in Table 33.7.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a proxy with a facet field with more than 
one element, it must throw a ProxyUnmarshalException.

Endpoint Parameters

A proxy optionally contains an endpoint list (see Appendix D) or an adapter iden-
tifier, but not both.

Table 33.7. General proxy parameters.

Parameter Description

id The object identity

facet The facet name (zero- or one-element sequence)

mode The proxy mode (0=twoway, 1=oneway, 2=batch oneway, 
3=datagram, 4=batch datagram)

secure true if secure endpoints are required, otherwise false
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• If a proxy contains endpoints, they are encoded immediately following the 
general parameters. A size specifying the number of endpoints is encoded first 
(see Section 33.2.1), followed by the endpoints. Each endpoint is encoded as a 
short specifying the endpoint type (1=TCP, 2=SSL, 3=UDP), followed by 
an encapsulation (see Section 33.2.2) of type-specific parameters. The type-
specific parameters for TCP, UDP, and SSL are presented in the sections that 
follow.

• If a proxy does not have endpoints, a single byte with value 0 immediately 
follows the general parameters and a string representing the object adapter 
identifier is encoded immediately following the zero byte.

Type-specific endpoint parameters are encapsulated because a receiver may not be 
capable of decoding them. For example, a receiver can only decode SSL endpoint 
parameters if it is configured with the SSL plug-in (see Chapter 39). However, the 
receiver must be able to re-encode the proxy with all of its original endpoints, in 
the order they were received, even if the receiver does not understand the type-
specific parameters for an endpoint. Encapsulation of the parameters allows the 
receiver to do this.

TCP Endpoint Parameters

A TCP endpoint is encoded as an encapsulation containing the following struc-
ture:

struct TCPEndpointData { 
    string host; 
    int port; 
    int timeout; 
    bool compress; 
};
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The endpoint parameters are described in Table 33.8.

See Section 33.4 for more information on compression.

UDP Endpoint Parameters

A UDP endpoint is encoded as an encapsulation containing the following struc-
ture:

struct UDPEndpointData { 
    string host; 
    int port; 
    byte protocolMajor; 
    byte protocolMinor; 
    byte encodingMajor; 
    byte encodingMinor; 
    bool compress; 
};

Table 33.8. TCP endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

timeout The timeout in milliseconds for socket operations

compress true if compression should be used (if possible), other-
wise false
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The endpoint parameters are described in Table 33.9.

See Section 33.4 for more information on compression.

SSL Endpoint Parameters

An SSL endpoint is encoded as an encapsulation containing the following struc-
ture:

struct SSLEndpointData { 
    string host; 
    int port; 
    int timeout; 
    bool compress; 
};

Table 33.9. UDP endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

protocolMajor The major protocol version supported by the endpoint

protocolMinor The highest minor protocol version supported by the endpoint

encodingMajor The major encoding version supported by the endpoint

encodingMinor The highest minor encoding version supported by the endpoint

compress true if compression should be used (if possible), otherwise 
false
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The endpoint parameters are described in Table 33.10.

See Section 33.4 for more information on compression.

33.3 Protocol Messages

The Ice protocol uses five protocol messages:

• Request (from client to server)

• Batch request (from client to server)

• Reply (from server to client)

• Validate connection (from server to client)

• Close connection (client to server or server to client)

Of these messages, validate and close connection only apply to connection- 
oriented transports.

As with the data encoding described in Section 33.2, protocol messages have 
no alignment restrictions. Each message consists of a message header and (except 
for validate and close connection) a message body that immediately follows the 
header.

33.3.1 Message Header
Each protocol message has a 14-byte header that is encoded as if it were the 
following structure:

Table 33.10. SSL endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

timeout The timeout in milliseconds for socket operations

compress true if compression should be used (if possible), other-
wise false
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struct HeaderData { 
    int  magic; 
    byte protocolMajor; 
    byte protocolMinor; 
    byte encodingMajor; 
    byte encodingMinor; 
    byte messageType; 
    byte compressionStatus; 
    int  messageSize; 
};

The members are described in Table 33.11.

Table 33.11. Message header members.

Member Description

magic A four-byte magic number consisting of the ASCII-
encoded values of ‘I’, ‘c’, ‘e’, ‘P’ (0x49, 0x63, 0x65, 
0x50)

protocolMajor The protocol major version number

protocolMinor The protocol minor version number

encodingMajor The encoding major version number

encodingMinor The encoding minor version number

messageType The message type

compressionStatus The compression status of the message (see Section 33.4)

messageSize The size of the message in bytes, including the header
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Currently, both the protocol and the encoding are at version 1.0. The valid 
message types are shown in Table 33.12.

The encoding for these message bodies of each of these message types is 
described in the sections that follow.

33.3.2 Request Message Body
A request message contains the data necessary to perform an invocation on an 
object, including the identity of the object, the operation name, and input parame-
ters. A request message is encoded as if it were the following structure:

struct RequestData { 
    int requestId; 
    Ice::Identity id; 
    Ice::StringSeq facet; 
    string operation; 
    byte mode; 
    Ice::Context context; 
    Encapsulation params; 
};

Table 33.12. Message types.

Message Type Encoding

Request 0

Batch request 1

Reply 2

Validate connection 3

Close connection 4
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The members are described in Table 33.13.

The request identifier zero (0) is reserved for use in oneway requests and indicates 
that the server must not send a reply to the client. A non-zero request identifier 
must uniquely identify the request on a connection, and must not be reused while 
a reply for the identifier is outstanding.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a request with a facet field with more than 
one element, it must throw a MarshalException.

33.3.3 Batch Request Message Body
A batch request message contains one or more oneway requests, bundled together 
for the sake of efficiency. A batch request message is encoded as integer (not a 
size) that specifies the number of requests in the batch, followed by the corre-
sponding number of requests, encoded as if each request were the following struc-
ture:

struct BatchRequestData { 
    Ice::Identity id; 
    Ice::StringSeq facet; 
    string operation; 

Table 33.13. Request members.

Member Description

requestId The request identifier

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name

mode A byte representation of Ice::OperationMode (0=nor-
mal, 1=nonmutating, 2=idempotent)

context The invocation context

params The encapsulated input parameters, in order of declaration
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    byte mode; 
    Ice::Context context; 
    Encapsulation params; 
};

The members are described in Table 33.14.

Note that no request ID is necessary for batch requests because only oneway invo-
cations can be batched.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a batch request with a facet field with more 
than one element, it must throw a MarshalException.

33.3.4 Reply Message Body
A reply message body contains the results of a twoway invocation, including any 
return value, out-parameters, or exception. A reply message body is encoded as if 
it were the following structure:

struct ReplyData { 
    int requestId; 
    byte replyStatus; 
    Encapsulation body; // messageSize - 19 bytes 
};

Table 33.14. Batch request members.

Member Description

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name

mode A byte representation of Ice::OperationMode

context The invocation context

params The encapsulated input parameters, in order of declaration
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The first four bytes of a reply message body contain a request ID. The request ID 
matches an outgoing request and allows the requester to associate the reply with 
the original request (see Section 33.3.2).

The byte following the request ID indicates the status of the request; the 
remainder of the reply message body following the status byte is an encapsulation 
whose contents depend on the status value. The possible status values are shown 
in Table 33.15.

Reply Status 0: Success

A successful reply message is encoded as an encapsulation containing out-param-
eters (in the order of declaration), followed by the return value for the invocation, 
encoded according to their types as specified in Section 33.2. If an operation 
declares a void return type and no out-parameters, an empty encapsulation is 
encoded.

Reply Status 1: User exception

A user exception reply message contains an encapsulation containing the user 
exception, encoded as described in Section 33.2.10.

Reply Status 2: Object does not exist

If the target object does not exist, the reply message is encoded as if it were the 
following structure inside an encapsulation:

Table 33.15. Reply status.

Reply status Encoding

Success 0

User exception 1

Object does not exist 2

Facet does not exist 3

Operation does not exist 4

Unknown Ice local exception 5

Unknown Ice user exception 6

Unknown exception 7
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struct ReplyData { 
    Ice::Identity id; 
    Ice::StringSeq facet; 
    string operation; 
};

The members are described in Table 33.16.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a reply with a facet field with more than 
one element, it must throw a MarshalException.

Reply Status 3: Facet does not exist

If the target object does not support the facet encoded in the request message, the 
reply message is encoded as for reply status 2.

Reply Status 4: Operation does not exist

If the target object does not support the operation encoded in the request message, 
the reply message is encoded as for reply status 2.

Reply Status 5: Unknown Ice local exception

The reply message for an unknown Ice local exception is encoded as an encapsu-
lation containing a single string that describes the exception.

Reply Status 6: Unknown Ice user exception

The reply message for an unknown Ice user exception is encoded as an encapsula-
tion containing a single string that describes the exception.

Table 33.16. Invalid object reply members.

Member Description

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name
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Reply Status 7: Unknown exception

The reply message for an unknown exception is encoded as an encapsulation 
containing a single string that describes the exception.

33.3.5 Validate Connection Message
A server sends a validate connection message when it receives a new connection.1 
The message indicates that the server is ready to receive requests; the client must 
not send any messages on the connection until it has received the validate connec-
tion message from the server. No reply to the message is expected by the server.

The purpose of the validate connection message is two-fold:

• It informs the client of the protocol and encoding versions that are supported 
by the server (see Section 33.5.3).

• It prevents the client from writing a request message to its local transport 
buffers until after the server has acknowledged that it can actually process the 
request. This avoids a race condition caused by the server’s TCP/IP stack 
accepting connections in its backlog while the server is in the process of shut-
ting down: if the client were to send a request in this situation, the request 
would be lost but the client could not safely re-issue the request because that 
might violate at-most-once semantics.

The validate connection message guarantees that a server is not in the middle 
of shutting down when the server’s TCP/IP stack accepts an incoming connec-
tion and so avoids the race condition.

The message header described in Section 33.3.1 on page 936 comprises the entire 
validate connection message. The compression status of a validate connection 
message is always 0.

33.3.6 Close Connection Message
A close connection message is sent when a peer is about to gracefully shutdown a 
connection.2 The message header described in Section 33.3.1 comprises the entire 
close connection message. The compression status of a close connection message 
is always 0.

1. Validate connection messages are only used for connection-oriented transports.

2. Close connection messages are only used for connection-oriented transports.
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Either client or server can initiate connection closure. On the client side, 
connection closure is triggered by Active Connection Management (ACM) (see 
Section 34.4), which automatically reclaims connections that have been idle for 
some time.

This means that connection closure can be initiated at will by either end of a 
connection; most importantly, no state is associated with a connection as far as the 
object model or application semantics are concerned.

The client side can close a connection whenever no reply for a request is 
outstanding on the connection. The sequence of events is:

1. The client sends a close connection message.

2. The client closes the writing end of the connection.

3. The server responds to the client’s close connection message by closing the 
connection.

The server side can close a connection whenever no operation invocation is in 
progress that was invoked via that connection. This guarantees that the server will 
not violate at-most-once semantics: an operation, once invoked in a servant, is 
allowed to complete and its results are returned to the client. Note that the server 
can close a connection even after it has received a request from the client, 
provided that the request has not yet been passed to a servant. In other words, if 
the server decides that it wants to close a connection, the sequence of events is:

1. The server discards all incoming requests on the connection.

2. The server waits until all still executing requests have completed and their 
results have been returned to the client.

3. The server sends a close connection message to the client.

4. The server closes its writing end of the connection.

5. The client responds to the server’s close connection message by closing both 
its reading and writing ends of the connection.

6. If the client has outstanding requests at the time it receives the close connec-
tion message, it re-issues these requests on a new connection. Doing so is 
guaranteed not to violate at-most-once semantics because the server guaran-
tees not to close a connection while requests are still in progress on the server 
side.
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33.3.7 Protocol State Machine
From a client’s perspective, the Ice protocol behaves according to the state 
machine shown in Figure 33.7.

Figure 33.7. Protocol state machine.

To summarize, a new connection is inactive until a validate connection message 
(see Section 33.3.5) has been received by the client, at which point the active state 
is entered. The connection remains in the active state until it is shut down, which 
can occur when there are no more proxies using the connection, or after the 
connection has been idle for a while. At this point, the connection is gracefully 
closed, meaning that a close connection message is sent (see Section 33.3.6), and 
the connection is closed.

33.3.8 Disorderly Connection Closure
Any violation of the protocol or encoding rules results in a disorderly connection 
closure: the side of the connection that detects a violation unceremoniously closes 
it (without sending a close connection message or similar). There are many poten-
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tial error conditions that can lead to disorderly connection closure; for example, 
the receiver might detect that a message has a bad magic number or incompatible 
version, receive a reply with an ID that does not match that of an outstanding 
request, receive a validate connection message when it should not, or find illegal 
data in a request (such as a negative size, or a size that disagrees with the actual 
data that was unmarshaled).

33.4 Compression

Compression is an optional feature of the Ice protocol; whether it is used for a 
particular message is determined by several factors:

1. Compression may not be supported on all platforms or in all language 
mappings.

2. Compression can be used in a request or batch request only if the endpoint 
advertises the ability to accept compressed messages (see Section 33.2.12).

3. For efficiency reasons, the Ice protocol engine does not compress messages 
smaller than 100 bytes.3

If compression is used, the entire message excluding the header is compressed 
using the bzip2 algorithm [16]. The messageSize member of the message header 
therefore reflects the size of the compressed message, including the uncompressed 
header, plus an additional four bytes (see page 947).

3. A compliant implementation of the protocol is free to compress messages that are smaller than 
100 bytes—the choice is up to the protocol implementation.
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The compressionStatus field of the message header (see Section 33.3.1) 
indicates whether a message is compressed and whether the sender can accept a 
compressed reply, as shown in Table 33.17.

• A compression status of 0 indicates that the message is not compressed and, 
moreover, that the sender of this message cannot accept a compressed reply. A 
client that does not support compression always uses this value. A client that 
supports compression sets the value to 0 if the endpoint via which the request 
is dispatched indicates that it does not support compression.

A server uses this value for uncompressed replies.

• A compression status of 1 indicates that the message is not compressed, but 
that the server should return a compressed reply (if any). A client uses this 
value if the endpoint via which the request is dispatched indicates that it 
supports compression, but the client has decided not to use compression for 
this particular request (presumably because the request is too small, so 
compression does not provide any saving).

This value applies only to request and batch request messages.

• A compression status of 2 indicates that the message is compressed and that 
the server is free to reply with a compressed message (but need not reply with 
a compressed message). A client that supports compression (obviously) sets 
this value only if the endpoint via which the request is dispatched indicates 
that it supports compression.

A server uses this value for compressed replies.

The message body of compressed request, batch request, or reply message is 
encoded by first writing the size of the uncompressed message (including its 

Table 33.17. Compression status values.

Reply status Encoding Applies to

Message is uncompressed, sender cannot 
accept a compressed reply.

0 Request, Batch Request, 
Reply, Validate Connec-
tion, Close Connection

Message is uncompressed, sender can 
accept a compressed reply.

1 Request, Batch Request

Message is compressed and sender can 
accept a compressed reply

2 Request, Batch Request, 
Reply
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header) as four-byte integer, followed by the compressed message body 
(excluding the header). It follows that the size of a compressed message is 
14 bytes for the header, plus four bytes to record the size of the uncompressed 
message, plus the number of bytes occupied by the compressed message body 
(encoded as specified in Sections 33.3.2 through 33.3.4). Writing the uncom-
pressed message size prior to the body enables the receiver to allocate a buffer that 
is large enough to accomodate the uncompressed message body.

Note that compression is likely to improve performance only over lower-speed 
links, for which bandwidth is the overall limiting factor. Over high-speed LAN 
links, the CPU time spent on compressing and uncompressing messages is longer 
than the time it takes to just send the uncompressed data.

33.5 Protocol and Encoding Versions

As we saw in the preceding sections, both the Ice protocol and encoding have 
separate major and minor version numbers. Separate versioning of protocol and 
encoding has the advantage that neither depends on the other: any version of the 
Ice protocol can be used with any version of the encoding, so they can evolve 
independently. (For example, Ice protocol version 1.1 could use encoding version 
2.3, and vice versa.)

The Ice versioning mechanism provides the maximum possible amount of 
interoperability between clients and servers that use different versions of the Ice 
run time. In particular, older deployed clients can communicate with newer 
deployed servers and vice versa, provided that the message contents use types that 
are understandable to both sides.

For an example, assume that a later version of Ice were to introduce a new 
Slice keyword and data type, such as complex, for complex numbers. This would 
require a new minor version number for the encoding; let us assume that 
version 1.1 of the encoding is identical to the 1.0 encoding but, in addition, 
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supports the complex type. We now have four possible combinations of client and 
server encoding versions:

As you can see, interoperability is provided to the maximum extent possible. If 
both client and server are at version 1.1, they can obviously exchange messages 
and will use encoding version 1.1. For version 1.0 clients and servers, obviously 
only operations that do not involve complex parameters can be invoked (because 
at least one of client and server do not know about the new complex type) and 
messages are exchanged using encoding version 1.0.

33.5.1 Version Ground Rules
For versioning of the protocol and encoding to be possible, all versions (present 
and future) of the Ice run time adhere to a few ground rules:

1. Encapsulations always have a six-byte header; the first four bytes are the size 
of the encapsulation (including the size of the header), followed by two bytes 
that indicate the major and minor version. How to interpret the remainder of 
the encapsulation depends on the major and minor version.

2. The first eight bytes of a message header always contain the magic number ‘I’, 
‘c’, ‘e’, ‘P’, followed by four bytes of version information (two bytes for the 
protocol major and minor number, and two bytes of the encoding major and 
minor number). How to interpret the remainder of the header and the message 
body depends on the major and minor version.

These ground rules ensure that all current and future versions of the Ice run time 
can at least identify the version and size of an encapsulation and a message. This 
is particularly important for message switches such as IceStorm (see Chapter 42); 

Table 33.18. Interoperability for different versions.

Client 
Version

Server 
Version

Operation with 
complex Parameter

Operation without 
complex Parameter

1.0 1.0 N/A ✔

1.1 1.0 N/A ✔

1.0 1.1 N/A ✔

1.1 1.1 ✔ ✔



950 The Ice Protocol

by keeping the version and size information in a fixed format, it is possible to 
forward messages that are, for example, at version 2.0, even though the message 
switch itself may still be at version 1.0.

33.5.2 Version Compatibility Rules
To establish whether a particular protocol version is compatible with another 
protocol version (or a particular encoding version is compatible with another 
encoding version), the following rules apply:

1. Different major versions are incompatible. There is no obligation on either 
clients or servers to support more than a single major version. For example, a 
server with major version 2 is under no obligation to also support major 
version 1.

This rule exists to permit the Ice run time to eventually get rid of old 
versions—without such a rule, all future releases of Ice would have to support 
all previous major versions forever. In plain language, the rule means that 
clients and servers that use different major versions simply cannot communi-
cate with each other.

2. A receiver that advertises minor version n guarantees to be able to successfully 
decode all minor versions less than n. Note that this does not imply that 
messages using version n−1 can be decoded as if they were version n: as far as 
their physical representation is concerned, two adjacent minor versions can be 
completely incompatible. However, because any receiver advertising version n 
is also obliged to correctly deal with version n−1, minor version upgrades are 
semantically backward compatible, even though their physical representation 
may be incompatible.

3. A sender that supports minor version n guarantees to be able to send messages 
using all minor versions less than n. Moreover, the sender guarantees that if it 
receives a request using minor version k (with k≤n), it will send the reply for 
that request using minor version k.

33.5.3 Version Negotiation
Client and server must somehow agree on which version to use to exchange 
messages. Depending on whether the underlying transport is connection-oriented 
or connection-less, different mechanisms are used to negotiate a common version.
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Negotiation for Connection-Oriented Transports

For connection-oriented transports, the client opens a connection to the server and 
then waits for a validate connection message (see page 943). The validate connec-
tion message sent by the server indicates the server’s major and highest supported 
minor version numbers for both protocol and encoding. If the server’s and client’s 
major version numbers do not match, the client side raises an UnsupportedPro-
tocolException or UnsupportedEncodingException.

Assuming that the client has received a validate connection message from the 
server that matches the client’s major version, the client knows the highest minor 
version number that is supported by the server. Thereafter, the client is obliged to 
send no message with a minor version number higher than the server’s limit. 
However, the client is free to send a message with a minor version number that is 
less than the server’s limit.

The server does not have a-priori knowledge of the highest minor version that 
is supported by the client (because there is no validate connection message from 
client to server). Instead, the server learns about the client version number in each 
individual message, by looking at the message header. That minor version indi-
cates the minor version number that the client can accept. The scope of that minor 
version number is a single request-reply interaction. For example, if the client 
sends a request with minor version 3, the server must reply to that request with 
minor version 3 as well. However, the next client request might be with minor 
version 2, and the server must reply to that request with minor version 2.

For orderly connection closure via a close connection message, the server can 
use any minor version, but that minor version must not be higher than the highest 
minor version number that was received from the client while the connection was 
open.

Negotiation for Connection-Less Transports

For connection-less transports, no validate connection message exists, so the 
client must learn about the highest supported minor version number of the server 
via other means. The mechanism for this depends on whether a proxy for a 
connection-less endpoint is bound directly or indirectly (see page 13):

• For direct proxies, the version information is part of the endpoint contained in 
the proxy. In this case, the client simply sends its messages with a minor 
version number that is not greater than the minor version number of the 
endpoint in the proxy.

• For indirect proxies, the proxy itself contains no version information at all 
(because the proxy contains no endpoints). Instead, the client obtains the 
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version information when it resolves the proxy’s symbolic information to one 
or more endpoints (via IceGrid or an equivalent service). The version informa-
tion of the endpoints determines the highest minor version number that is 
available to the client.

33.6 A Comparison with IIOP

It is interesting to compare the Ice protocol and encoding with CORBA’s Inter-
ORB Interoperability Protocol (IIOP) and Common Data Representation (CDR) 
encoding. The Ice protocol and encoding differ from IIOP and CDR in a number 
of important respects:

• Fewer data types

CORBA IDL has data types that are not provided by Ice, such as characters 
and wide characters, fixed-point numbers, arrays, and unions, each of which 
require a separate set of encoding rules.

Obviously, fewer data types makes the Ice encoding more efficient and less 
complex than CDR.

• Fixed byte-order marshaling

CDR supports both big-endian and little-endian encoding and provides a 
“receiver-makes-it-right” approach to byte ordering. The advantage of this is 
that, if sender and receiver have matching byte order, no reordering of the data 
is required at either end. However, the disadvantage is the additional 
complexity this creates in the marshaling logic. Moreover, the “receiver-
makes-it-right” scheme carries a severe performance penalty if messages are 
to be forwarded via a number of intermediaries because this can require 
repeated unmarshaling, reordering, and remarshaling of messages. (Encapsu-
lating the data would avoid this problem but, unfortunately, IIOP does not 
encapsulate most of the data that would benefit from it.)

The Ice encoding uses fixed little-endian data layout and avoids both the 
complexity and performance penalty.

• No padding

CDR has a complex set of rules for inserting alignment bytes into a data 
stream in an attempt to keep data aligned in a way that suits the native data 
layout of the underlying hardware. Unfortunately, this approach is severely 
flawed for a number of reasons:



33.6 A Comparison with IIOP 953

• The CDR padding rules actually do not achieve any layout on natural word 
boundaries. For example, depending on its relative position in the enclosing 
data stream, the same structure value can differ in size and padding by up to 
seven bytes. There is not a single hardware platform in existence whose 
layout rules are the same as those of CDR. As a result, the padding bytes 
that are inserted serve no purpose other than to waste bandwidth.

• With “receiver-makes-it-right”, the receiver is obliged to re-order data if it 
arrives in the incorrect byte order anyway. This means that any alignment of 
the data (even if it were correct) is useless to, on average, half of all 
receivers because re-ordering of the data requires copying all of the data 
anyway.

• Padding and alignment rules differ depending on the hardware platform as 
well as the compiler. (For example, many compilers provide options that 
change the way data is packed in memory, to allow the developer to control 
the time-versus-space trade-off.) This means that even the best set of layout 
rules can suit only a minority of platforms.

• Data alignment rules greatly complicate data forwarding. For example, if 
the receiver of a data item wants to forward that data item to another down-
stream receiver, it cannot just block-copy the received data into its transmit 
buffer because the padding of the data is sensitive to its relative position in 
the enclosing byte stream and a block copy would most likely result in an 
illegal encoding.

Ice avoids all the complexity (and concomitant inefficiency) by aligning all 
data on byte boundaries.

• More compact encoding

CDR encoding rules are wasteful of bandwidth, especially for sequences of 
short data items. For example, with CDR encoding, an empty string occupies 
eight bytes: four bytes to store the string length, plus a single terminating NUL 
byte, plus three bytes of padding. Table 33.19 compares the encoding sizes of 
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CDR and the Ice encoding for sequences of 100 strings for different string 
lengths.

Similar savings are achieved for small structures. Depending on the order and 
type of the structure members, CDR padding bytes can almost double the 
structure size, which becomes significant when sending sequences of such 
structures.

• Simple proxy encoding

Due to the inability of CORBA vendors to agree on a common encoding for 
object references (the equivalent of Ice proxies), CORBA object references 
have a complex internal structure that is partially standardized and partially 
opaque, allowing vendors to add proprietary information to object references. 
In addition, to avoid object references getting too large, references that 
support more than one transport have a scheme for sharing the object identity 
among several transports instead of carrying multiple copies of the same iden-
tity. The encoding that is required to support all this machinery is quite 
complex and results in extremely poor marshaling performance when large 
number of object references are exchanged (for example, when using a trading 
service).

In contrast, Ice proxies are simple and straight-forward to marshal and do not 
incur this loss of performance.

Table 33.19. Sizes of CDR and Ice sequences of 100 strings of different lengths.

Sequence of 
100 Strings 
of Length

CDR Size Ice Size
Extra cost 
of CDR

0 804 101 696%

4 1204 501 140%

8 1604 901 78%

16 2004 1701 18%
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• Proper version negotiation

Versioning for IIOP and CDR was never designed properly, with the result 
that version negotiation in IIOP simply does not work. In particular, CDR 
encapsulations do not carry a separate version number. As a result, it is 
possible for data in encapsulations to travel to receivers that cannot decode the 
contents of the encapsulation, with no mechanism at the protocol level to 
detect the problem. Lack of correct versioning has been an ongoing problem 
with CORBA for years and the problem has historically been dealt with by 
pretending that it does not exist (meaning that different CORBA versions 
cannot interoperate with each other in many circumstances).

The Ice protocol and encoding have well-defined versioning rules that avoid 
such problems, allow both protocol and encoding to be extended, and reliably 
detect version mismatches.

• Fewer message types

IIOP has more message types than Ice. For example, IIOP has both a cancel 
request and a message error message. The cancel request is meant to cancel an 
invocation in progress but, of course, cannot do that because there is no way to 
abort an executing invocation in the server. At best, a cancel request allows 
the server to avoid marshaling the results of an invocation back to the client. 
However, the additional complexity introduced into the protocol is not worth 
the saving. (And, at any rate, neither is there a way for an application devel-
oper to send a cancel request, nor can the run time decide on its own when it 
would be appropriate to send one; despite that, every compliant CORBA 
implementation is burdened by the need to correctly respond to a useless 
request.)

IIOP’s message error message constitutes similar baggage: the receiver of a 
malformed message is obliged to respond with a message error message 
before closing its connection. However, the message carries no useful infor-
mation and, due to the nature of TCP/IP implementations, is usually lost 
instead of being delivered. This means that a compliant CORBA implementa-
tion is forced to send a useless message that will not be received in most cases 
when, instead, it should simply close the connection.

Ice avoids any such baggage in its protocol: the messages that are used actu-
ally serve a useful purpose.

• Request batching

IIOP has no notion of request batching. The advantages of request batching 
are particularly noticeable for event forwarding mechanisms, such as IceS-
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torm (see Chapter 42), as well as for fine-grained interfaces that provide modi-
fier operations for a number of attributes. Request batching significantly 
reduces networking overhead for such applications.

• Reliable connection establishment

IIOP is vulnerable to connection loss during connection establishment. In 
particular, when a client opens a connection to a server, the client has no way 
of knowing whether the server is about to shut down and will not be able to 
process an incoming request. This means that the client has no choice but to 
send a request on a newly-established connection in the hope that the request 
will actually be processed by the server. If the server can process the request, 
there is no problem. However, if the server cannot process the request because 
it is on its way down, the client is confronted with a broken connection and 
cannot re-issue the request because that might violate at-most-once semantics.

Ice does not have this problem because the validate connection message 
ensures that the client will not send a request to a server that is about to shut 
down. Moreover, any requests with outstanding replies can safely be re-issued 
by the client without violating at-most-once semantics.

• Reliable endpoint resolution

Indirect binding (see page 13) in IIOP relies on a locate forward reply. Briefly, 
endpoint resolution is transparent to clients using IIOP. If an object reference 
uses indirect binding, the client issues the request as usual and receives a 
locate forward reply containing the endpoint of the actual server. In response 
to that reply, the client issues the request a second time to contact the actual 
server. There are a number of problems with this scheme:

• The physical address of the location service is written into each indirectly 
bound object reference. This makes it impossible to move the location 
service without invalidating all the references held by clients.4

Ice does not have this problem because the location service is known to 
clients through configuration. If the location service is moved, clients can be 
updated by changing their configuration and there is no need to track down a 
potentially unlimited number of proxies that might be out of date. Moreover, 

4. IIOP version 1.2 supported a message to indicate permanent location forwarding. That message 
was meant to ease migration of location services. However, the semantics of that message broke 
the object model elsewhere, with the result that IIOP version 1.3 has deprecated that message 
again. (Unfortunately, reversals such as this are all too common in OMG specifications.)
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there is typically no need to move the location service. Instead, it is possible 
to construct federated location services that work similar to the Internet 
Domain Name Service (DNS) and internally forward requests to the correct 
resolver.

• In order to get a location forward message, clients send the actual request to 
the location service. This is expensive if the request parameters are large 
because they are marshaled twice: once to the location service and once to 
the actual server. IIOP adds a locate request message that allows a client to 
explicitly resolve the location of a server. However, CORBA object refer-
ences carry no indication as to whether they are bound directly or indirectly. 
This means that, no matter what the client does, it is wrong some of the 
time: if the client always uses a locate request with a directly bound refer-
ence, it ends up incurring the cost of two remote messages instead of one; if 
the client sends the request directly with an indirectly bound reference, it 
incurs the cost of marshaling the parameters twice instead of once.

Ice makes location resolution a step that is explicitly visible to the client-
side run time because proxies either carry endpoint information (for direct 
proxies) or symbolic information (for indirect proxies). This allows the 
client-side run time to select the correct resolution mechanism without 
having to play guessing games and to avoid the overhead incurred by loca-
tion forwarding.

• With IIOP, location resolution is built into the protocol itself. This compli-
cates the protocol with two additional message types and (until 2002, when 
additional APIs were added to CORBA) made it impossible to implement a 
location service using standard APIs.

With Ice, no special protocol support is required for location resolution. 
Instead, the location service is an ordinary Ice server that defines an inter-
face as usual and is contacted using operation invocations like any other 
server.

• No codeset negotiation

IIOP uses a codeset negotiation feature that (supposedly) permits use of arbi-
trary character encodings for transmission of wide characters and strings, 
provided sender and receiver have at least one codeset in common. Unfortu-
nately, this feature was never properly thought through and has repeatedly led 
to interoperability problems. (Every single version of the CORBA specifica-
tion, including the latest 3.0 version, has made corrections to the way codeset 
negotiation is supposed to work. Whether the latest set of corrections will 
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succeed in dealing with the problem remains to be seen. Regardless, many 
pages of complexity (and many lines of ORB source code) are devoted to this 
(mis)feature.)

The UTF-8 encoded Unicode used by Ice avoids all these problems without 
losing any functionality.

• No fragmentation

IIOP provides a fragment message whose purpose it is to reduce memory 
overhead in the server during marshaling of the results of an operation invoca-
tion. Unfortunately, the feature is quite complex (having been mis-specified 
and mis-implemented repeatedly in the past). The savings to be gained 
through fragmentation are quite limited, yet every client-side ORB implemen-
tation is forced to provide support for the feature. (In other words, the cure is 
worse than the disease.)

Ice simply does not use a fragmentation scheme, avoiding both the complexity 
and the resulting code bloat.

• Support for connection-less transports

In 2001, the OMG adopted a multi-cast specification. To the best of our 
knowledge, as of early 2003, no implementations of that specification are 
available.

Ice offers UDP as an alternative to TCP/IP. For messaging services, such as 
IceStorm, the performance benefits of UDP are considerable, allowing the 
service to scale well beyond what could be achieved with TCP/IP.
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Chapter 34
Connection Management

34.1 Chapter Overview

In this chapter we describe the semantics of Ice connections. Section 34.3 defines 
the rules for connection establishment, including the consequences of connection 
failure and the effects of timeouts. Section 34.4 provides details about active 
connection management and when to use it. Section 34.5 demonstrates how Ice 
applications gain access to connections, while Section 34.6 describes how a 
connection is closed. Finally, Section 34.7 presents bidirectional connections and 
describes their use cases and configuration.

34.2 Introduction

The Ice run time establishes connections automatically and transparently as a side 
effect of using proxies. There are well-defined rules that determine when a new 
connection is established (see Section 34.3). If necessary, you can influence 
connection management activities (see Section 34.4).

Connection management becomes increasingly important as network environ-
ments grow more complex. In particular, if you need to make callbacks from a 
server to a client through a firewall, you must use a bidirectional connection. In 
most cases, you can use a Glacier2 router (see Chapter 40) to automatically take 
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advantage of bidirectional connections. However, the Ice run time also provides 
direct access to connections, allowing you to explicitly control establishment and 
closure of both unidirectional and bidirectional connections.

The discussion that follows assumes that you are familiar with proxies and 
endpoints (see Section 30.10 and Appendix D).

34.3 Connection Establishment

Connections are established as a side effect of using proxies. The first invocation 
on a proxy causes the Ice run time to search for an existing connection to one of 
the proxy’s endpoints (see Section 30.10.2); only if no suitable connection exists 
does the Ice run time establish a new connection to one of the proxy’s endpoints.

34.3.1 Endpoint Selection
A proxy performs a number of operations on its endpoints before it asks the Ice 
run time to supply a connection. These operations produce a list of zero or more 
endpoints that satisfy the proxy’s configuration. If the resulting list is empty, the 
application receives NoEndpointException to indicate that no suitable endpoints 
could be found. For example, this situation can arise when a twoway proxy 
contains only a UDP endpoint; the UDP endpoint is eliminated from consideration 
because it cannot be used for twoway invocations.

The proxy performs the following steps to derive its endpoint list:

1. Remove the endpoints of unknown transports. For instance, SSL endpoints are 
removed if the SSL plug-in is not installed.

2. Remove endpoints that are not suitable for the proxy’s invocation mode.

3. Sort the endpoints according to the configured selection type, which is estab-
lished using the ice_endpointSelection factory method. The default 
value is Random, meaning the endpoints are randomly shuffled. Alternatively, 
the value Ordered maintains the existing order of the endpoints.

4. If the proxy is configured for secure communication, remove all non-secure 
endpoints. Otherwise, rearrange the endpoints so that non-secure endpoints 
appear before secure endpoints.

The proxy iterates over this list and requests a connection from the Ice run time 
until one of the endpoints succeeds or all have failed. The Ice run time returns an 
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existing connection if it is suitable for reuse (see Section 34.3.3), otherwise it 
attempts to establish a new connection to the endpoint.

34.3.2 Error Handling
If a failure occurs during a connection attempt, the Ice run time tries to connect to 
all of the proxy’s remaining endpoints until either a connection is successfully 
established or all attempts have failed. At that point, the behavior of the Ice run 
time depends on the value of the Ice.RetryIntervals configuration prop-
erty (see Appendix C). The default value of this property is 0, which causes the 
Ice run time to try connecting to all of the endpoints one more time1. If no connec-
tion can be established on this second attempt, the Ice run time raises the first 
exception that caused the request to fail. For example, if the failure occurred while 
establishing a new connection, the Ice run time raises ConnectFailedException. 
Similarly, if a connection was lost during a request and could not be reestablished, 
the Ice run time raises ConnectionLostException.

34.3.3 Connection Reuse
When establishing a connection for a proxy, the Ice run time reuses an existing 
connection under the following conditions:

• The remote endpoint matches one of the proxy’s endpoints.

• The connection was established by the communicator that created the proxy.

• The connection matches the proxy’s configuration. Timeout values play an 
important role here, as an existing connection is only reused if its timeout 
value (i.e., the timeout used when the connection was established) matches the 
new proxy’s timeout (see Section 34.3.5). Similarly, a proxy configured with 
a connection id only reuses a connection if it was established by a proxy with 
the same connection id.

Multiple Endpoints

Applications must exercise caution when using proxies containing multiple 
endpoints, especially endpoints using different transports. For example, suppose a 
proxy has multiple endpoints, such as one each for TCP, SSL, and UDP. When 

1. Define the property Ice.Trace.Retry=2 to monitor these attempts.
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establishing a connection for this proxy, the Ice run time will open a new connec-
tion only if it cannot reuse an existing connection to any of the endpoints. Further-
more, the proxy in its default (i.e., non-secure) configuration gives higher priority 
to non-secure endpoints. If you want to ensure that a particular transport is used 
by a proxy, you must configure the proxy appropriately, such as by calling the 
ice_secure or ice_datagram factory methods described in 
Section 30.10.1.

Compression

The Ice run time does not consider compression settings when searching for 
existing connections to reuse; proxies whose compression settings differ can share 
the same connection (assuming all other selection criteria are satisfied).

Application Control

The default behavior of the Ice run time, which reuses connections whenever 
possible, is appropriate for many applications because it conserves resources and 
typically has little or no impact on performance. However, when a server imple-
mentation attaches semantics to a connection, the client often must be designed to 
cooperate, despite the tighter coupling it causes. For example, a server might use 
the thread-per-connection concurrency model (see Section 30.9) in order to seri-
alize the requests received over each connection. If the client wants to execute 
several requests simultaneously, it must be able to force the Ice run time to estab-
lish new connections at will.

For those situations that require more control over connection reuse, the Ice 
run time allows you to form arbitrary groups of proxies that share a connection by 
configuring them with the same connection identifier. The factory function 
ice_connectionId (see Section 30.10.1) returns a new proxy configured 
with the given connection id. Once configured, the Ice run time ensures that the 
proxy only reuses a connection that was established by a proxy with the same 
connection id (assuming all other criteria for connection reuse are also satisfied). 
A new connection is created if none with a matching id is found, which means 
each proxy could conceivably have its own connection if each were assigned a 
unique connection id.

As an example, consider the following code fragment:

// C++ 
Ice::ObjectPrx prx = comm->stringToProxy("ident:tcp -p 10000"); 
Ice::ObjectPrx g1 = prx->ice_connectionId("group1"); 
Ice::ObjectPrx g2 = prx->ice_connectionId("group2"); 
prx->ice_ping(); // Opens a new connection 
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g1->ice_ping(); // Opens a new connection 
g2->ice_ping(); // Opens a new connection 
MyInterfacePrx i1 = MyInterfacePrx::checkedCast(g1); 
i1->ice_ping(); // Reuses g1’s connection 
MyInterfacePrx i2 = MyInterfacePrx::checkedCast( 
    prx->ice_connectionId("group2")); 
i2->ice_ping(); // Reuses g2’s connection

A total of three connections are established by this example:

1. The proxy prx establishes a new connection. This proxy has the default 
connection id (an empty string).

2. The proxy g1 establishes a new connection because the only existing connec-
tion, the one established by prx, has a different connection id.

3. Similarly, the proxy g2 establishes a new connection because none of the 
existing connections have a matching connection id.

The proxy i1 inherits its connection id from g1, and therefore shares the connec-
tion for group1; i2 explicitly configured its connection id and shares the 
group2 connection with proxy g2.

34.3.4 Connection Caching
When we refer to a proxy’s connection, we actually mean the connection that the 
proxy is currently using. This connection can change over time, such that a proxy 
might use several connections during its lifetime. For example, an idle connection 
may be closed automatically and then transparently replaced by a new connection 
when activity resumes (see Section 34.4).

After establishing a connection in response to proxy activities, the Ice run time 
adds the connection to an internal pool for subsequent reuse by other proxies (see 
Section 34.3.3). The Ice run time manages the lifetime of the connection; it is 
eventually closed as described in Section 34.6. The connection is not affected by 
the lifecycle of the proxies that use it, except that the lack of activity may prompt 
the Ice run time to close the connection after a while.

Once a proxy has been associated with a connection, the proxy’s default 
behavior is to continue using that connection for all subsequent requests. In effect, 
the proxy caches the connection and attempts to use it for as long as possible in 
order to minimize the overhead of creating new connections. If the connection is 
later closed and the proxy is used again, the proxy repeats the connection-estab-
lishment procedure described in Section 34.3.1.
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There are situations in which this default caching behavior is undesirable, 
such as when a client has a proxy with multiple endpoints and wishes to balance 
the load among the servers at those endpoints. The client can disable connection 
caching by passing an argument of false to the proxy factory method 
ice_connectionCached. The new proxy returned by this method repeats the 
connection-establishment procedure outlined in Section 34.3.1 before each 
request, thereby achieving request load balancing at the expense of potentially 
higher latency. (Refer to Chapter 36 for information on other forms of load 
balancing.)

34.3.5 Timeouts
A proxy’s default configuration has a timeout value of -1, meaning that network 
activity initiated by this proxy does not time out. The timeout value affects both 
connection establishment and remote invocations. If a different timeout value is 
specified and the connection cannot be established within the allotted time, a 
ConnectTimeoutException is raised.

You can set a timeout on a proxy using the ice_timeout factory method 
(see Section 30.10.1). To use the same timeout period for all proxies, you can 
define the Ice.Override.Timeout property; in this case, any timeout estab-
lished using the ice_timeout factory method is ignored. Finally, if you want 
to specify a separate timeout value that affects only connection establishment and 
takes precedence over a proxy’s configured timeout value, you can define the 
Ice.Override.ConnectTimeout property. (See Appendix C for more 
information on these properties, and Section 30.12 for more information on invo-
cation timeouts.)

The timeout in effect when a connection is established is bound to that 
connection and affects all requests on that connection. If a request times out, all 
other outstanding requests on the same connection also time out, and the connec-
tion is closed forcefully (see Section 34.5.4). The Ice run time automatically 
retries these requests on a new connection, assuming that automatic retries are 
enabled and would not violate at-most-once semantics (see page 16).

34.4 Active Connection Management

Active Connection Management (ACM) is enabled by default and helps to improve 
scalability and conserve application resources by closing idle connections.
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34.4.1 Configuring ACM
ACM is configured separately for client (outgoing) and server (incoming) connec-
tions using the properties Ice.ACM.Client and Ice.ACM.Server, respec-
tively. The default value of Ice.ACM.Client is 60, meaning an outgoing 
connection is closed if it has not been used for sixty seconds. The default value of 
Ice.ACM.Server is zero, which disables ACM for incoming connections. Ice 
disables server ACM by default because it can cause incoming oneway requests to 
be silently discarded, as discussed in Section 30.13.

The decision to close a connection is not based only on a lack of network 
activity. For example, a request may take longer to complete than the configured 
idle time. Therefore, ACM does not close a connection if there are outgoing or 
incoming requests pending on that connection, or if a batch request is being accu-
mulated for that connection.

When it is safe to close the connection, it is done gracefully as described in 
Section 34.6. The closure is usually transparent to the client and server applica-
tions because the connection is reestablished automatically when necessary. We 
say connection closure is “usually transparent” because it is possible that the Ice 
run time will be unable to reestablish a connection for a variety of reasons (see 
Section 34.4.2). In such a situation, the application receives a ConnectFailedEx-
ception for new requests, and CloseConnectionException for pending requests.

It is important that you choose an idle time that does not result in excessive 
connection closure and reestablishment. The default value of sixty seconds is a 
reasonable default, but your requirements may determine a more appropriate 
value.

34.4.2 Disabling ACM
Since server ACM is disabled by default, you only need to set 
Ice.ACM.Client to 0 to disable ACM for all connections. In this configura-
tion a connection is not closed until its communicator is destroyed or it is closed 
explicitly by the application (see Section 34.5.4). It is important to note that 
disabling ACM in a process does not prevent a remote peer from closing a connec-
tion; all peers must be properly configured in order to truly disable ACM.

There are certain situations in which it is necessary to disable ACM. For 
example, oneway requests can be silently discarded when a connection is closed 
(see Section 30.13). As another example, ACM must be disabled when using bidi-
rectional connections. A bidirectional connection is enabled by using a router such 
as Glacier2 (see Chapter 40) or by configuring a connection explicitly (see 
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Section 34.7). If you do not disable ACM in such cases, ACM can prematurely 
close a bidirectional connection and thereby cause callbacks to fail unexpectedly.

34.5 Obtaining a Connection

Applications can gain access to an Ice object representing an established connec-
tion.

34.5.1 The Ice::Connection Interface
The Slice definition of the Connection interface is shown below:

module Ice { 
    local interface Connection { 
        void close(bool force); 
        nonmutating Object* createProxy(Identity id); 
        void setAdapter(ObjectAdapter adapter); 
        nonmutating ObjectAdapter getAdapter(); 
        void flushBatchRequests(); 
        nonmutating string type(); 
        nonmutating int timeout(); 
        nonmutating string toString(); 
    }; 
};

As indicated in the Slice definition, a connection is a local object, similar to a 
communicator or an object adapter. A connection object therefore is only usable 
within the process and cannot be accessed remotely.

The Connection interface supports the following operations:
• void close(bool force)

Explicitly closes the connection. The connection is closed gracefully if force 
is false, otherwise the connection is closed forcefully. See Section 34.5.4 for 
more information.

• Object* createProxy(Identity id)

Creates a special proxy that only uses this connection. See Section 34.7 for 
more information.

• void setAdapter(ObjectAdapter adapter)

Enables callbacks over this connection. See Section 34.7 for more informa-
tion.
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• ObjectAdapter getAdapter()

Returns the object adapter associated with this connection, or nil if no associa-
tion has been made.

• void flushBatchRequests()

Flushes any pending batch requests for this connection.
• string type()

Returns the connection type as a string, such as “tcp”.
• int timeout()

Returns the timeout value used when the connection was established.
• string toString()

Returns a readable description of the connection.

34.5.2 Clients
Clients obtain a connection by calling ice_getConnection on a proxy (see 
Section 30.10.1). If the proxy does not yet have a connection, the 
ice_getConnection method attempts to establish one. As a result, the caller 
must be prepared to handle connection failure exceptions as described in 
Section 34.3.2.

Furthermore, if the proxy denotes a collocated object and collocation optimi-
zation is enabled, calling ice_getConnection results in a CollocationOp-
timizationException. 

As an example, the C++ code below illustrates how to obtain a connection 
from a proxy and print its type:

Ice::ObjectPrx proxy = ... 
try 
{ 
    Ice::ConnectionPtr conn = proxy->ice_getConnection(); 
    cout << conn->type() << endl; 
} 
catch(const Ice::CollocationOptimizationException&) 
{ 
    cout << "collocated" << endl; 
}
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34.5.3 Servers
Servers can access a connection via the con member of the Ice::Current param-
eter passed to every operation (see Section 30.6). For collocated invocations, con 
has a nil value.

For example, this Java code shows how to invoke toString on the connection:

public int add(int a, int b, Ice.Current curr) 
{ 
    if(curr.con != null) 
    { 
        System.out.println("Request received on connection:\n" + 
                           curr.con.toString()); 
    } 
    else 
    { 
        System.out.println("collocated invocation"); 
    } 
    return a + b; 
}

Although the mapping for the Slice operation toString results in a Java method 
named _toString, the Ice run time implements toString to return the same 
value.

34.5.4 Closing a Connection
Applications should rarely need to close a connection explicitly, but those that do 
must be aware of its implications. Since there are two ways to close a connection, 
we discuss them separately.

Graceful Closure

Passing an argument of false to the close operation initiates graceful connection 
closure, as discussed in Section 34.6. The operation blocks until all pending 
outgoing requests on the connection have completed.

Forceful Closure

A forceful closure is initiated by passing an argument of true to the close opera-
tion, causing the peer to receive a ConnectionLostException.

A client must use caution when forcefully closing a connection. Any outgoing 
requests that are pending on the connection when close is invoked will fail with a 
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ForcedCloseConnectionException. Furthermore, requests that fail with this 
exception are not automatically retried.

Forceful closure can be useful as a defense against hostile clients. For 
example, the Glacier2 router implementation forcefully closes a connection from 
a client that has not first created a session.

The Ice run time interprets a CloseConnectionException to mean that it is 
safe to retry the request without violating at-most-once semantics (see page 16). If 
automatic retries are enabled, a client must only initiate a graceful close when it 
knows that there are no outgoing requests in progress on that connection, or that 
any pending requests can be safely retried.

34.6 Connection Closure

The Ice run time may close a connection for many reasons, including the situa-
tions listed below:

• When deactivating an object adapter or shutting down a communicator

• As required by active connection management (see Section 34.4)

• When initiated by an application (see Section 34.5.4)

• After a request times out (see Section 34.3.5)

• In response to an exception, such as a socket failure or protocol error.

In most cases, the Ice run time closes a connection gracefully as required by the 
Ice protocol (see Section 33.3.6). The Ice run time only closes a connection force-
fully when a timeout occurs or when the application explicitly requests it.

34.6.1 Graceful Connection Closure
Gracefully closing a connection occurs in stages:

• In the process that initiates closure, incoming and outgoing requests that are in 
progress are allowed to complete, and then a close connection message is sent 
to the peer. Any incoming requests received after closure is initiated are 
silently discarded (but may be retried, as discussed in the next bullet). An 
attempt to make a new outgoing request on the connection results in a 
CloseConnectionException and an automatic retry (if enabled).

• Upon receipt of a close connection message, the Ice run time in the peer closes 
its end of the connection. Any outgoing requests still pending on that connec-



970 Connection Management

tion fail with a CloseConnectionException. This exception indicates to the 
Ice run time that it is safe to retry those requests without violating at-most-
once semantics (see page 16), assuming automatic retries have not been 
disabled.

• After detecting that the peer has closed the connection, the initiating Ice run 
time closes the connection.

34.6.2 Impact on Oneway Invocations
As discussed in Section 30.13, oneway invocations are generally considered reli-
able because they are sent over a stream-oriented transport. However, it is quite 
possible for oneway requests to be silently discarded if a server has initiated 
graceful connection closure (see Section 34.6.1). Whereas graceful closure causes 
a discarded twoway request to receive a CloseConnectionException and eventu-
ally be retried, the sender receives no notice about a discarded oneway request.

If an application makes assumptions about the reliability of oneway requests, 
it may be necessary to control the events surrounding connection closure as much 
as possible, for example by disabling active connection management (see 
Section 34.4) and avoiding explicit connection closures.

34.7 Bidirectional Connections

An Ice connection normally allows requests to flow in only one direction. If an 
application’s design requires the server to make callbacks to a client, the server 
normally establishes a new connection to that client in order to send callback 
requests, as shown in Figure 34.1.

Figure 34.1. Callbacks in an open network.

Client Server



34.7 Bidirectional Connections 971

Unfortunately, network restrictions often prevent a server from being able to 
create a separate connection to the client, such as when the client resides behind a 
firewall as shown in Figure 34.2.

Figure 34.2. Callbacks with a firewall.

In this scenario, the firewall blocks any attempt to establish a connection directly 
to the client.

For situations such as these, a bidirectional connection offers a solution. 
Requests may flow in both directions over a bidirectional connection, enabling a 
server to send callback requests to a client over the client’s existing connection to 
the server.

There are two ways to make use of a bidirectional connection. First, you can 
use a Glacier2 router, in which case bidirectional connections are used automati-
cally. If you do not require the functionality offered by Glacier2 or you do not 
want an intermediary service between clients and servers, you can configure bidi-
rectional connections manually.

The remainder of this section discusses manual configuration of bidirectional 
connections. For more information on using a Glacier2 router, see Chapter 40.

34.7.1 Client Configuration
A client needs to perform the following steps in order to configure a bidirectional 
connection:

1. Create an object adapter to receive callback requests. This adapter does not 
require endpoints if its only purpose is to receive callbacks over bidirectional 
connections.

2. Register the callback object with the object adapter.

3. Activate the object adapter.

4. Obtain the Ice::Connection object (see Section 34.5.1) by calling 
ice_getConnection on the proxy.

Client Firewall Server
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5. Invoke setAdapter on the connection, passing the callback object adapter. 
This associates an object adapter with the connection and enables callback 
requests to be dispatched.

6. Pass the identity of the callback object to the server.

The C++ code below illustrates these steps:

    Ice::ObjectAdapterPtr adapter = 
        communicator->createObjectAdapter("CallbackAdapter"); 
    Ice::Identity ident; 
    ident.name = IceUtil::generateUUID(); 
    ident.category = ""; 
    adapter->add(new CallbackI, ident); 
    adapter->activate(); 
    proxy->ice_getConnection()->setAdapter(adapter); 
    proxy->addClient(ident);

The last step may seem unusual because a client would typically pass a proxy to 
the server, not just an identity. For example, you might be tempted to give the 
proxy returned by the adapter operation add to the server, but this would not have 
the desired effect: if the callback object adapter is configured with endpoints, the 
server would attempt to establish a separate connection to one of those endpoints, 
which defeats the purpose of a bidirectional connection. It is just as likely that the 
callback object adapter has no endpoints, in which case the proxy is of no use to 
the server.

Similarly, you might try invoking createProxy on the connection to obtain a 
proxy that the server can use for callbacks. This too would fail, because the proxy 
returned by the connection is for local use only and cannot be used by another 
process.

As you will see in the next section, the server must create its own callback 
proxy.

34.7.2 Server Configuration
A server needs to take the following steps in order to make callbacks over a bidi-
rectional connection:

1. Obtain the identity of the callback object, which is typically supplied by the 
client.

2. Create a proxy for the callback object by calling createProxy on the connec-
tion. As discussed in Section 34.5.3, the connection object is accessible as a 
member of the Ice::Current parameter to an operation implementation.
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These steps are illustrated in the C++ code below:

void addClient(const Ice::Identity& ident, 
               const Ice::Current& curr) 
{ 
    CallbackPrx client = 
        CallbackPrx::uncheckedCast(curr.con->createProxy(ident)); 
    client->notify(); 
}

The proxy returned by the connection’s createProxy operation is called a fixed 
proxy. It can only be used in the server process and cannot be marshaled or string-
ified by proxyToString. The fixed proxy is bound to the connection that created 
it, and ceases to work once that connection is closed. If the connection is closed 
prematurely, either by active connection management or by explicit action on the 
part of the application (see Section 34.4), the server can no longer make callback 
requests using that proxy. Any attempt to use the proxy again usually results in a 
CloseConnectionException.

34.7.3 Limitations
Bidirectional connections have certain limitations:

• They can only be configured for connection-oriented transports such as TCP 
and SSL.

• Most proxy factory methods have no effect on a proxy created by a connec-
tion’s createProxy operation. The proxy is bound to an existing connection, 
therefore the proxy reflects the connection’s configuration. For example, it is 
not possible to change the timeout value of such a proxy. Similarly, it is not 
possible to change the proxy’s security configuration: if the incoming connec-
tion is secure, then the proxy must be secure, and cannot be changed to be 
insecure. However, it is legal to change between oneway and twoway invoca-
tions.

• A connection established from a Glacier2 router to a server is not configured 
for bidirectional use. Only the connection from a client to the router is bidirec-
tional. However, the client must not attempt to manually configure a bidirec-
tional connection to a router, as this is handled internally by the Ice run time.

• bidirectional connections are not compatible with active connection manage-
ment (see Section 34.4).
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34.7.4 Threading Considerations
The Ice run time normally creates two thread pools for processing network traffic 
on connections: the client thread pool manages outgoing connections and the 
server thread pool manages incoming connections. All of the object adapters in a 
server share the same thread pool by default, but an object adapter can also be 
configured to have its own thread pool. The default size of the client and server 
thread pools is one.

The client thread pool is normally waiting for the replies to pending requests. 
When a client configures an outgoing connection for bidirectional requests, the 
client thread pool also becomes responsible for processing requests received over 
that connection.

Similarly, the server thread pool normally dispatches requests from clients. If 
a server uses a connection to send callback requests, then the server thread pool 
must also process the replies to those requests.

You may need to increase the maximum size of a thread pool if you require 
more concurrency or to avoid deadlocks if you are using nested callbacks.

Refer to Section 30.9 for more information on the Ice threading model.

34.7.5 Example
An example that demonstrates how to configure a bidirectional connection is 
provided in the directory demo/Ice/bidir.

34.8 Summary

Most Ice applications benefit from active connection management and transparent 
connection establishment and thus need not concern themselves with the details of 
connections. Not all Ice applications can be so fortunate, and for those applica-
tions Ice provides convenient access to connections that enables developers to 
address the realities of today’s deployment environments.
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Chapter 35
Dynamic Ice

35.1 Chapter Overview

In this chapter we present a collection of Ice interfaces for a dynamic invocation 
and dispatch model. Section 35.2 discusses the streaming interface for serializing 
Slice types, an essential tool when implementing dynamic invocation and 
dispatch. The synchronous language mappings for the dynamic model are 
described in Section 35.3, while Section 35.4 covers the asynchronous language 
mappings.

35.2 Streaming Interface

Ice provides a convenient interface for streaming Slice types to and from a 
sequence of bytes. You can use this interface in many situations, such as when 
serializing types for persistent storage, and when using Ice’s dynamic invocation 
and dispatch interfaces (see Section 35.3).

The streaming interface is not defined in Slice, but rather is a collection of 
native classes provided by each language mapping1. A default implementation of 

1. The streaming interface is currently supported in C++, Java, C#, and VisualBasic.
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the interface uses the Ice encoding as specified in Section 33.2, but other imple-
mentations are possible.

There are two primary classes in the streaming interface: InputStream and 
OutputStream. As you might guess, InputStream is used to extract Slice 
types from a sequence of bytes, while OutputStream is used to convert Slice 
types into a sequence of bytes. The classes provide the functions necessary to 
manipulate all of the core Slice types:

• Primitives (bool, int, string, etc.)

• Sequences of primitives

• Proxies

• Objects

The classes also provide functions that handle various details of the Ice encoding. 
Using these functions, you can manually insert and extract constructed types, such 
as dictionaries and structures, but doing so is tedious and error-prone. To make 
insertion and extraction of constructed types easier, the Slice compilers can 
optionally generate helper functions that manage the low-level details for you.

The remainder of this section describes the streaming interface for each 
supported language mapping. To properly use the streaming interface, you should 
be familiar with the Ice encoding (see Section 33.2). An example that demon-
strates the use of the streaming interface is located in demo/Ice/invoke in the 
Ice distribution.

35.2.1 C++ Stream Interface
We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

namespace Ice { 
    InputStreamPtr createInputStream( 
        const Ice::CommunicatorPtr& communicator, 
        const std::vector<Ice::Byte>& data); 
}

The InputStream class is shown below.
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namespace Ice { 
    class InputStream : ... { 
    public: 
        Ice::CommunicatorPtr communicator() const; 
 
        void sliceObjects(bool slice); 
 
        bool readBool(); 
        std::vector< bool > readBoolSeq(); 
 
        Ice::Byte readByte(); 
        std::vector< Ice::Byte > readByteSeq(); 
 
        Ice::Short readShort(); 
        std::vector< Ice::Short > readShortSeq(); 
 
        Ice::Int readInt(); 
        std::vector< Ice::Int > readIntSeq(); 
 
        Ice::Long readLong(); 
        std::vector< Ice::Long > readLongSeq(); 
 
        Ice::Float readFloat(); 
        std::vector< Ice::Float > readFloatSeq(); 
 
        Ice::Double readDouble(); 
        std::vector< Ice::Double > readDoubleSeq(); 
 
        std::string readString(); 
        std::vector< std::string > readStringSeq(); 
 
        Ice::Int readSize(); 
 
        Ice::ObjectPrx readProxy(); 
 
        void readObject(const Ice::ReadObjectCallbackPtr& cb); 
 
        std::string readTypeId(); 
 
        void throwException(); 
 
        void startSlice(); 
        void endSlice(); 
        void skipSlice(); 
 
        void startEncapsulation(); 
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        void endEncapsulation(); 
 
        void readPendingObjects(); 
    }; 
    typedef ... InputStreamPtr; 
}

Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void sliceObjects(bool slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 33.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception 
NoObjectFactoryException is raised. The default behavior is to allow 
slicing.

• Ice::Int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function extracts a size and returns it as an integer.

• Ice::ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 982).

• void readObject(const Ice::ReadObjectCallbackPtr &) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 33.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

namespace Ice { 
    class ReadObjectCallback : ... { 
    public: 
        virtual void invoke(const Ice::ObjectPtr&) = 0; 
    }; 
    typedef ... ReadObjectCallbackPtr; 
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}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 982).

• std::string readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function returns the type id at the stream’s current posi-
tion.

• void throwException() 

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.

• void startSlice()  
void endSlice()  
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 33.2.11 for more information.

• void startEncapsulation()  
void endEncapsulation()

Start and end an encapsulation, respectively. See Section 33.2.2 for more 
information.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:
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std::vector< Ice::Byte > data = ... 
Ice::InputStreamPtr in = 
    Ice::createInputStream(communicator, data); 
bool b = in->readBool(); 
std::vector< std::string > seq = in->readStringSeq();

OutputStream

An OutputStream is created using the following function:

namespace Ice { 
    OutputStreamPtr createOutputStream( 
        const Ice::CommunicatorPtr& communicator); 
}

The OutputStream class is shown below.

namespace Ice { 
    class OutputStream : ... { 
    public: 
        Ice::CommunicatorPtr communicator() const; 
 
        void writeBool(bool v); 
        void writeBoolSeq(const std::vector<bool>& v); 
 
        void writeByte(Ice::Byte v); 
        void writeByteSeq(const std::vector<Ice::Byte>& v); 
 
        void writeShort(Ice::Short v); 
        void writeShortSeq(const std::vector<Ice::Short>& v); 
 
        void writeInt(Ice::Int v); 
        void writeIntSeq(const std::vector<Ice::Int>& v); 
 
        void writeLong(Ice::Long v); 
        void writeLongSeq(const std::vector<Ice::Long>& v); 
 
        void writeFloat(Ice::Float v); 
        void writeFloatSeq(const std::vector<Ice::Float>& v); 
 
        void writeDouble(Ice::Double v); 
        void writeDoubleSeq(const std::vector<Ice::Double>& v); 
 
        void writeString(const std::string& v); 
        void writeStringSeq(const std::vector<std::string>& v); 
 
        void writeSize(Ice::Int sz); 
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        void writeProxy(const Ice::ObjectPrx& v); 
 
        void writeObject(const Ice::ObjectPtr& v); 
 
        void writeTypeId(const std::string& id); 
 
        void writeException(const Ice::UserException& ex); 
 
        void startSlice(); 
        void endSlice(); 
 
        void startEncapsulation(); 
        void endEncapsulation(); 
 
        void writePendingObjects(); 
 
        void finished(std::vector<Ice::Byte>& data); 
    }; 
}

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void writeSize(Ice::Int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function converts the given integer into the proper 
encoded representation.

• void writeObject(const Ice::ObjectPtr & v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 33.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.

• void writeTypeId(const std::string & id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function adds the given type id to the table and encodes 
the type id.

• void writeException(const Ice::UserException & ex) 

Inserts a user exception.
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• void startSlice()  
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 33.2.11).

• void startEncapsulation()  
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 33.2.2).

• void writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during writ-
eObject. This member function must only be called once.

• void finished(std::vector< Ice::Byte > & data) 

Indicates that marshaling is complete. The given byte sequence is filled with 
the encoded data. This member function must only be called once.

Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

std::vector< Ice::Byte > data; 
std::vector< std::string > seq; 
seq.push_back("Ice"); 
seq.push_back("rocks!"); 
Ice::OutputStreamPtr out = Ice::createOutputStream(communicator); 
out->writeBool(true); 
out->writeStringSeq(seq); 
out->finished(data);

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 6.15) option-
ally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:

module M { 
    sequence<...> Seq; 
    dictionary<...> Dict; 
    struct S { 
        ... 
    }; 
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    enum E { ... }; 
    class C { 
        ... 
    }; 
};

The Slice compiler generates the corresponding helper functions shown below:

namespace M { 
void ice_readSeq(const Ice::InputStreamPtr&, Seq&); 
void ice_writeSeq(const Ice::OutputStreamPtr&, const Seq&); 
 
void ice_readDict(const Ice::InputStreamPtr&, Dict&); 
void ice_writeDict(const Ice::OutputStreamPtr&, const Dict&); 
 
void ice_readS(const Ice::InputStreamPtr&, S&); 
void ice_writeS(const Ice::OutputStreamPtr&, const S&); 
 
void ice_readE(const Ice::InputStreamPtr&, E&); 
void ice_writeE(const Ice::OutputStreamPtr&, E); 
 
void ice_readC(const Ice::InputStreamPtr&, CPtr&); 
void ice_writeC(const Ice::OutputStreamPtr&, const CPtr&); 
 
void ice_readCPrx(const Ice::InputStreamPtr&, CPrx&); 
void ice_writeCPrx(const Ice::OutputStreamPtr&, const CPrx&); 
}

In addition, the Slice compiler generates the following member functions for 
struct types:

struct S { 
    ... 
    void ice_read(const Ice::InputStreamPtr&); 
    void ice_write(const Ice::OutputStreamPtr&); 
};

Note that the compiler does not generate helper functions for sequences of primi-
tive types because the stream classes already provide this functionality. Also be 
aware that a call to ice_readC does not result in the immediate extraction of an 
Ice object. The given reference to CPtr must remain valid until readPendin-
gObjects is invoked on the input stream.
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Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 26) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 33.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

namespace Ice { 
    class ObjectReader : public Ice::Object { 
    public: 
        virtual void read(const InputStreamPtr&, bool) = 0; 
        // ... 
    }; 
    typedef ... ObjectReaderPtr; 
 
    class ObjectWriter : public Ice::Object { 
    public: 
        virtual void write(const OutputStreamPtr&) const = 0; 
        // ... 
    }; 
    typedef ... ObjectWriterPtr; 
}

A foreign Ice object is inserted into a stream using the following technique:

1. A C++ “wrapper” class is derived from ObjectWriter. This class wraps 
the foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice::Object.) Eventu-
ally, the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 33.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A C++ “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.
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2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 6.14.5).

3. A C++ callback class is derived from ReadObjectCallback. The imple-
mentation of invoke expects its argument to be either nil or an instance of 
the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 33.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

35.2.2 Java Stream Interface
We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

package Ice; 
 
public class Util { 
    public static InputStream 
    createInputStream(Communicator communicator, byte[] data); 
}

The InputStream interface is shown below.

package Ice; 
 
public interface InputStream { 
    Communicator communicator(); 
 
    void sliceObjects(boolean slice); 
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    boolean readBool(); 
    boolean[] readBoolSeq(); 
 
    byte readByte(); 
    byte[] readByteSeq(); 
 
    short readShort(); 
    short[] readShortSeq(); 
 
    int readInt(); 
    int[] readIntSeq(); 
 
    long readLong(); 
    long[] readLongSeq(); 
 
    float readFloat(); 
    float[] readFloatSeq(); 
 
    double readDouble(); 
    double[] readDoubleSeq(); 
 
    String readString(); 
    String[] readStringSeq(); 
 
    int readSize(); 
 
    ObjectPrx readProxy(); 
 
    void readObject(ReadObjectCallback cb); 
 
    String readTypeId(); 
 
    void throwException() throws UserException; 
 
    void startSlice(); 
    void endSlice(); 
    void skipSlice(); 
 
    void startEncapsulation(); 
    void endEncapsulation(); 
 
    void readPendingObjects(); 
 
    void destroy(); 
}
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Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void sliceObjects(boolean slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 33.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception 
NoObjectFactoryException is raised. The default behavior is to allow 
slicing.

• int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function extracts a size and returns it as an integer.

• Ice.ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 982).

• void readObject(ReadObjectCallback cb) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 33.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

package Ice; 
 
public interface ReadObjectCallback { 
    void invoke(Ice.Object obj); 
}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 991).
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• String readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function returns the type id at the stream’s current posi-
tion.

• void throwException() throws UserException

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.

• void startSlice()  
void endSlice()  
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 33.2.11 for more information.

• void startEncapsulation()  
void endEncapsulation()

Start and end an encapsulation, respectively. See Section 33.2.2 for more 
information.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:

byte[] data = ... 
Ice.InputStream in = 
    Ice.Util.createInputStream(communicator, data); 
try { 
    boolean b = in.readBool(); 
    String[] seq = in.readStringSeq(); 
} finally { 
    in.destroy(); 
}
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OutputStream

An OutputStream is created using the following function:

package Ice; 
 
public class Util { 
    public static OutputStream createOutputStream( 
        Communicator communicator); 
}

The OutputStream class is shown below.

package Ice; 
 
public interface OutputStream { 
    Communicator communicator(); 
 
    void writeBool(boolean v); 
    void writeBoolSeq(boolean[] v); 
 
    void writeByte(byte v); 
    void writeByteSeq(byte[] v); 
 
    void writeShort(short v); 
    void writeShortSeq(short[] v); 
 
    void writeInt(int v); 
    void writeIntSeq(int[] v); 
 
    void writeLong(long v); 
    void writeLongSeq(long[] v); 
 
    void writeFloat(float v); 
    void writeFloatSeq(float[] v); 
 
    void writeDouble(double v); 
    void writeDoubleSeq(double[] v); 
 
    void writeString(String v); 
    void writeStringSeq(String[] v); 
 
    void writeSize(int sz); 
 
    void writeProxy(ObjectPrx v); 
 
    void writeObject(Ice.Object v); 
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    void writeTypeId(String id); 
 
    void writeException(UserException ex); 
 
    void startSlice(); 
    void endSlice(); 
 
    void startEncapsulation(); 
    void endEncapsulation(); 
 
    void writePendingObjects(); 
 
    byte[] finished(); 
    void destroy(); 
}

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void writeSize(int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function converts the given integer into the proper 
encoded representation.

• void writeObject(Ice.Object v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 33.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.

• void writeTypeId(String id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function adds the given type id to the table and encodes 
the type id.

• void writeException(UserException ex) 

Inserts a user exception.

• void startSlice()  
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 33.2.11).
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• void startEncapsulation()  
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 33.2.2).

• void writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during writ-
eObject. This member function must only be called once.

• byte[] finished() 

Indicates that marshaling is complete and returns the encoded byte sequence. 
This member function must only be called once.

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

final String[] seq = { "Ice", "rocks!" }; 
Ice.OutputStream out = Ice.Util.createOutputStream(communicator); 
try { 
    out.writeBool(true); 
    out.writeStringSeq(seq); 
    byte[] data = out.finished(); 
} finally { 
    out.destroy(); 
}

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 10.16) option-
ally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:

module M { 
    sequence<...> Seq; 
    dictionary<...> Dict; 
    struct S { 
        ... 
    }; 
    enum E { ... }; 
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    class C { 
        ... 
    }; 
};

The Slice compiler generates the corresponding helper functions shown below:

package M; 
 
public class SeqHelper { 
    public static T[] read(Ice.InputStream in); 
    public static void write(Ice.OutputStream out, T[] v); 
} 
 
public class DictHelper { 
    public static java.util.Map read(Ice.InputStream in); 
    public static void write(Ice.OutputStream out, 
                             java.util.Map v); 
} 
 
public class SHelper { 
    public static S read(Ice.InputStream in); 
    public static void write(Ice.OutputStream out, S v); 
} 
 
public class EHelper { 
    public static E read(Ice.InputStream in); 
    public static void write(Ice.OutputStream out, E v); 
} 
 
public class CHelper { 
    public static void read(Ice.InputStream in, CHolder h); 
    public static void write(Ice.OutputStream out, C v); 
} 
 
public class CPrxHelper { 
    public static CPrx read(Ice.InputStream in); 
    public static void write(Ice.OutputStream out, CPrx v); 
}

In addition, the Slice compiler generates the following member functions for 
struct and enum types:

public class S ... { 
    ... 
    public void ice_read(Ice.InputStream in); 
    public void ice_write(Ice.OutputStream out); 
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}; 
public class E... { 
    ... 
    public void ice_read(Ice.InputStream in); 
    public void ice_write(Ice.OutputStream out); 
}

Be aware that a call to CHelper.read does not result in the immediate extrac-
tion of an Ice object. The value member of the given CHolder object is 
updated when readPendingObjects is invoked on the input stream.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 26) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 33.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

package Ice; 
 
public abstract class ObjectReader extends ObjectImpl { 
    public abstract void read(InputStream in, boolean rid); 
    // ... 
} 
 
public abstract class ObjectWriter extends ObjectImpl { 
    public abstract void write(OutputStream out); 
    // ... 
}

A foreign Ice object is inserted into a stream using the following technique:

1. A Java “wrapper” class is derived from ObjectWriter. This class wraps 
the foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice.Object.) Eventually, 
the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 33.2.11.
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It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A Java “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 10.14.4).

3. A Java callback class implements the ReadObjectCallback interface. 
The implementation of invoke expects its argument to be either null or an 
instance of the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 33.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

35.2.3 C# Stream Interface
We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

namespace Ice 
{ 
    public sealed class Util 
    { 
        public static InputStream createInputStream( 
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                                    Communicator communicator, 
                                    byte[] bytes); 
    } 
}

The InputStream interface is shown below.

namespace Ice 
{ 
    public interface InputStream 
    { 
        Communicator communicator(); 
 
        void sliceObjects(bool slice); 
 
        bool readBool(); 
        bool[] readBoolSeq(); 
 
        byte readByte(); 
        byte[] readByteSeq(); 
 
        short readShort(); 
        short[] readShortSeq(); 
 
        int readInt(); 
        int[] readIntSeq(); 
 
        long readLong(); 
        long[] readLongSeq(); 
 
        float readFloat(); 
        float[] readFloatSeq(); 
 
        double readDouble(); 
        double[] readDoubleSeq(); 
 
        string readString(); 
        string[] readStringSeq(); 
 
        int readSize(); 
 
        ObjectPrx readProxy(); 
 
        void readObject(ReadObjectCallback cb); 
 
        string readTypeId(); 
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        void throwException(); 
 
        void startSlice(); 
        void endSlice(); 
        void skipSlice(); 
 
        void startEncapsulation(); 
        void endEncapsulation(); 
 
        void readPendingObjects(); 
 
        void destroy(); 
    } 
}

Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void sliceObjects(boolean slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 33.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception 
NoObjectFactoryException is raised. The default behavior is to allow 
slicing.

• int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function extracts a size and returns it as an integer.

• Ice.ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 1001).

• void readObject(ReadObjectCallback cb) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 33.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

namespace Ice 
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{ 
    public interface ReadObjectCallback 
    { 
        void invoke(Ice.Object obj); 
    } 
}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 1001).

• string readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function returns the type id at the stream’s current posi-
tion.

• void throwException()

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.

• void startSlice()  
void endSlice()  
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 33.2.11 for more information.

• void startEncapsulation()  
void endEncapsulation()

Start and end an encapsulation, respectively. See Section 33.2.2 for more 
information.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).
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• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:

byte[] data = ... 
Ice.InputStream inStream = 
    Ice.Util.createInputStream(communicator, data); 
try { 
    bool b = inStream.readBool(); 
    string[] seq = inStream.readStringSeq(); 
} finally { 
    inStream.destroy(); 
}

OutputStream

An OutputStream is created using the following function:

namespace Ice 
{ 
    public sealed class Util 
    { 
        public static OutputStream createOutputStream( 
                                    Communicator communicator); 
    } 
}

The OutputStream class is shown below.

namespace Ice 
{ 
    public interface OutputStream 
    { 
        Communicator communicator(); 
 
        void writeBool(bool v); 
        void writeBoolSeq(bool[] v); 
 
        void writeByte(byte v); 
        void writeByteSeq(byte[] v); 
 
        void writeShort(short v); 
        void writeShortSeq(short[] v); 
 
        void writeInt(int v); 
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        void writeIntSeq(int[] v); 
 
        void writeLong(long v); 
        void writeLongSeq(long[] v); 
 
        void writeFloat(float v); 
        void writeFloatSeq(float[] v); 
 
        void writeDouble(double v); 
        void writeDoubleSeq(double[] v); 
 
        void writeString(string v); 
        void writeStringSeq(string[] v); 
 
        void writeSize(int sz); 
 
        void writeProxy(ObjectPrx v); 
 
        void writeObject(Ice.Object v); 
 
        void writeTypeId(string id); 
 
        void writeException(UserException ex); 
 
        void startSlice(); 
        void endSlice(); 
 
        void startEncapsulation(); 
        void endEncapsulation(); 
 
        void writePendingObjects(); 
 
        byte[] finished(); 
        void destroy(); 
    } 
}

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void writeSize(int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function converts the given integer into the proper 
encoded representation.
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• void writeObject(Ice.Object v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 33.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.

• void writeTypeId(string id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function adds the given type id to the table and encodes 
the type id.

• void writeException(UserException ex) 

Inserts a user exception.

• void startSlice()  
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 33.2.11).

• void startEncapsulation()  
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 33.2.2).

• void writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during writ-
eObject. This member function must only be called once.

• byte[] finished() 

Indicates that marshaling is complete and returns the encoded byte sequence. 
This member function must only be called once.

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

string[] seq = { "Ice", "rocks!" }; 
Ice.OutputStream outStream 
    = Ice.Util.createOutputStream(communicator); 
try { 
    outStream.writeBool(true); 
    outStream.writeStringSeq(seq); 
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    byte[] data = outStream.finished(); 
} finally { 
    outStream.destroy(); 
}

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 14.16) option-
ally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:

module M { 
    sequence<...> Seq; 
    dictionary<...> Dict; 
    struct S { 
        ... 
    }; 
    enum E { ... }; 
    class C { 
        ... 
    }; 
};

The Slice compiler generates the corresponding helper functions shown below:

namespace M 
{ 
    public sealed class SeqHelper 
    { 
        public static int[] read(Ice.InputStream _in); 
        public static void write(Ice.OutputStream _out, int[] _v); 
    } 
 
    public sealed class DictHelper 
    { 
        public static Dict read(Ice.InputStream _in); 
        public static void write(Ice.OutputStream _out, Dict _v); 
    } 
 
    public sealed class SHelper 
    { 
        public static S read(Ice.InputStream _in); 
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        public static void write(Ice.OutputStream _out, S _v); 
    } 
 
    public sealed class EHelper 
    { 
        public static M.E read(Ice.InputStream _in); 
        public static void write(Ice.OutputStream _out, M.E _v); 
    } 
 
    public sealed class CHelper 
    { 
        public CHelper(Ice.InputStream _in); 
        public void read(); 
        public static void write(Ice.OutputStream _out, C _v); 
        public M.C value 
        { 
            get; 
        } 
        // ... 
    } 
 
    public sealed class CPrxHelper : Ice.ObjectPrxHelperBase, CPrx 
    { 
        public static CPrx read(Ice.InputStream _in); 
        public static void write(Ice.OutputStream _out, CPrx _v); 
    } 
}

In addition, the Slice compiler generates the following member functions for 
struct types:

public struct S { 
    ... 
    public void ice_read(Ice.InputStream in); 
    public void ice_write(Ice.OutputStream out); 
}

Be aware that a call to CHelper.read does not result in the immediate extrac-
tion of an Ice object. The value property of the given CHelper object is 
updated when readPendingObjects is invoked on the input stream.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 26) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
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PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 33.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

namespace Ice 
{ 
    public abstract class ObjectReader : ObjectImpl 
    { 
        public abstract void read(InputStream inStream, bool rid); 
        // ... 
    } 
 
    public abstract class ObjectWriter : ObjectImpl 
    { 
        public abstract void write(OutputStream outStream); 
        // ... 
    } 
}

A foreign Ice object is inserted into a stream using the following technique:

1. A C# “wrapper” class is derived from ObjectWriter. This class wraps the 
foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice.Object.) Eventually, 
the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 33.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A C# “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 10.14.4).
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3. A C# callback class implements the ReadObjectCallback interface. The 
implementation of invoke expects its argument to be either null or an 
instance of the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 33.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

35.2.4 Visual Basic Stream Interface
We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

Namespace Ice 
 
    Public NotInheritable Class Util 
        Public Shared Function createInputStream( _ 
                        ByVal communicator As Ice.Communicator, _ 
                        ByVal bytes As Byte()) As Ice.InputStream 
    End Class 
 
End Namespace

The InputStream interface is shown below.

Namespace Ice 
    Public Interface InputStream 
        Function communicator() As Communicator 
 
        Sub sliceObjects(ByVal slice As Boolean) 
 
        Function readBool() As Boolean 
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        Function readBoolSeq As Boolean() 
 
        Function readByte As Byte 
        Function readByteSeq As Byte() 
 
        Function readShort As Short 
        Function readShortSeq As Short() 
 
        Function readInt As Integer 
        Function readIntSeq As Integer() 
 
        Function readLong As Long 
        Function readLongSeq As Long() 
 
        Function readFloat As Single 
        Function readFloatSeq As Single() 
 
        Function readDouble As Double 
        Function readDoubleSeq As Double() 
 
        Function readString As String 
        Function readStringSeq As String() 
 
        Function readSize As Integer 
 
        Function readProxy As ObjectPrx 
 
        Function readObject(ByVal cb As ReadObjectCallback) 
 
        Function readTypeId() 
 
        Sub throwException() 
 
        Sub startSlice() 
        Sub endSlice() 
        Sub skipSlice() 
 
        Sub startEncapsulation() 
        Sub endEncapsulation() 
 
        Sub readPendingObject() 
 
        Sub destroy() 
    End Interface 
End Namespace
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Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• Sub sliceObjects(ByVal slice As Boolean)

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 33.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception 
NoObjectFactoryException is raised. The default behavior is to allow 
slicing.

• Function readSize() As Integer

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function extracts a size and returns it as an integer.

• Function readProxy() As Ice.ObjectPrx

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 1010).

• Sub readObject(ByVal cb As ReadObjectCallback) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 33.2.11). The readObject procedure accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

Namespace Ice 
 
    Public Interface ReadObjectCallback 
        Sub invoke(ByVal obj As Ice.Object) 
    End Interface 
 
End Namespace

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 1010).
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• Function readTypeId() As String

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function returns the type id at the stream’s current posi-
tion.

• Sub throwException()

This procedure extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.

• Sub startSlice()  
Sub endSlice()  
Sub skipSlice()

Start, end, and skip a slice of member data, respectively. These procedures are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 33.2.11 for more information.

• Sub startEncapsulation()  
Sub endEncapsulation()

Start and end an encapsulation, respectively. See Section 33.2.2 for more 
information.

• Sub readPendingObjects() 

An application must call this procedure after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

• Sub destroy() 

Applications must call this procedure in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:

Dim data As Byte() = ... 
Dim inStream As Ice.InputStream = 
        Ice.Util.createInputStream(communicator, data) 
Try 
    Dim b As Boolean = inStream.readBool() 
    Dim seq As String() = inStream.readStringSeq() 
Catch ex As Exception 
    inStream.destroy() 
End Try
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OutputStream

An OutputStream is created using the following function:

Namespace Ice 
 
    Public NotInheritable Class Util 
        Public Shared Function createOutputStream( _ 
                        ByVal communicator As Ice.Communicator) _ 
                        As Ice.OutputStream 
    End Class 
 
End Namespace

The OutputStream class is shown below.

Namespace Ice 
 
    Public Interface OutputStream 
        Function communicator() As Communicator 
 
        Sub writeBool(ByVal v As Boolean) 
        Sub writeBoolSeq(VyVal v As Boolean()) 
 
        Sub writeByte(ByVal v As Byte) 
        Sub writeByteSeq(ByVal v As Byte()) 
 
        Sub writeShort(ByVal v As Short) 
        Sub writeShortSeq(ByVal v As Short()) 
 
        Sub writeInt(ByVal v As Integer) 
        Sub writeIntSeq(ByVal v As Integer()) 
 
        Sub writeLong(ByVal v As Long) 
        Sub writeLongSeq(ByVal v As Long()) 
 
        Sub writeFloat(ByVal v As Single) 
        Sub writeFloatSeq(ByVal v As Single()) 
 
        Sub writeDouble(ByVal v As Double) 
        Sub writeDoubleSeq(ByVal v As Double()) 
 
        Sub writeString(ByVal v As String) 
        Sub writeStringSeq(ByVal v As String()) 
 
        Sub writeSize(ByVal sz As Integer) 
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        Sub writeProxy(ByVal v As ObjectPrx) 
 
        Sub writeObject(ByVal v As Ice.Object) 
 
        Sub writeTypeId(ByVal id As String) 
 
        Sub writeException(ByVal ex As UserException) 
 
        Sub startSlice() 
        Sub endSlice() 
 
        Sub startEncapsulation() 
        Sub endEncapsulation() 
 
        Sub writePendingObjects() 
 
        Function finished() As Byte() 
        Sub destroy() 
    End Interface 
 
End Namespace

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• Sub writeSize(ByVal sz As Integer) 

The Ice encoding has a compact representation to indicate size (see 
Section 33.2.1). This function converts the given integer into the proper 
encoded representation.

• Sub writeObject(ByVal v As Ice.Object) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 33.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.

• Sub writeTypeId(ByVal id As String) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 33.2.11). This function adds the given type id to the table and encodes 
the type id.

• Sub writeException(ByVal ex As UserException) 

Inserts a user exception.
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• Sub startSlice()  
Sub endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 33.2.11).

• Sub startEncapsulation()  
Sub endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 33.2.2).

• Sub writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during writ-
eObject. This member function must only be called once.

• Function finished() As Byte()

Indicates that marshaling is complete and returns the encoded byte sequence. 
This member function must only be called once.

• Sub destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

Dim seq As String() = ("Ice", "rocks!") 
Dim outStream As Ice.OutputStream 
        = Ice.Util.createOutputStream(communicator) 
Try 
    outStream.writeBool(True) 
    outStream.writeStringSeq(seq) 
    Dim data As Byte() = outStream.finished() 
Catch ex As Exception 
    outStream.destroy() 
End Try

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 18.16) option-
ally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:
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module M { 
    sequence<...> Seq; 
    dictionary<...> Dict; 
    struct S { 
        ... 
    }; 
    enum E { ... }; 
    class C { 
        ... 
    }; 
};

The Slice compiler generates the corresponding helper functions shown below:

Namespace M 
 
    Public NotInheritable Class SeqHelper 
        Public Shared Function read( _ 
                        ByVal __in As Ice.InputStream) _ 
                        As Integer() 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
                        ByVal __v As Integer()) 
    End Class 
 
    Public NotInheritable Class DictHelper 
        Public Shared Function read( _ 
                        ByVal __in As Ice.InputStream) As Dict 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
                        ByVal __v As Dict) 
    End Class 
 
    Public NotInheritable Class SHelper 
        Public Shared Function read( _ 
                        ByVal __in As Ice.InputStream) As S 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
                        ByVal __v As S) 
    End Class 
 
    Public NotInheritable Class EHelper 
        Public Shared Function read( _ 
                        ByVal __in As Ice.InputStream) As M.E 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
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                        ByVal __v As M.E) 
    End Class 
 
    Public NotInheritable Class CHelper 
        Public Sub New(ByVal __in As Ice.InputStream) 
 
        Public Sub read() 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
                        ByVal __v As C) 
 
        Public ReadOnly Property value() As M.C 
    End Class 
 
    Public NotInheritable Class CPrxHelper 
        Inherits Ice.ObjectPrxHelperBase 
        Implements CPrx 
 
        Public Shared Function read( _ 
                        ByVal __in As Ice.InputStream) As CPrx 
        Public Shared Sub write( _ 
                        ByVal __out As Ice.OutputStream, _ 
                        ByVal __v As CPrx) 
    End Class 
 
End Namespace

In addition, the Slice compiler generates the following member functions for 
struct types:

Public Structure S { 
    ... 
    Public Sub ice_read(ByVal in as Ice.InputStream); 
    Public Sub ice_write(ByVal out as Ice.OutputStream); 
}

Be aware that a call to CHelper.read does not result in the immediate extrac-
tion of an Ice object. The value property of the given CHelper object is 
updated when readPendingObjects is invoked on the input stream.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 26) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
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as directed by Section 33.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

Namespace Ice 
 
    Public MustInherit Class ObjectReader 
        Inherits ObjectImpl 
        Public MustOverride Sub read( _ 
                        ByVal inStream As InputStream, _ 
                        ByVal rid As Boolean) 
        ' ... 
    End Class 
 
    public MustInherit Class ObjectWriter 
        Inherits ObjectImpl 
        Public MustOverride Sub write( _ 
                        ByVal outStraem As OutputStream) 
        ' ... 
    End Class 
 
End Namespace

A foreign Ice object is inserted into a stream using the following technique:

1. A VB “wrapper” class is derived from ObjectWriter. This class wraps the 
foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice.Object.) Eventually, 
the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 33.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A VB “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 10.14.4).
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3. A VB callback class implements the ReadObjectCallback interface. The 
implementation of invoke expects its argument to be either null or an 
instance of the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 33.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

35.3 Dynamic Invocation and Dispatch

Ice applications generally use the static invocation model, in which the application 
invokes a Slice operation by calling a member function on a generated proxy 
class. In the server, the static dispatch model behaves similarly: the request is 
dispatched to the servant as a statically-typed call to a member function. Under-
neath this statically-typed facade, the Ice run times in the client and server are 
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exchanging sequences of bytes representing the encoded request arguments and 
results. These interactions are illustrated in Figure 35.1.

Figure 35.1. Interactions in a static invocation.

1. The client initiates a call to the Slice operation add by calling the member 
function add on a proxy.

2. The generated proxy class marshals the arguments into a sequence of bytes 
and transmits them to the server.

3. In the server, the generated servant class unmarshals the arguments and calls 
add on the subclass.

4. The servant marshals the results and returns them to the client.

5. Finally, the client’s proxy unmarshals the results and returns them to the caller.

The application is blissfully unaware of this low-level machinery, and in the 
majority of cases that is a distinct advantage. In some situations, however, an 
application can leverage this machinery to accomplish tasks that are not possible 
in a statically-typed environment. Ice provides the dynamic invocation and 
dispatch models for these situations, allowing applications to send and receive 
requests as encoded sequences of bytes instead of statically-typed arguments.

The dynamic invocation and dispatch models offer several unique advantages 
to Ice services that forward requests from senders to receivers, such as Glacier2 
(Chapter 40) and IceStorm (Chapter 42). For these services, the request arguments 
are an opaque byte sequence that can be forwarded without the need to unmarshal 

Client ServantProxy Server

1. add(x, y)

2. request(bytes)

3. add(x, y)

4. reply(bytes)

5. add(x, y)
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and remarshal the arguments. Not only is this significantly more efficient than a 
statically-typed implementation, it also allows intermediaries such as Glacier2 and 
IceStorm to be ignorant of the Slice types in use by senders and receivers.

Another use case for the dynamic invocation and dispatch models is scripting 
language integration. The Ice extensions for Python and PHP invoke Slice opera-
tions using the dynamic invocation model; the request arguments are encoded 
using the streaming interfaces from Section 35.2.

It may be difficult to resist the temptation of using a feature like dynamic invo-
cation or dispatch, but we recommend that you carefully consider the risks and 
complexities of such a decision. For example, an application that uses the 
streaming interface to manually encode and decode request arguments has a high 
risk of failure if the argument signature of an operation changes. In contrast, this 
risk is greatly reduced in the static invocation and dispatch models because errors 
in a strongly-typed language are found early, during compilation. Therefore, we 
caution you against using this capability except where its advantages significantly 
outweigh the risks.

35.3.1 Dynamic Invocation using ice_invoke
Dynamic invocation is performed using the proxy member function 
ice_invoke, defined in the proxy base class ObjectPrx. If we were to define 
the function in Slice, it would look like this:

sequence<byte> ByteSeq; 
 
bool ice_invoke( 
    string operation, 
    Ice::OperationMode mode, 
    ByteSeq inParams, 
    out ByteSeq outParams 
);

The first argument is the name of the Slice operation2. The second argument is an 
enumerator from the Slice type Ice::OperationMode; the possible values are 
Normal, Nonmutating and Idempotent. The third argument, inParams, represents 
the encoded in parameters of the operation.

2. This is the Slice name of the operation, not the name as it might be mapped to any particular 
language. For example, the string "while" is the name of the Slice operation while, and not 
"_cpp_while" (C++) or "_while" (Java).
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A return value of true indicates a successful invocation, in which case the 
marshaled form of the operation’s results (if any) is provided in outParams. A 
return value of false signals the occurrence of a user exception whose 
marshaled form is provided in outParams. The caller must also be prepared to 
catch local exceptions, which are thrown directly.

35.3.2 Dynamic Dispatch using Blobject
A server enables dynamic dispatch by creating a subclass of Blobject (the 
name is derived from blob, meaning a blob of bytes). The Slice equivalent of 
Blobject is shown below:

sequence<byte> ByteSeq; 
 
interface Blobject { 
    bool ice_invoke(ByteSeq inParams, out ByteSeq outParams); 
};

The inParams argument supplies the encoded in parameters. The contents of the 
outParams argument depends on the outcome of the invocation: if the operation 
succeeded, ice_invoke must return true and place the encoded results in 
outParams; if a user exception occurred, ice_invoke must return false, in 
which case outParams contains the encoded exception. The operation may also 
raise local exceptions such as OperationNotExistException.

The language mappings add a trailing argument of type Ice::Current to 
ice_invoke, and this provides the implementation with the name of the operation 
being dispatched. See Section 30.6 for more information on Ice::Current.

Because Blobject derives from Object, an instance is a regular Ice object 
just like instances of the classes generated for user-defined Slice interfaces. The 
primary difference is that all operation invocations on a Blobject instance are 
dispatched through the ice_invoke member function.

If a Blobject subclass intends to decode the in parameters (and not simply 
forward the request to another object), then the implementation obviously must 
know the signatures of all operations it supports. For example, the Ice extension 
for PHP (see Chapter 26) uses the Slice parser library to parse Slice files at run 
time; the Slice description of the operation drives the decoding process. How a 
Blobject subclass determines its type information is an implementation detail 
that is beyond the scope of this book.
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35.3.3 C++ Mapping
This section describes the C++ mapping for the ice_invoke proxy function 
and the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:

bool ice_invoke( 
    const std::string& operation, 
    Ice::OperationMode mode, 
    const std::vector< Ice::Byte >& inParams, 
    std::vector< Ice::Byte >& outParams 
);

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice::Context (see Section 30.11).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice::ObjectPrx proxy = ... 
try { 
    std::vector<Ice::Byte> inParams, outParams; 
    if (proxy->ice_invoke("op", Ice::Normal, inParams, 
                          outParams)) { 
        // Handle success 
    } else { 
        // Handle user exception 
    } 
} catch (const Ice::LocalException& ex) { 
    // Handle exception 
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc { 
    exception Overflow { 
        int x; 
        int y; 
    }; 
    interface Compute { 



35.3 Dynamic Invocation and Dispatch 1019

        nonmutating int add(int x, int y) 
            throws Overflow; 
    }; 
};

Now let’s write a client that dynamically invokes the add operation:

Ice::ObjectPrx proxy = ... 
try { 
    std::vector< Ice::Byte > inParams, outParams; 
 
    Ice::OutputStreamPtr out = 
        Ice::createOutputStream(communicator); 
    out->writeInt(100); // x 
    out->writeInt(-1);  // y 
    out->finished(inParams); 
 
    if (proxy->ice_invoke("add", Ice::Nonmutating, inParams, 
                          outParams)) { 
        // Handle success 
        Ice::InputStreamPtr in = 
            Ice::createInputStream(communicator, outParams); 
        int result = in->readInt(); 
        assert(result == 99); 
    } else { 
        // Handle user exception 
    } 
} catch (const Ice::LocalException& ex) { 
    // Handle exception 
}

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly3:

    if (proxy->ice_invoke("add", Ice::Nonmutating, inParams, 
                          outParams)) { 
        // Handle success 
        // ... 
    } else { 

3. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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        // Handle user exception 
        Ice::InputStreamPtr in = 
            Ice::createInputStream(communicator, outParams); 
        try { 
            in->throwException(); 
        } catch (const Calc::Overflow& ex) { 
            cout << "overflow while adding " << ex.x 
                 << " and " << ex.y << endl; 
        } catch (const Ice::UserException& ex) { 
            // Handle unexpected user exception 
        } 
    }

As a defensive measure, the code traps Ice::UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice::Blobject. We continue using the Compute interface from page 1018 to 
demonstrate a Blobject implementation:

class ComputeI : public Ice::Blobject { 
public: 
    virtual bool ice_invoke( 
        const std::vector<Ice::Byte>& inParams, 
        std::vector<Ice::Byte>& outParams, 
        const Ice::Current& current); 
};

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 30 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• string ice_id()

Returns the Slice type id of the servant’s most-derived type.
• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".
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• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.

• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice::Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

bool ComputeI::ice_invoke( 
    const std::vector<Ice::Byte>& inParams, 
    std::vector<Ice::Byte>& outParams, 
    const Ice::Current& current) 
{ 
    if (current.operation == "add") { 
        Ice::CommunicatorPtr communicator = 
            current.adapter->getCommunicator(); 
        Ice::InputStreamPtr in = 
            Ice::createInputStream(communicator, inParams); 
        int x = in->readInt(); 
        int y = in->readInt(); 
        Ice::OutputStreamPtr out = 
            Ice::createOutputStream(communicator); 
        if (checkOverflow(x, y)) { 
            Calc::Overflow ex; 
            ex.x = x; 
            ex.y = y; 
            out->writeException(ex); 
            out->finished(outParams); 
            return false; 
        } else { 
            out->writeInt(x + y); 
            out->finished(outParams); 
            return true; 
        } 
    } else { 
        Ice::OperationNotExistException ex(__FILE__, __LINE__); 
        ex.id = current.id; 
        ex.facet = current.facet; 
        ex.operation = current.operation; 
        throw ex; 
    } 
}
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If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.

Array Mapping

Ice for C++ supports an alternative mapping for sequence input parameters that 
avoids the overhead of extra copying. Since the ice_invoke functions treat the 
encoded input parameters as a value of type sequence<byte>, the dynamic invo-
cation and dispatch facility includes interfaces that use the array mapping for the 
input parameter blob.

Ice provides two overloaded versions of the proxy function ice_invoke 
that use the array mapping. The version that omits the trailing Ice::Context 
argument is shown below:

bool ice_invoke( 
    const std::string& operation, 
    Ice::OperationMode mode, 
    const std::pair< const Ice::Byte*, const Ice::Byte* >& in, 
    std::vector< Ice::Byte >& out 
);

A Blobject servant uses the array mapping by deriving its implementation class 
from Ice::BlobjectArray and overriding its ice_invoke function:

class BlobjectArray { 
public: 
    virtual bool ice_invoke( 
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in, 
        std::vector<Ice::Byte>& out, 
        const Ice::Current& current) = 0; 
};

See Section 6.7.4 for more information on the array mapping.

35.3.4 Java Mapping
This section describes the Java mapping for the ice_invoke proxy function and 
the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:
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boolean ice_invoke( 
    String operation, 
    Ice.OperationMode mode, 
    byte[] inParams, 
    Ice.ByteSeqHolder outParams 
);

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice.Context (see Section 30.11).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice.ObjectPrx proxy = ... 
try { 
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder(); 
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null, 
                         outParams)) { 
        // Handle success 
    } else { 
        // Handle user exception 
    } 
} catch (Ice.LocalException ex) { 
    // Handle exception 
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc { 
    exception Overflow { 
        int x; 
        int y; 
    }; 
    interface Compute { 
        nonmutating int add(int x, int y) 
            throws Overflow; 
    }; 
};

Now let’s write a client that dynamically invokes the add operation:
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Ice.ObjectPrx proxy = ... 
try { 
    Ice.OutputStream out = 
        Ice.Util.createOutputStream(communicator); 
    out.writeInt(100); // x 
    out.writeInt(-1);  // y 
    byte[] inParams = out.finished(); 
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder(); 
    if (proxy.ice_invoke("add", Ice.OperationMode.Nonmutating, 
                         inParams, outParams)) { 
        // Handle success 
        Ice.InputStream in = 
            Ice.Util.createInputStream(communicator, 
                                       outParams.value); 
        int result = in.readInt(); 
        assert(result == 99); 
    } else { 
        // Handle user exception 
    } 
} catch (Ice.LocalException ex) { 
    // Handle exception 
}

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly4:

    if (proxy.ice_invoke("add", Ice.OperationMode.Nonmutating, 
                         inParams, outParams)) { 
        // Handle success 
        // ... 
    } else { 
        // Handle user exception 
        Ice.InputStream in = 
            Ice.Util.createInputStream(communicator, 
                                       outParams.value); 
        try { 
            in.throwException(); 
        } catch (Calc.Overflow ex) { 

4. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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            System.out.println("overflow while adding " + ex.x + 
                               " and " + ex.y); 
        } catch (Ice.UserException ex) { 
            // Handle unexpected user exception 
        } 
    }

As a defensive measure, the code traps Ice.UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice.Blobject. We continue using the Compute interface from page 1023 to 
demonstrate a Blobject implementation:

public class ComputeI extends Ice.Blobject { 
    public boolean ice_invoke( 
        byte[] inParams, 
        Ice.ByteSeqHolder outParams, 
        Ice.Current current) 
    { 
        // ... 
    } 
}

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 30 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• string ice_id()

Returns the Slice type id of the servant’s most-derived type.
• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".
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• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.

• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice.Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

    public boolean ice_invoke( 
        byte[] inParams, 
        Ice.ByteSeqHolder outParams, 
        Ice.Current current) 
    { 
        if (current.operation.equals("add")) { 
            Ice.Communicator communicator = 
                current.adapter.getCommunicator(); 
            Ice.InputStream in = 
                Ice.Util.createInputStream(communicator, 
                                           inParams); 
            int x = in.readInt(); 
            int y = in.readInt(); 
            Ice.OutputStream out = 
                Ice.Util.createOutputStream(communicator); 
            try { 
                if (checkOverflow(x, y)) { 
                    Calc.Overflow ex = new Calc.Overflow(); 
                    ex.x = x; 
                    ex.y = y; 
                    out.writeException(ex); 
                    outParams.value = out.finished(); 
                    return false; 
                } else { 
                    out.writeInt(x + y); 
                    outParams.value = out.finished(); 
                    return true; 
                } 
            } finally { 
                out.destroy(); 
            } 
        } else { 
            Ice.OperationNotExistException ex = 
                new Ice.OperationNotExistException(); 
            ex.id = current.id; 
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            ex.facet = current.facet; 
            ex.operation = current.operation; 
            throw ex; 
        } 
    }

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.

35.3.5 C# Mapping
This section describes the C# mapping for the ice_invoke proxy function and 
the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:

namespace Ice 
{ 
    public interface ObjectPrx 
    { 
        bool ice_invoke(string operation, 
                        OperationMode mode, 
                        byte[] inParams, 
                        out byte[] outParams); 
        // ... 
    } 
}

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice.Context (see Section 30.11).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice.ObjectPrx proxy = ... 
try { 
    byte[] outParams; 
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null, 
                         outParams)) { 
        // Handle success 
    } else { 
        // Handle user exception 
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    } 
} catch (Ice.LocalException ex) { 
    // Handle exception 
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc { 
    exception Overflow { 
        int x; 
        int y; 
    }; 
    interface Compute { 
        nonmutating int add(int x, int y) 
            throws Overflow; 
    }; 
};

Now let’s write a client that dynamically invokes the add operation:

Ice.ObjectPrx proxy = ... 
try { 
    Ice.OutputStream outStream = 
        Ice.Util.createOutputStream(communicator); 
    outStream.writeInt(100); // x 
    outStream.writeInt(-1);  // y 
    byte[] inParams = outStream.finished(); 
    byte[] outParams; 
    if (proxy.ice_invoke("add", Ice.OperationMode.NonMutating, 
                         inParams, out outParams)) { 
        // Handle success 
        Ice.InputStream inStream = 
            Ice.Util.createInputStream(communicator, outParams); 
        int result = inStream.readInt(); 
        System.Diagnostics.Debug.Assert(result == 99); 
    } else { 
        // Handle user exception 
    } 
} catch (Ice.LocalException ex) { 
    // Handle exception 
}
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We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly5:

    if (proxy.ice_invoke("add", Ice.OperationMode.NonMutating, 
                         inParams, out outParams)) { 
        // Handle success 
        ... 
    } else { 
        // Handle user exception 
        Ice.InputStream inStream = 
            Ice.Util.createInputStream(communicator, outParams); 
        try { 
            inStream.throwException(); 
        } catch (Calc.Overflow ex) { 
            System.Console.WriteLine("overflow while adding " + 
                                     ex.x + " and " + ex.y); 
        } catch (Ice.UserException) { 
            // Handle unexpected user exception 
        } 
    }

As a defensive measure, the code traps Ice.UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice.Blobject. We continue using the Compute interface from page 1028 to 
demonstrate a Blobject implementation:

public class ComputeI : Ice.Blobject { 
    public bool ice_invoke( 
                    byte[] inParams, 
                    out byte[] outParams, 
                    Ice.Current current); 

5. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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    { 
        ... 
    } 
}

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 30 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• string ice_id()

Returns the Slice type id of the servant’s most-derived type.
• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".

• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.

• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice.Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

    public bool ice_invoke( 
                    byte[] inParams, 
                    out byte[] outParams, 
                    Ice.Current current); 
    { 
        if (current.operation.Equals("add")) { 
            Ice.Communicator communicator = 
                current.adapter.getCommunicator(); 
            Ice.InputStream inStream = 
                Ice.Util.createInputStream(communicator, 
                                           inParams); 
            int x = inStream.readInt(); 
            int y = inStream.readInt(); 
            Ice.OutputStream outStream = 
                Ice.Util.createOutputStream(communicator); 



35.3 Dynamic Invocation and Dispatch 1031

            try { 
                if (checkOverflow(x, y)) { 
                    Calc.Overflow ex = new Calc.Overflow(); 
                    ex.x = x; 
                    ex.y = y; 
                    outStream.StreamwriteException(ex); 
                    outParams = outStream.finished(); 
                    return false; 
                } else { 
                    outStream.writeInt(x + y); 
                    outParams = outStream.finished(); 
                    return true; 
                } 
            } finally { 
                outStream.destroy(); 
            } 
        } else { 
            Ice.OperationNotExistException ex = 
                new Ice.OperationNotExistException(); 
            ex.id = current.id; 
            ex.facet = current.facet; 
            ex.operation = current.operation; 
            throw ex; 
        } 
    }

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.

35.3.6 Visual Basic Mapping
This section describes the Visual Basic mapping for the ice_invoke proxy 
function and the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:

Namespace Ice 
 
    Public Interface ObjectPrx 
        Function ice_invoke(ByVal operation As String, _ 
                            ByVal mode As OperationMode, _ 
                            ByVal inParams As Byte(), _ 
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                            ByRef outParams As Byte()) _ 
                            As Boolean 
        ' ... 
    End Interface 
 
End Namespace

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice.Context (see Section 30.11).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Dim proxy As Ice.ObjectPrx = ... 
Try 
    Dim outParams As Byte() 
    If proxy.ice_invoke("op", Ice.OperationMode.Normal, Nothing, _ 
                         outParams) Then 
        ' Handle success 
    Else 
        ' Handle user exception 
    End If 
Catch ex As Ice.LocalException 
    ' Handle exception 
End Try

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc { 
    exception Overflow { 
        int x; 
        int y; 
    }; 
    interface Compute { 
        nonmutating int add(int x, int y) 
            throws Overflow; 
    }; 
};

Now let’s write a client that dynamically invokes the add operation:
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Dim proxy As Ice.ObjectPrx = ... 
Try 
    Dim outStream As Ice.OutputStream = _ 
        Ice.Util.createOutputStream(communicator) 
    outStream.writeInt(100) ' x 
    outStream.writeInt(-1)  ' y 
    Dim inParams As Byte() = outStream.finished() 
    Dim outParams As Byte() 
    If proxy.ice_invoke("add", Ice.OperationMode.NonMutating, _ 
                        inParams, outParams) Then 
        ' Handle success 
        Dim inStream As Ice.InputStream = _ 
            Ice.Util.createInputStream(communicator, outParams) 
        Dim result As Integer = inStream.readInt() 
        System.Diagnostics.Debug.Assert(result = 99) 
    Else 
        ' Handle user exception 
    End If 
Catch ex As Ice.LocalException ex 
    ' Handle exception 
End Try

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly6:

    If proxy.ice_invoke("add", Ice.OperationMode.NonMutating, _ 
                         inParams, outParams) Then 
        ' Handle success 
        ... 
    Else 
        ' Handle user exception 
        Dim inStream As Ice.InputStream = _ 
            Ice.Util.createInputStream(communicator, outParams) 
        Try 
            inStream.throwException(); 
        Catch ex As Calc.Overflow ex 
            System.Console.WriteLine("overflow while adding " & _ 
                                     ex.x & " and " & ex.y) 

6. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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        Catch ex As Ice.UserException 
            ' Handle unexpected user exception 
        End Try 
    End If

As a defensive measure, the code traps Ice.UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice.Blobject. We continue using the Compute interface from page 1032 to 
demonstrate a Blobject implementation:

Public Class ComputeI 
    Inherits Ice.Blobject 
 
    Public Overrides Function ice_invoke( _ 
                ByVal inParams() As Byte, _ 
                ByRef outParams() As Byte, _ 
                ByVal current As Ice.Current) _ 
                As Boolean 
        ... 
    End Function 
End Class

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 30 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• Function ice_id() As String

Returns the Slice type id of the servant’s most-derived type.
• Function ice_ids() As String()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".
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• Function ice_isA(ByVal id As String id) As Boolean

Returns True if the servant supports the interface denoted by the given Slice 
type id, or False otherwise. This operation is invoked by the proxy function 
checkedCast.

• Sub ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice.Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

Public Overrides Function ice_invoke( _ 
        ByVal inParams() As Byte, _ 
        ByRef outParams() As Byte, _ 
        ByVal current As Ice.Current) _ 
        As Boolean 
    If current.operation.Equals("add") Then 
        Dim communicator As Ice.Communicator = _ 
        current.adapter.getCommunicator() 
        Dim inStream As Ice.InputStream = _ 
        Ice.Util.createInputStream(communicator, _ 
                                   inParams) 
        Dim x As Integer = inStream.readInt() 
        Dim y As Integer = inStream.readInt() 
        Dim outStream As Ice.OutputStream = _ 
        Ice.Util.createOutputStream(communicator) 
        Try 
            If checkOverflow(x, y) Then 
                Dim ex As Calc.Overflow ex = new Calc.Overflow 
                ex.x = x 
                ex.y = y 
                outStream.writeException(ex) 
                outParams = outStream.finished() 
                Return False 
            Else 
                outStream.writeInt(x + y) 
                outParams = outStream.finished() 
                Return True 
            End If 
        Finally 
            outStream.destroy() 
        End Try 
    Else 
        Dim ex As Ice.OperationNotExistException = _ 
        New Ice.OperationNotExistException 
        ex.id = current.id 



1036 Dynamic Ice

        ex.facet = current.facet 
        ex.operation = current.operation 
        Throw ex 
    End If 
End Function

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning False, other-
wise the return value is encoded and the function returns True.

35.4 Asynchronous Dynamic Invocation and Dispatch

Ice provides asynchronous support for the dynamic invocation and dispatch 
models described in Section 35.3. The mappings for the ice_invoke proxy 
function and the Blobject class adhere to the asynchronous mapping rules in 
Chapter 31.

35.4.1 C++ Mapping
This section describes the asynchronous C++ mapping for the ice_invoke 
proxy function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:

void ice_invoke_async( 
    const Ice::AMI_Object_ice_invokePtr& cb, 
    const std::string& operation, 
    Ice::OperationMode mode, 
    const std::vector<Ice::Byte>& inParams 
);

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice::Context (see Section 30.11).

As with any other asynchronous invocation, the first argument to the proxy 
function is always a callback object. In this case, the callback object must derive 
from the class Ice::AMI_Object_ice_invoke, shown here:
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namespace Ice { 
    class AMI_Object_ice_invoke : ... { 
    public: 
        virtual void ice_response( 
            bool result, 
            const std::vector<Ice::Byte>& outParams) = 0; 
 
        virtual void ice_exception(const Ice::Exception& ex) = 0; 
 
        // ... 
    };   
}  

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the second argument indicates a user exception was raised, 
and the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

namespace Ice { 
    class BlobjectAsync : virtual public Ice::Object { 
    public: 
        virtual void ice_invoke_async( 
            const AMD_Object_ice_invokePtr& cb, 
            const std::vector<Ice::Byte>& inParams, 
            const Ice::Current& current) = 0; 
    }; 
}

To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice::AMD_Object_ice_invoke, shown here:

namespace Ice { 
    class AMD_Object_ice_invoke : ... { 
    public: 
        virtual void ice_response( 
            bool result, 
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            const std::vector<Ice::Byte>& outParams) = 0; 
        virtual void ice_exception(const IceUtil::Exception&) = 0; 
        virtual void ice_exception(const std::exception&) = 0; 
        virtual void ice_exception() = 0; 
    }; 
}

Upon a successful invocation, the servant must invoke ice_response on the 
callback, passing true as the first argument and encoding the operation results 
into outParams. To report a user exception, the servant invokes 
ice_response with false as the first argument and the encoded form of the 
exception in outParams.

The various overloadings of ice_exception are discussed in 
Section 31.4.1. Note however that in the dynamic dispatch model, the 
ice_exception function must not be used to report user exceptions; doing so 
results in the caller receiving UnknownUserException.

Array Mapping

The discussion of the synchronous interfaces on page 1022 presented the array 
mapping for the ice_invoke proxy functions and the BlobjectArray base 
class. The array mapping is also supported in the asynchronous interfaces for 
dynamic invocation and dispatch.

Ice provides two overloaded versions of the proxy function 
ice_invoke_async that use the array mapping. The version that omits the 
trailing Ice::Context argument is shown below:

void ice_invoke_async( 
    const Ice::AMI_Array_Object_ice_invokePtr& cb, 
    const std::string& operation, 
    Ice::OperationMode mode, 
    const std::pair<const Ice::Byte*, const Ice::Byte*>& in 
);

The AMI callback class also supports the array mapping for the encoded out 
parameter blob, as you can see in its definition of ice_response:

class AMI_Array_Object_ice_invoke : ... { 
public: 
    virtual void ice_response( 
        bool result, 
        const std::pair<const Ice::Byte*, const Ice::Byte*>& out) 
        = 0; 
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    virtual void ice_exception(const Ice::Exception& ex) = 0; 
 
    // ... 
};  

To implement an asynchronous Blobject servant that uses the array mapping, 
derive your implementation class from Ice::BlobjectArrayAsync and 
override the ice_invoke_async function:

class BlobjectArrayAsync : virtual public Ice::Object { 
public: 
    virtual void ice_invoke_async( 
        const AMD_Array_Object_ice_invokePtr& cb, 
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in, 
        const Ice::Current& current) = 0; 
};

The AMD callback class also supports the array mapping for the encoded out 
parameter blob, as shown below for ice_response:

class AMD_Array_Object_ice_invoke : ... { 
public: 
    virtual void ice_response( 
        bool result, 
        const std::pair<const Ice::Byte*, const Ice::Byte*>& out) 
        = 0; 
    virtual void ice_exception(const IceUtil::Exception&) = 0; 
    virtual void ice_exception(const std::exception&) = 0; 
    virtual void ice_exception() = 0; 
};

See Section 6.7.4 for more information on the array mapping.

35.4.2 Java Mapping
This section describes the asynchronous Java mapping for the ice_invoke 
proxy function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:
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public abstract void ice_invoke_async( 
    Ice.AMI_Object_ice_invoke cb, 
    String operation, 
    Ice.OperationMode mode, 
    byte[] inParams 
);

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice.Context (see Section 30.11).

As with any other asynchronous invocation, the first argument to the proxy 
function is always a callback object. In this case, the callback object must derive 
from the class Ice.AMI_Object_ice_invoke, shown here:

package Ice; 
 
public abstract class AMI_Object_ice_invoke ... { 
    public abstract void ice_response(boolean result, 
                                      byte[] outParams); 
    public abstract void ice_exception(LocalException ex); 
}  

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the second argument indicates a user exception was raised, 
and the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

package Ice; 
 
public abstract class BlobjectAsync extends Ice.ObjectImpl { 
    public abstract void ice_invoke_async( 
        Ice.AMD_Object_ice_invoke cb, 
        byte[] inParams, 
        Ice.Current current 
    ); 
 
    // ... 
}
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To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice.AMD_Object_ice_invoke, shown here:

package Ice; 
 
public interface AMD_Object_ice_invoke { 
    void ice_response(boolean result, byte[] outParams); 
    void ice_exception(java.lang.Exception ex); 
}

Upon a successful invocation, the servant must invoke ice_response on the 
callback, passing true as the first argument and encoding the operation results 
into outParams. To report a user exception, the servant invokes 
ice_response with false as the first argument and the encoded form of the 
exception in outParams.

The ice_exception function is discussed in Section 31.4.1. Note however 
that in the dynamic dispatch model, the ice_exception function must not be 
used to report user exceptions; doing so results in the caller receiving Unknow-
nUserException.

35.4.3 C# Mapping
This section describes the asynchronous C# mapping for the ice_invoke proxy 
function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:

namespace Ice { 
    public interface ObjectPrx { 
        void ice_invoke_async(AMI_Object_ice_invoke cb, 
                              string operation, 
                              OperationMode mode, 
                              byte[] inParams); 
    } 
}

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice.Context (see Section 30.11).
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As with any other asynchronous invocation, the first argument to the proxy 
function is always a callback object. In this case, the callback object must derive 
from the class Ice.AMI_Object_ice_invoke, shown here:

namespace Ice { 
 
    public abstract class AMI_Object_ice_invoke : ... 
    { 
        public abstract void ice_response( 
                                bool ok, byte[] outParams); 
        public abstract override void ice_exception( 
                                Ice.Exception ex); 
    } 
 
}

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the second argument indicates a user exception was raised, 
and the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

public abstract class BlobjectAsync 
    : Ice.ObjectImpl 
{ 
    public abstract void ice_invoke_async( 
                        AMD_Object_ice_invoke cb, 
                        byte[] inParams, 
                        Current current); 
}

To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice.AMD_Object_ice_invoke, shown here:
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namespace Ice 
{ 
    public interface AMD_Object_ice_invoke 
    { 
        void ice_response(bool ok, byte[] outParams); 
        void ice_exception(System.Exception ex); 
    } 
}

Upon a successful invocation, the servant must invoke ice_response on the 
callback, passing true as the first argument and encoding the operation results 
into outParams. To report a user exception, the servant invokes 
ice_response with false as the first argument and the encoded form of the 
exception in outParams.

The ice_exception function is discussed in Section 31.4.1. Note however 
that in the dynamic dispatch model, the ice_exception function must not be 
used to report user exceptions; doing so results in the caller receiving Unknow-
nUserException.

35.4.4 Visual Basic Mapping
This section describes the asynchronous Visual Basic mapping for the 
ice_invoke proxy function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a procedure named 
ice_invoke_async, as shown below:

Namespace Ice 
 
    Public Interface ObjectPrx 
        Sub ice_invoke_async(ByVal cb As AMI_Object_ice_invoke, _ 
                             ByVal operation As String, _ 
                             ByVal mode As OperationMode, _ 
                             ByVal inParams As Byte() inParams) 
    End Interface 
 
End Namespace

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice.Context (see Section 30.11).
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As with any other asynchronous invocation, the first argument to the proxy 
function is always a callback object. In this case, the callback object must derive 
from the class Ice.AMI_Object_ice_invoke, shown here:

Namespace Ice 
 
    Public MustInherit Class AMI_Object_ice_invoke 
        Inherits ... 
     
        Public Overrides MustOverride Sub ice_response( _ 
                                        ByVal ok As Boolean, _ 
                                        ByVal outParams As Byte()) 
        Public Overrides MustOverride Sub ice_exception( _ 
                                        ByVal ex As Ice.Exception) 
    End Class 
 
End Namespace

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of True for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of False for the second argument indicates a user exception was raised, 
and the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

Public MustInherit Class BlobjectAsync 
    Inherits ... 
 
    Public MustOverride Sub ice_invoke_async( 
                        ByVal cb As AMD_Object_ice_invoke, 
                        ByVal inParams As byte(), 
                        ByVal current As Current) 
End Class

To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice.AMD_Object_ice_invoke, shown here:
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Namespace Ice 
 
    Public Interface AMD_Object_ice_invoke 
        Sub ice_response(ByVal ok As Boolean, _ 
                         ByVal outParams As Byte()) 
        Sub ice_exception(ByVal ex As System.Exception) 
    End Interface 
 
End Namespace

Upon a successful invocation, the servant must invoke ice_response on the 
callback, passing True as the first argument and encoding the operation results 
into outParams. To report a user exception, the servant invokes 
ice_response with False as the first argument and the encoded form of the 
exception in outParams.

The ice_exception function is discussed in Section 31.4.1. Note however 
that in the dynamic dispatch model, the ice_exception function must not be 
used to report user exceptions; doing so results in the caller receiving Unknow-
nUserException.

35.5 Summary

The Ice streaming API allows you to serialize and deserialize Slice types using 
either the Ice encoding or and encoding of your choice (for example, XML). This 
is useful, for example, if you want to store Slice types in a data base.

The dynamic invocation and dispatch interfaces allow you to write generic 
clients and servers that need not have compile-time knowledge of the Slice types 
used by an application. This is useful for applications such as object browsers, 
protocol analyzers, or protocol bridges. In addition, the dynamic invocation and 
dispatch interfaces permit services such as IceStorm to be implemented without 
the need to unmarshal and remarshal every message, with considerable perfor-
mance improvements.

Keep in mind that applications that use dynamic invocation and dispatch are 
tedious to implement and harder to prove correct (because what normally would 
be a compile-time error appears only as a run-time error with dynamic invocation 
and dispatch). Therefore, you should use the dynamic interfaces only if your 
application truly benefits from this trade-off.
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Chapter 36
IceGrid

36.1 Chapter Overview

In this chapter we present IceGrid, an important service for building robust Ice 
applications. Section 36.3 introduces the IceGrid architecture and its core 
concepts. Section 36.4 describes a sample application that we improve incremen-
tally as the chapter progresses. The subject of Section 36.5 is well-known objects, 
which are a convenient way to decouple clients and servers.

Core IceGrid features such as templates, IceBox integration, replication, load 
balancing and resource allocation are covered in individual sections from 
Section 36.6 through Section 36.10.

In Section 36.11 we learn how IceGrid automates the distribution of server 
executables. IceGrid’s support for dynamic monitoring is the subject of 
Section 36.12, while Section 36.13 gives instructions on integrating a Glacier2 
router into an application. Section 36.14 is a reference for the descriptors that 
define an IceGrid application. Section 36.15 describes the semantics of variables 
and parameters in descriptors, and property sets are discussed in Section 36.16.

The convenient features that IceGrid supports for XML files are the focus of 
Section 36.17. Section 36.18 and Section 36.19 address the usage of the IceGrid 
servers and administrative tools, respectively. Section 36.20 explains the details of 
server activation, while Section 36.21 provides troubleshooting advice.
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36.2 Introduction

IceGrid is the location and activation service for Ice applications. In prior Ice 
releases, the IcePack service supplied this functionality. Given the increasing 
importance of grid computing, IceGrid was introduced in Ice 3.0 to support all of 
IcePack’s responsibilities and extend it with new features to simplify the develop-
ment and administration of Ice applications on grid networks.

For the purposes of this chapter, we can loosely define grid computing as the 
use of a network of relatively inexpensive computers to perform the computational 
tasks that once required costly “big iron.” Developers familiar with distributed 
computing technologies such as Ice and CORBA may not consider the notion of 
grid computing to be particularly revolutionary; after all, distributed applications 
have been running on networks for years, and the definition of grid computing is 
sufficiently vague that practically any server environment could be considered a 
“grid.”

One possible grid configuration is a homogeneous collection of computers 
running identical programs. Each computer in the grid is essentially a clone of the 
others, and all are equally capable of handling a task. As a developer, you need to 
write the code that runs on the grid computers, and Ice is ideally suited as the 
infrastructure that enables the components of a grid application to communicate 
with one another. However, writing the application code is just the first piece of 
the puzzle. Many other challenges remain:

• How do I install and update this application on all of the computers in the 
grid?

• How do I keep track of the servers running on the grid?

• How do I distribute the load across all the computers?

• How do I migrate a server from one computer to another one?

• How can I quickly add a new computer to the grid?

Of course, these are issues faced by most distributed applications. As you read this 
chapter and learn more about IceGrid’s capabilities, you will discover that it offers 
solutions to these challenges. To get you started, we have summarized IceGrid’s 
feature set below:

• Location service

As an implementation of an Ice location service (see Section 30.17), IceGrid 
enables clients to bind indirectly to their servers, making applications more 
flexible and resilient to changing requirements.
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• On-demand server activation

Starting an Ice server process is called server activation. IceGrid can be given 
responsibility for activating a server on demand, that is, when a client attempts 
to access an object hosted by the server. Activation usually occurs as a side 
effect of indirect binding, and is completely transparent to the client.

• Application distribution

IceGrid provides a convenient way to distribute your application to a set of 
computers, without the need for a shared file system or complicated scripts. 
Simply configure an IcePatch2 server (see Chapter 43) and let IceGrid down-
load the necessary files and keep them synchronized.

• Replication and load balancing

IceGrid supports replication by grouping the object adapters of several servers 
into a single virtual object adapter. During indirect binding, a client can be 
bound to an endpoint of any of these adapters. Furthermore, IceGrid monitors 
the load on each computer and can use that information to decide which of the 
endpoints to return to a client.

• Sessions and resource allocation

An IceGrid client establishes a session in order to allocate a resource such as 
an object or a server. IceGrid prevents other clients from using the resource 
until the client releases it or the session expires. Sessions enhance security 
through the use of an authentication mechanism that can be integrated with a 
Glacier2 router.

• Automatic failover

Ice supports automatic retry and failover in any proxy that contains multiple 
endpoints. When combined with IceGrid’s support for replication and load 
balancing, automatic failover means that a failed request results in a client 
transparently retrying the request on the next endpoint with the lowest load.

• Dynamic queries

In addition to transparent binding, applications can interact directly with 
IceGrid to locate objects in a variety of ways.

• Status monitoring

IceGrid supports Slice interfaces that allow applications to monitor its activi-
ties and receive notifications about significant events, enabling the develop-
ment of custom tools or the integration of IceGrid status events into an 
existing management framework.
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• Administration

IceGrid includes command-line and graphical administration tools. They are 
available on all supported platforms and allow you to start, stop, monitor, and 
reconfigure any server managed by IceGrid.

• Deployment

Using XML files, you can describe the servers to be deployed on each 
computer. Templates simplify the description of identical servers.

As grid computing enters the mainstream and compute servers become commodi-
ties, users expect more value from their applications. IceGrid, in cooperation with 
the Ice run time, relieves you of these low-level tasks to accelerate the construc-
tion and simplify the administration of your distributed applications.

36.3 IceGrid Architecture

An IceGrid domain consists of a single registry and any number of nodes. 
Together, the registry and nodes cooperate to manage the information and server 
processes that comprise applications. Each application assigns servers to partic-
ular nodes. The registry maintains a persistent record of this information, while 
the nodes are responsible for starting and monitoring their assigned server 
processes. In a typical configuration, one node runs on each computer that hosts 
Ice servers. The registry does not consume much processor time, so it commonly 
runs on the same computer as a node; in fact, the registry and a node can run in the 
same process if desired.

36.3.1 Simple Example
As an example, Figure 36.1 shows a very simple IceGrid application running on a 
network of three computers. The IceGrid registry is the only process of interest on 
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host PC1, while IceGrid nodes are running on the hosts PC2 and PC3. In this 
sample application, one server has been assigned to each node.

Figure 36.1. Simple IceGrid application.

From a client application’s perspective, the primary responsibility of the registry 
is to resolve indirect proxies as an Ice location service (see Section 30.17). As 
such, this contribution is largely transparent: when a client first attempts to use an 
indirect proxy, the Ice run time in the client contacts the registry to convert the 
proxy’s symbolic information into endpoints that allow the client to establish a 
connection.

Although the registry might sound like nothing more than a simple lookup 
table, reality is quite different. For example, behind the scenes, a locate request 
might prompt a node to start the target server automatically, or the registry might 
select appropriate endpoints based on load statistics from each computer.

This also illustrates the benefits of indirect proxies: the location service can 
provide a great deal of functionality without any special action by the client and, 
unlike with direct proxies, the client does not need advance knowledge of the 
address and port of a server. The extra level of indirection adds some latency to the 
client’s first use of a proxy; however, all subsequent interactions occur directly 
between client and server, so the cost is negligible. Furthermore, indirection 
allows servers to migrate to different computers without the need to update 
proxies held by clients.

Host: PC1

Host: PC2

Node A

Server X

Host: PC3

Node B

Server Y

Registry
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36.3.2 Replication
IceGrid’s flexibility allows an endless variety of configurations. For example, 
suppose we have a grid network and want to replicate a server on each blade, as 
shown in Figure 36.2.

Figure 36.2. Replicated server on grid network.

Replication in Ice is based on object adapters, not servers. Any object adapter in 
any server could participate in replication, but it is far more likely that all of the 
replicated object adapters are created by instances of the same server executable 
that is running on each computer. We are using this configuration in the example 
shown above, but IceGrid requires each server to have a unique name. Server 1 
and Server 2 are our unique names for the same executable.

The binding process works somewhat differently when replication is involved, 
since the registry now has multiple object adapters to choose from. The descrip-
tion of the IceGrid application drives the registry’s decision about which object 
adapter (or object adapters) to use. For example, the registry could consider the 
system load of each computer (as periodically reported by the nodes) and return 
the endpoints of the object adapter on the computer with the lowest load. It is also 
possible for the registry to combine the endpoints of several object adapters, in 
which case the Ice run time in the client would select the endpoint for the initial 
connection attempt.

36.3.3 Deployment
In IceGrid, deployment is the process of describing an application to the registry. 
This description includes the following information:

Host: Blade1

Registry

Node 1

Server 1

Host: BladeN

Node N

Server N

Host: Blade2

Node 2

Server 2
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• Replica groups

A replica group is the term for a collection of replicated object adapters. An 
application can create any number of replica groups. Each group requires a 
unique identifier.

• Nodes

An application must assign its servers to one or more nodes.

• Servers

A server’s description includes a unique name and the path to its executable. It 
also lists the object adapters it creates.

• Object adapters

Information about an object adapter includes its endpoints and any well-
known objects it advertises. If the object adapter is a member of a replica 
group, it must also supply that group’s identifier.

• Objects

A well-known object is one that is known solely by its identity. The registry 
maintains a global list of such objects for use during locate requests.

IceGrid uses the term descriptor to refer to the description of an application and 
its components; deploying an application involves creating its descriptors in the 
registry. The are several ways to accomplish this:

• You can use a command-line tool that reads XML descriptors.

• You can create descriptors interactively with the graphical administration tool.

• You can create descriptors programmatically via IceGrid’s administrative 
interface.

The registry server must be running in order to deploy an application, but it is not 
necessary for nodes to be active. Nodes that are started after deployment automat-
ically retrieve the information they need from the registry. Once deployed, you 
can update the application at any time.
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36.4 Getting Started

This sections introduces a sample application that will help us demonstrate 
IceGrid’s capabilities. Our application “rips” music tracks from a compact disc 
(CD) and encodes them as MP3 files, as shown in Figure 36.3.

Figure 36.3. Overview of sample application.

Ripping an entire CD usually takes several minutes because the MP3 encoding 
requires lots of CPU cycles. Our distributed ripper application accelerates this 
process by taking advantage of powerful CPUs on remote Ice servers, enabling us 
to process many songs in parallel.

The Slice interface for the MP3 encoder is straightforward:

module Ripper { 
exception EncodingFailedException { 
    string reason; 
}; 
 
sequence<short> Samples; 
 

74 min
650 MB

about 57 MB

“rip” (extract) tracks 
from the Music CD as 
.wav files

song1.wav 
song2.wav 
...

song1.mp3 
song2.mp3 
...

encode as mp3 
(compress with lossy 
algorithm)
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interface Mp3Encoder { 
    // Input: PCM samples for left and right channels 
    // Output: MP3 frame(s). 
    Ice::ByteSeq encode(Samples leftSamples, Samples rightSamples) 
        throws EncodingFailedException; 
 
    // You must flush to get the last frame(s). Flush also  
    // destroys the encoder object. 
    Ice::ByteSeq flush() 
        throws EncodingFailedException; 
}; 
 
interface Mp3EncoderFactory 
{ 
    Mp3Encoder* createEncoder(); 
}; 
};

The implementation of the encoding algorithm is not relevant for the purposes of 
this discussion. Instead, we will focus on incrementally improving the application 
as we discuss IceGrid features.

36.4.1 Architecture
The initial architecture for our application is intentionally simple, consisting of a 
single IceGrid node responsible for our encoding server and running on the 
computer named ComputeServer. Figure 36.4 shows the client’s invocation of 
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createEncoder and the actions that IceGrid takes to make this invocation 
possible. 

Figure 36.4. Architecture for initial ripper application.

The corresponding C++ code for the client is presented below:

Ice::ObjectPrx proxy = 
    communicator->stringToProxy("factory@EncoderAdapter"); 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(proxy); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Notice that the client uses an indirect proxy for the MP3EncoderFactory object. 
This stringified proxy can be read literally as “the object with identity factory 
in the object adapter identified as EncoderAdapter.” The encoding server 
creates this object adapter, and its IceGrid descriptor ensures that the object 
adapter uses this identifier. Since each object adapter must be uniquely identified, 
the registry can easily determine the server that creates the adapter, and the node 
responsible for that server. It is then the node’s responsibility to start the server if 
necessary.

The client’s call to checkedCast is actually the first remote invocation on 
the factory object. Once the server is started and the object adapter has registered 
itself, checkedCast completes and the client invokes createEncoder 
without further involvement by IceGrid.

Host: ComputeServer

Registry

Node

EncoderServer

Client PC

Client

1 locate(factory@EncoderAdapter)

2 start

3 createEncoder
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36.4.2 Descriptors
We can deploy our application using the icegridadmin command line utility 
(see Section 36.19.1), but first we must define our descriptors in XML. For our 
initial architecture, the descriptors are quite brief:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    id="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </node> 
    </application> 
</icegrid>

For IceGrid’s purposes, we have named our application Ripper. It consists of a 
single server, EncoderServer, assigned to the node Node11. The server’s 
exe attribute supplies the pathname of its executable, and the activation 
attribute indicates that the server should be activated on demand when necessary.

The object adapter’s descriptor is the most interesting. As you can see, the 
name and id attributes both specify the value EncoderAdapter. The value of 
name reflects the adapter’s name in the server process (i.e., the argument passed 
to createObjectAdapter) that is used for configuration purposes, whereas 
the value of id uniquely identifies the adapter within the registry and is used in 
indirect proxies. These attributes are not required to have the same value. Had we 
omitted the id attribute, IceGrid would have composed a unique value by 
combining the server name and adapter name to produce the following identifier:

EncoderServer.EncoderAdapter

The register-process attribute makes it possible for IceGrid to gracefully 
shut down the server when necessary (see Section 30.17.6), while endpoints 
defines one or more endpoints for the adapter.

1. Since a computer typically runs only one node process, you might be tempted to give the node a 
name that identifies its host (such as ComputeServerNode). However, this naming conven-
tion becomes problematic as soon as you need to migrate the node to another host.
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Note that the value for endpoints does not contain any port information, 
meaning that the adapter uses a system-assigned port. Without IceGrid, the use of 
a system-assigned port would pose a significant problem: how would a client 
create a direct proxy if the adapter’s port could change every time the server is 
restarted? IceGrid solves this problem nicely because clients can use indirect 
proxies that contain no endpoint dependencies. The registry resolves indirect 
proxies using the endpoint information supplied by object adapters each time they 
are activated.

See Section 36.14 for detailed information on using XML to define descrip-
tors.

36.4.3 Configuring the Registry and Node
The registry needs a subdirectory in which to create its databases, and the node 
needs a subdirectory for its own purposes. The server descriptor in Section 36.4.2 
states that the executable resides in the directory /opt/ripper/bin, so we 
will add the subdirectories /opt/ripper/registry and 
/opt/ripper/node for use by the registry and node, respectively. These 
directories must exist before starting the registry and node.

We also need to create an Ice configuration file to hold properties required by 
the registry and node. The file /opt/ripper/config contains the following 
properties:

# Registry properties 
IceGrid.Registry.Client.Endpoints=tcp -p 10000 
IceGrid.Registry.Server.Endpoints=tcp 
IceGrid.Registry.Admin.Endpoints=tcp 
IceGrid.Registry.Internal.Endpoints=tcp 
IceGrid.Registry.Data=/opt/ripper/registry 
 
# Node properties 
IceGrid.Node.Endpoints=tcp 
IceGrid.Node.Name=Node1 
IceGrid.Node.Data=/opt/ripper/node 
IceGrid.Node.CollocateRegistry=1 
Ice.Default.Locator=IceGrid/Locator:tcp -p 10000

The registry and node can share this configuration file. In fact, by defining 
IceGrid.Node.CollocateRegistry=1, we have indicated that the 
registry and node should run in the same process.

Several of the properties define endpoints, but only the value of 
IceGrid.Registry.Client.Endpoints needs a fixed port. This prop-
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erty specifies the endpoints of the IceGrid locator service. IceGrid clients must 
include these endpoints in their definition of Ice.Default.Locator, as 
discussed in the next section.

Another property of interest is IceGrid.Node.Name, whose value is 
Node1. You may recall seeing this name mentioned in the descriptors from 
Section 36.4.2.

Finally, Ice.Default.Locator is used by the node to contact the 
registry. The next section provides more information on this property.

36.4.4 Configuring the Client
The client requires only minimal configuration, namely a value for the property 
Ice.Default.Locator (see Section 30.17.3). This property supplies the Ice 
run time with the proxy for the locator service. In IceGrid, the locator service is 
implemented by the registry, and the locator object is available on the registry’s 
client endpoints. The property IceGrid.Registry.Client.Endpoints 
defined in the previous section provides most of the information we need to 
construct the proxy. The missing piece is the identity of the locator object, which 
defaults to IceGrid/Locator:

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 10000

The use of a locator service allows the client to take advantage of indirect binding 
and avoid static dependencies on server endpoints. However, the locator proxy 
must have a fixed port, otherwise the client has a bootstrapping problem: it cannot 
resolve indirect proxies without knowing the endpoints of the locator service.

See Section 36.18.3 for more information on client configuration.

36.4.5 Configuring the Server
Server configuration is accomplished using descriptors. During deployment, the 
node creates a subdirectory tree for each server. Inside this tree the node creates a 
configuration file containing properties derived from the server’s descriptors. For 
instance, the adapter’s descriptor in Section 36.4.2 generates the following proper-
ties in the server’s configuration file:

EncoderAdapter.AdapterId=EncoderAdapter 
EncoderAdapter.RegisterProcess=1 
EncoderAdapter.Endpoints=tcp
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Using the directory structure we established for our ripper application, the config-
uration file for EncoderServer has the filename shown below:

/opt/ripper/node/servers/EncoderServer/config/config

Note that this file should not be edited directly because any changes you make are 
lost the next time the node regenerates the file. The correct way to add properties 
to the file is to include property definitions in the server’s descriptor. For example, 
we can add the property Ice.Trace.Network=1 by modifying the server 
descriptor as follows:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    id="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
                <property name="Ice.Trace.Network" 
                    value="1"/> 
            </server> 
        </node> 
    </application> 
</icegrid>

When a node activates a server, it passes the location of the server’s configuration 
file using the --Ice.Config command-line argument. If you start a server 
manually from a command prompt, you must supply this argument yourself.

36.4.6 Starting IceGrid
Now that the configuration file is written and the directory structure is prepared, 
we are ready to start the IceGrid registry and node. Using a collocated registry and 
node, we only need to use one command:

$ icegridnode --Ice.Config=/opt/ripper/config

Additional command line options are supported, including those that allow the 
node to run as a Windows service or Unix daemon. See Section 36.18.2 for more 
information.
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36.4.7 Deploying the Application
With the registry up and running, it is now time to deploy our application. Like 
our client, the icegridadmin utility also requires a definition for the 
Ice.Default.Locator property. We can start the utility with the following 
command:

$ icegridadmin --Ice.Config=/opt/ripper/config

After confirming that it can contact the registry, icegridadmin provides a 
command prompt at which we deploy our application. Assuming our descriptor is 
stored in /opt/ripper/app.xml, the deployment command is shown below:

>>> application add "/opt/ripper/app.xml"

Next, confirm that the application has been deployed:

>>> application list 
Ripper

You can start the server using this command:

>>> server start EncoderServer

Finally, retrieve the current endpoints of the object adapter:

>>> adapter endpoints EncoderAdapter

If you want to experiment further using icegridadmin, issue the help 
command and see Section 36.19.1.

36.4.8 Review
We have deployed our first IceGrid application, but you might be questioning 
whether it was worth the effort. Even at this early stage, we have already gained 
several benefits:

• Our client can locate the MP3EncoderFactory object using only an indirect 
proxy and a value for Ice.Default.Locator. We can reconfigure the 
IceGrid application in any number of ways without modifying the client’s 
code or configuration in any way.

• We no longer need to manually start the encoder server before starting the 
client, because the IceGrid node automatically starts it if it is not active at the 
time a client needs it. If the server happens to terminate for any reason, such as 
an IceGrid administrative action or a server programming error, the node 
restarts it without intervention on our part.
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• We can manage the application remotely using one of the IceGrid administra-
tion tools. The ability to remotely modify applications, start and stop servers, 
and inspect every aspect of your configuration is a significant advantage.

Admittedly, we have not made much progress yet in our stated goal of improving 
the performance of the ripper over alternative solutions that are restricted to 
running on a single computer. Our client now has the ability to easily delegate the 
encoding task to a server running on another computer, but we have not achieved 
the parallelism that we really need. For example, if the client created a number of 
encoders and used them simultaneously from multiple threads, the encoding 
performance might actually be worse than simply encoding the data directly in the 
client, as the remote computer would likely slow to a crawl while attempting to 
task-switch among a number of processor-intensive tasks.

36.4.9 Adding Nodes
Adding more nodes to our environment would allow us to distribute the encoding 
load to more compute servers. Using the techniques we have learned so far, let us 
investigate the impact that adding a node would have on our descriptors, configu-
ration, and client application.

Descriptors

The addition of a node is mainly an exercise in cut and paste:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer1" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </node> 
        <node name="Node2"> 
            <server id="EncoderServer2" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
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            </server> 
        </node> 
    </application> 
</icegrid>

Note that we now have two node elements instead of a single one. You might be 
tempted to simply use the host name as the node name. However, in general, that 
is not a good idea. For example, you may want to run several IceGrid nodes on a 
single machine (for example, for testing). Similarly, you may have to rename a 
host at some point, or need migrate a node to a different host. But, unless you also 
rename the node, that leads to the situation where you have a node with the name 
of a (possibly obsolete) host when the node in fact is not running on that host. 
Obviously, this makes for a confusing configuration—it is better to use abstract 
node names, such as Node1.

Aside from the new node element, notice that the server identifiers must be 
unique. The adapter name, however, can remain as EncoderAdapter because 
this name is used only for local purposes within the server process. In fact, using a 
different name for each adapter would actually complicate the server implementa-
tion, since it would somehow need to discover the name it should use when 
creating the adapter.

We have also removed the id attribute from our adapter descriptors; the 
default values supplied by IceGrid are sufficient for our purposes (see 
Section 36.14.1).

Configuration

We can continue to use the configuration file we created in Section 36.4.3 for our 
combined registry-node process. We need a separate configuration file for 
Node2, primarily to define a different value for the property 
IceGrid.Node.Name. However, we also cannot have two nodes configured 
with IceGrid.Node.CollocateRegistry=1 because only one registry is 
allowed, so we must remove this property:

IceGrid.Node.Endpoints=tcp 
IceGrid.Node.Name=Node2 
IceGrid.Node.Data=/opt/ripper/node 
 
Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 10000

We assume that /opt/ripper/node refers to a local file system directory on 
the computer hosting Node2, and not a shared volume, because two nodes must 
not share the same data directory.
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We have also modified the locator proxy to include the address of the host on 
which the registry is running.

Redeploying

After saving the new descriptors, you need to redeploy the application. Using 
icegridadmin, issue the following commands:

$ icegridadmin --Ice.Config=/opt/ripper/config 
>>> application remove "Ripper" 
>>> application add "/opt/ripper/app.xml"

Client

We have added a new node, but we still need to modify our client to take advan-
tage of it. As it stands now, our client can delegate an encoding task to one of the 
two MP3EncoderFactory objects. The client selects a factory by using the appro-
priate indirect proxy:

• factory@EncoderServer1.EncoderAdapter

• factory@EncoderServer2.EncoderAdapter

In order to distribute the tasks among both factories, the client could use a random 
number generator to decide which factory receives the next task:

string adapter; 
if ((rand() % 2) == 0) 
    adapter = "EncoderServer1.EncoderAdapter"; 
else 
    adapter = "EncoderServer2.EncoderAdapter"; 
Ice::ObjectPrx proxy = 
    communicator->stringToProxy("factory@" + adapter); 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(proxy); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

There are a few disadvantages in this design:

• The client application must be modified each time a new compute server is 
added or removed because it knows all of the adapter identifiers.

• The client cannot distribute the load intelligently; it is just as likely to assign a 
task to a heavily-loaded computer as it is an idle one.

We describe better solutions in the sections that follow.
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36.5 Well-known Objects

There are two types of indirect proxies (see Section 2.2.2): one specifies an iden-
tity and an object adapter identifier, while the other contains only an identity. The 
latter type of indirect proxy is known as a well-known proxy. A well-known proxy 
refers to a well-known object, that is, its identity alone is sufficient to allow the 
client to locate it. Ice requires all object identities in an application to be unique, 
but typically only a select few objects are able to be located via only their identi-
ties.

In earlier sections we showed the relationship between indirect proxies 
containing an object adapter identifier and the IceGrid configuration. Briefly, in 
order for a client to use a proxy such as factory@EncoderAdapter, an 
object adapter must be given the identifier EncoderAdapter.

A similar requirement exists for well-known objects. The registry maintains a 
table of these objects, which can be populated in a number of ways:

• statically in descriptors,

• programmatically using IceGrid’s administrative interface,

• dynamically using an IceGrid administration tool.

The registry’s database maps an object identity to a proxy. A locate request 
containing only an identity prompts the registry to consult this database. If a 
match is found, the registry examines the associated proxy to determine if addi-
tional work is necessary. For example, consider the well-known objects in 
Table 36.1.

The proxy associated with Object1 already contains endpoints, so the registry 
can simply return this proxy to the client.

Table 36.1. Well-known objects and their proxies.

Identity Proxy

Object1 Object1:tcp -p 10001

Object2 Object2@TheAdapter

Object3 Object3
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For Object2, the registry notices the adapter id and checks to see whether it 
knows about an adapter identified as TheAdapter. If it does, it attempts to 
obtain the endpoints of that adapter, which may cause its server to be started. If the 
registry is successfully able to determine the adapter’s endpoints, it returns a direct 
proxy containing those endpoints to the client. If the registry does not recognize 
TheAdapter or cannot obtain its endpoints, it returns the indirect proxy 
Object2@TheAdapter to the client. Upon receipt of another indirect proxy, 
the Ice run time in the client will try once more to resolve the proxy, but generally 
this will not succeed and the Ice run time in the client will raise a NoEndpointEx-
ception as a result.

Finally, Object3 represents a hopeless situation: how can the registry 
resolve Object3 when its associated proxy refers to itself? In this case, the 
registry returns the proxy Object3 to the client, which causes the client to raise 
NoEndpointException. Clearly, you should avoid this situation.

36.5.1 Object Types
The registry’s database not only associates an identity with a proxy, but also a 
type. Technically, the “type” is an arbitrary string but, by convention, that string 
represents the most-derived Slice type of the object. For example, the Slice type of 
the encoder factory in our ripper application is 
::Ripper::MP3EncoderFactory.

Object types are useful when performing queries, as discussed in 
Section 36.5.5.

36.5.2 Object Descriptors
The object descriptor (see Section 36.14.13) adds a well-known object to the 
registry. It must appear within the context of an adapter descriptor, as shown in the 
XML example below:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    id="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"> 
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                    <object identity="EncoderFactory" 
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </node> 
    </application> 
</icegrid>

During deployment, the registry associates the identity EncoderFactory with 
the indirect proxy EncoderFactory@EncoderAdapter. If the adapter 
descriptor had omitted the adapter id, the registry would have generated a unique 
identifier using the server id and the adapter name.

In this example, the object’s type is specified explicitly. See Section 36.5.1 for 
more information on object types.

36.5.3 Adding Objects in a Program
The IceGrid::Admin interface defines several operations that manipulate the 
registry’s database of well-known objects:

module IceGrid { 
interface Admin { 
    ... 
    void addObject(Object* obj) 
        throws ObjectExistsException, 
               DeploymentException; 
    void updateObject(Object* obj) 
        throws ObjectNotRegisteredException, 
               DeploymentException; 
    void addObjectWithType(Object* obj, string type) 
        throws ObjectExistsException, 
               DeploymentException; 
    void removeObject(Ice::Identity id)  
        throws ObjectNotRegisteredException, 
               DeploymentException; 
    ... 
}; 
};

• addObject

The addObject operation adds a new object to the database. The proxy argu-
ment supplies the identity of the well-known object. If an object with the same 
identity has already been registered, the operation raises ObjectExistsEx-
ception. Since this operation does not accept an argument supplying the 
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object’s type, the registry invokes ice_id on the given proxy to determine its 
most-derived type. The implication here is that the object must be available in 
order for the registry to obtain its type. If the object is not available, addOb-
ject raises DeploymentException.

• updateObject

The updateObject operation supplies a new proxy for the well-known object 
whose identity is encapsulated by the proxy. If no object with the given iden-
tity is registered, the operation raises ObjectNotRegisteredException. The 
object’s type is not modified by this operation.

• addObjectWithType

The addObjectWithType operation behaves like addObject, except the 
object’s type is specified explicitly and therefore the registry does not attempt 
to invoke ice_id on the given proxy (even if the type is an empty string).

• removeObject

The removeObject operation removes the well-known object with the given 
identity from the database. If no object with the given identity is registered, 
the operation raises ObjectNotRegisteredException.

The following C++ example produces the same result as deploying the descriptor 
in Section 36.5.2:

Ice::ObjectAdapterPtr adapter = 
    communicator->createObjectAdapter("EncoderAdapter"); 
Ice::Identity ident = 
    communicator->stringToIdentity("EncoderFactory"); 
Ice::ObjectPrx factory = adapter->add(new FactoryI, ident); 
Ice::ObjectPrx proxy = 
    communicator->stringToProxy("IceGrid/Admin"); 
IceGrid::AdminPrx admin = IceGrid::AdminPrx::checkedCast(proxy); 
try { 
    admin->addObject(factory); // OOPS! 
} catch (const IceGrid::ObjectExistsException &) { 
    admin->updateObject(factory); 
}

The first noteworthy aspect of this example is the proxy it constructs for the 
IceGrid::Admin object, which is available as a well-known object with the 
default identity IceGrid/Admin.

Next, notice that the code traps ObjectExistsException and calls 
updateObject instead when the object is already registered.



36.5 Well-known Objects 1071

There is one subtle problem in this code: calling addObject causes the 
registry to invoke ice_id on our factory object, but we have not yet activated the 
object adapter. As a result, our program will hang indefinitely at the call to 
addObject. One solution is to activate the adapter prior to the invocation of 
addObject; another solution is to use addObjectWithType as shown 
below:

Ice::ObjectAdapterPtr adapter = 
    communicator->createObjectAdapter("EncoderAdapter"); 
Ice::Identity ident = 
    communicator->stringToIdentity("EncoderFactory"); 
Ice::ObjectPrx factory = adapter->add(new FactoryI, ident); 
Ice::ObjectPrx proxy = 
    communicator->stringToProxy("IceGrid/Admin"); 
IceGrid::AdminPrx admin = IceGrid::AdminPrx::checkedCast(proxy); 
try { 
    admin->addObjectWithType(factory, factory->ice_id()); 
} catch (const IceGrid::ObjectExistsException &) { 
    admin->updateObject(factory); 
}

36.5.4 Adding Objects with icegridadmin
The icegridadmin utility (see Section 36.19.1) provides commands that are 
the functional equivalents of the Slice operations shown in Section 36.5.3. We can 
use the utility to manually register the EncoderFactory object from 
Section 36.5.2:

$ icegridadmin --Ice.Config=/opt/ripper/config 
>>> object add "EncoderFactory@EncoderAdapter"

Use the object list command to verify that the object was registered 
successfully:

>>> object list 
EncoderFactory 
IceGrid/Admin 
IceGrid/Query 
IceGrid/SessionManager

To specify the object’s type explicitly, append it to the object add command:

>>> object add "EncoderFactory@EncoderAdapter" \ 
"::Ripper::MP3EncoderFactory"
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Finally, the object is removed from the registry like this:

>>> object remove "EncoderFactory"

36.5.5 Queries
The registry’s database of well-known objects is not used solely for resolving indi-
rect proxies. The database can also be queried interactively to find objects in a 
variety of ways. The IceGrid::Query interface supplies this functionality:

module IceGrid { 
enum LoadSample { 
    LoadSample1, 
    LoadSample5, 
    LoadSample15 
}; 
 
interface Query { 
    nonmutating Object* findObjectById(Ice::Identity id); 
    nonmutating Object* findObjectByType(string type); 
    nonmutating Object* findObjectByTypeOnLeastLoadedNode( 
            string type, LoadSample sample); 
    nonmutating Ice::ObjectProxySeq findAllObjectsByType( 
            string type); 
}; 
};

• findObjectById

The findObjectById operation returns the proxy associated with the given 
identity of a well-known object. It returns a null proxy if no match was found.

• findObjectByType

The findObjectByType operation returns a proxy for an object registered 
with the given type. If more than one object has the same type, the registry 
selects one at random. The operation returns a null proxy if no match was 
found.

• findObjectByTypeOnLeastLoadedNode

The findObjectByTypeOnLeastLoadedNode operation considers the system 
load when selecting one of the objects with the given type. If the registry is 
unable to determine which node hosts an object (for example, because the 
object was registered with a direct proxy and not an adapter id), the object is 
considered to have a load value of 1 for the purposes of this operation. The 
sample argument determines the interval over which the loads are averaged 
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(one, five, or fifteen minutes). The operation returns a null proxy if no match 
was found.

• findAllObjectsByType

The findAllObjectsByType operation returns a sequence of proxies repre-
senting the well-known objects having the given type. The operation returns 
an empty sequence if no match was found.

Be aware that the operations accepting a type parameter are not equivalent to 
invoking ice_isA on each object to determine whether it supports the given type, 
a technique that would not scale well as the for a large number of registered 
objects. Rather, the operations simply compare the given type to the object’s regis-
tered type or, if the object was registered without a type, to the object’s most-
derived Slice type as determined by the registry (see Section 36.5.1).

36.5.6 Application Changes
Well-known objects are another IceGrid feature we can incorporate into our ripper 
application.

Descriptors

First we’ll modify the descriptors from Section 36.4.9 to add two well-known 
objects:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer1" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"> 
                    <object identity="EncoderFactory1" 
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </node> 
        <node name="Node2"> 
            <server id="EncoderServer2" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
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                    register-process="true" 
                    endpoints="tcp"> 
                    <object identity="EncoderFactory2" 
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </node> 
    </application> 
</icegrid>

At first glance, the addition of the well-known objects does not appear to simplify 
our client very much. Rather than selecting which of the two adapters receives the 
next task, we now need to select one of the well-known objects.

Querying with findAllObjectsByType

The IceGrid::Query interface provides a way to eliminate the client’s depen-
dency on object adapter identifiers and object identities. Since our factories are 
registered with the same type, we can search for all objects of that type:

Ice::ObjectPrx proxy = 
    communicator->stringToProxy("IceGrid/Query"); 
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy); 
Ice::ObjectProxySeq seq; 
string type = Ripper::MP3EncoderFactory::ice_staticId(); 
seq = query->findAllObjectsByType(type); 
if (seq.empty()) { 
    // no match 
} 
Ice::ObjectProxySeq::size_type index = ... // random number 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(seq[index]); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

This example invokes findAllObjectsByType and then randomly selects an 
element of the sequence.

Querying with findObjectByType

We can simplify the client further using findObjectByType instead, which 
performs the randomization for us:

Ice::ObjectPrx proxy = 
    communicator->stringToProxy("IceGrid/Query"); 
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy); 
Ice::ObjectPrx obj; 
string type = Ripper::MP3EncoderFactory::ice_staticId(); 
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obj = query->findObjectByType(type); 
if (!obj) { 
    // no match 
} 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Querying with findObjectByTypeOnLeastLoadedNode

So far the use of IceGrid::Query has allowed us to simplify our client, but we 
have not gained any functionality. If we replace the call to findObjectByType 
with findObjectByTypeOnLeastLoadedNode, we can improve the client by 
distributing the encoding tasks more intelligently. The change to the client’s code 
is trivial:

Ice::ObjectPrx proxy = 
    communicator->stringToProxy("IceGrid/Query"); 
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy); 
Ice::ObjectPrx obj; 
string type = Ripper::MP3EncoderFactory::ice_staticId(); 
obj = query->findObjectByTypeOnLeastLoadedNode(type, 
    IceGrid::LoadSample1); 
if (!obj) { 
    // no match 
} 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Review

Incorporating intelligent load distribution is a worthwhile enhancement and is a 
capability that would be time consuming to implement ourselves. However, our 
current design uses only well-known objects in order to make queries possible. 
We do not really need the encoder factory object on each compute server to be 
individually addressable as a well-known object, a fact that seems clear when we 
examine the identities we assigned to them: EncoderFactory1, 
EncoderFactory2, and so on. IceGrid’s replication features, discussed in 
Section 36.8, give us the tools we need to improve our design.
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36.6 Templates

IceGrid templates simplify the task of creating the descriptors for an application. 
A template is a parameterized descriptor that you can instantiate as often as neces-
sary. Templates are descriptors in their own right. They are components of an 
IceGrid application and therefore they are stored in the registry’s database. As 
such, their use is not restricted to XML files; templates can also be created and 
instantiated interactively using the graphical administration tool (see 
Section 36.19.2).

You can define templates for server and service descriptors. The focus of this 
section is server templates; Section 36.7 explains service descriptors and 
templates.

36.6.1 Server Templates
You may recall from prior sections that the XML description of our sample appli-
cation defined two nearly identical servers:

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer1" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </node> 
        <node name="Node2"> 
            <server id="EncoderServer2" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </node> 
    </application> 
</icegrid>

This example is an excellent candidate for a server template. Equivalent defini-
tions that incorporate a template are shown below:
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<icegrid> 
    <application name="Ripper"> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <server id="EncoderServer${index}" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
                index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
                index="2"/> 
        </node> 
    </application> 
</icegrid>

We have defined a server template named EncoderServerTemplate. Nested 
within the server-template element is a server element that defines an 
encoder server. The only difference between this server element and our 
previous example is that it is now parameterized: the template parameter index 
is used to form unique identifiers for the server and its adapter. The symbol 
${index} is replaced with the value of the index parameter wherever it 
occurs.

The template is instantiated by a server-instance element, which may 
be used anywhere that a server element is used. The server-instance 
element identifies the template to be instantiated, and supplies a value for the 
index parameter.

Although we have not significantly reduced the length of our XML file, we 
have made it more readable. And more importantly, deploying this server on addi-
tional nodes has become much easier.

36.6.2 Template Parameters
Parameters enable you to customize each instance of a template as necessary. The 
example in Section 36.6.1 defined the index parameter with a different value for 
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each instance to ensure that identifiers are unique. A parameter may also declare a 
default value that is used in the template if no value is specified for it. In our 
sample application the index parameter is considered mandatory and therefore 
should not have a default value, but we can illustrate this feature in another way. 
For example, suppose that the pathname of the server’s executable may change on 
each node. We can supply a default value for this attribute and override it when 
necessary:

<icegrid> 
    <application name="Ripper"> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <parameter name="exepath" 
                default="/opt/ripper/bin/server"/> 
            <server id="EncoderServer${index}" 
                exe="${exepath}" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
                index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
                index="2" exepath="/opt/ripper-test/bin/server"/> 
        </node> 
    </application> 
</icegrid>

As you can see, the instance on Node1 uses the default value for the new param-
eter exepath, but the instance on Node2 defines a different location for the 
server’s executable.

For complete details about substitution rules and other semantics, see 
Section 36.15.

36.6.3 Property Sets
As we saw in the preceding section, template parameters allow you to customize 
each instance of a server template. Template parameters with default values allow 
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you to define commonly used configuration options. However, you might want to 
have additional configuration properties for a given instance without having to add 
a parameter. For example, to debug a server instance on a specific node, you might 
want to start the server with the Ice.Trace.Network property set; it would be 
inconvenient to have to add a parameter to the template just to set that property.

To cater for such scenarios, it is possible to specify additional properties for a 
server instance without modifying the template. You can define such properties in 
the server-instance element, for example:

<icegrid> 
    <application> 
        ... 
        <node name="Node2">  
            <server-instance template="EncoderServerTemplate" 
                             index="2">  
                <properties> 
                    <property name="Ice.Trace.Network" value="2"/> 
                </properties> 
            </server-instance> 
        </node>  
    </application>  
</icegrid> 

This sets the Ice.Trace.Network property for a specific server.

36.6.4 Default Templates
The IceGrid registry can be configured to supply any number of default template 
descriptors for use in your applications. The configuration property 
IceGrid.Registry.DefaultTemplates specifies the pathname of an 
XML file containing template definitions. One such template file is provided in 
the Ice distribution as config/templates.xml, which contains helpful 
templates for deploying Ice services such as IcePatch2 and Glacier2.

The template file must use the structure shown below:

<icegrid> 
    <application name="DefaultTemplates"> 
        <server-template id="EncoderServerTemplate"> 
            ... 
        </server-template> 
    </application> 
</icegrid>



1080 IceGrid

The name you give to the application is not important, and you may only define 
server and service (see Section 36.7.2) templates within it. After configuring the 
registry to use this file, your default templates become available to every applica-
tion that imports them.

The descriptor for each application indicates whether the default templates 
should be imported. (By default they are not imported.) If the templates are 
imported, they are essentially copied into the application descriptor and treated no 
differently than templates defined by the application itself. As a result, changes to 
the file containing default templates have no effect on existing application descrip-
tors. In XML, the attribute import-default-templates determines 
whether the default templates are imported, as shown in the following example:

<icegrid> 
    <application name="Ripper" 
        import-default-templates="true"> 
        ... 
    </application> 
</icegrid>

36.6.5 Using Templates with icegridadmin
The IceGrid administration tools allow you to inspect templates and instantiate 
new servers dynamically. First, let us ask icegridadmin to describe the server 
template from Section 36.6.1:

$ icegridadmin --Ice.Config=/opt/ripper/config 
>>> server template describe Ripper \ 
EncoderServerTemplate

This command generates the following output:

server template `EncoderServerTemplate' 
{ 
    parameters = `index exepath' 
    server `EncoderServer${index}' 
    { 
        exe = `${exepath}' 
        activation = `on-demand' 
        properties 
        { 
            EncoderAdapter.Endpoints = `tcp' 
        } 
        adapter `EncoderAdapter' 
        { 
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            id = `EncoderAdapter${index}' 
            replica group id = `' 
            endpoints = `tcp' 
            register process = `true' 
            wait for activation = `true' 
        } 
    } 
}

Notice that the server id is a parameterized value; it cannot be evaluated until the 
template is instantiated with values for its parameters.

Next, we can use icegridadmin to create an instance of the encoder server 
template on a new node:

>>> server template instantiate Ripper Node3 \ 
EncoderServerTemplate index=3

The command requires that we identify the application, node and template, as well 
as supply any parameters needed by the template. The new server instance is 
permanently added to the registry’s database, but if we intend to keep this config-
uration it is a good idea to update the XML description of our application to 
reflect these changes and avoid potential synchronization issues.

36.7 IceBox Integration

IceGrid makes it easy to configure an IceBox server (see Chapter 41) with one or 
more services.

36.7.1 Descriptors
An IceBox server shares many of the same characteristics as other servers, but its 
special requirements necessitate a new descriptor. Unlike other servers, an IceBox 
server generally hosts multiple independent services, each requiring its own 
communicator instance and configuration file.

As an example, the following application deploys an IceBox server containing 
one service:

<icegrid> 
    <application name="IceBoxDemo"> 
        <node name="Node"> 
            <icebox id="IceBoxServer" 
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                exe="/opt/Ice/bin/icebox" 
                activation="on-demand"> 
                <service name="ServiceA" entry="servicea:create"> 
                    <adapter name="${service}" endpoints="tcp"/> 
                </service> 
            </icebox> 
        </node> 
    </application> 
</icegrid>

It looks very similar to a server descriptor. The most significant difference is the 
service descriptor, which is constructed much like a server in that you can declare 
its attributes such as object adapters and configuration properties. The order in 
which services are defined determines the order in which they are loaded by the 
IceBox server.

The value of the adapter’s name attribute needs additional explanation. The 
symbol service is one of the names reserved by IceGrid. In the context of a 
service descriptor, ${service} is replaced with the service’s name, and so the 
object adapter is also named ServiceA. See Section 36.15.2 for more informa-
tion on reserved names.

36.7.2 Service Templates
If you are familiar with templates in general (see Section 36.6), an IceBox service 
template is readily understandable:

<icegrid> 
    <application name="IceBoxApp"> 
        <service-template id="ServiceTemplate"> 
            <parameter name="name"/> 
            <service name="${name}" entry="DemoService:create"> 
                <adapter name="${service}" 
                    register-process="true" 
                    endpoints="default"/> 
                <property name="${service}.Identity" 
                    value="${server}-${service}"/> 
            </service> 
        </service-template> 
        <node name="Node1"> 
            <icebox id="IceBoxServer" endpoints="default" 
                exe="/opt/Ice/bin/icebox" activation="on-demand"> 
                <service-instance template="ServiceTemplate" 
                    name="Service1"/> 



36.7 IceBox Integration 1083

            </icebox> 
        </node> 
    </application> 
</icegrid>

In this application, an IceBox server is deployed on a node and has one service 
instantiated from the service template. Of particular interest is the property 
descriptor, which uses another reserved name server to form the property value. 
When the template is instantiated, the symbol ${server} is replaced with the 
name of the enclosing server, so the property definition expands as follows:

Service1.Identity=IceBoxServer-Service1

See Section 36.15.2 for more information on reserved names.

36.7.3 Advanced Templates
A more sophisticated use of templates involves instantiating a service template in 
a server template:

<icegrid> 
    <application name="IceBoxApp"> 
        <service-template id="ServiceTemplate"> 
            <parameter name="name"/> 
            <service name="${name}" entry="DemoService:create"> 
                <adapter name="${service}" 
                    register-process="true" 
                    endpoints="default"/> 
                <property name="${name}.Identity" 
                    value="${server}-${name}"/> 
            </service> 
        </service-template> 
        <server-template id="ServerTemplate"> 
            <parameter name="id"/> 
            <icebox id="${id}" endpoints="default" 
                exe="/opt/Ice/bin/icebox" activation="on-demand"> 
                <service-instance template="ServiceTemplate" 
                    name="Service1"/> 
            </icebox> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="ServerTemplate" 
                id="IceBoxServer"/> 
        </node> 
    </application> 
</icegrid>
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This application is equivalent to the definition from Section 36.7.2. Now, however, 
the process of deploying an identical server on several nodes has become much 
simpler.

36.8 Replication

As an implementation of an Ice location service, IceGrid supports replication as 
described on page 14. An application defines its replica groups and their partici-
pating object adapters using descriptors, and IceGrid generates the server configu-
rations automatically.

36.8.1 Replica Group Descriptor
The descriptor that defines a replica group can optionally declare well-known 
objects as well as configure the group to determine its behavior during locate 
requests. Consider this example:

<icegrid> 
    <application name="ReplicaApp"> 
        <replica-group id="ReplicatedAdapter"> 
            <object identity="TheObject" 
                type="::Demo::ObjectType"/> 
        </replica-group> 
        <node name="Node"> 
            <server id="ReplicaServer" activation="on-demand" 
                exe="/opt/replica/bin/server"> 
                <adapter name="TheAdapter" endpoints="default" 
                    replica-group="ReplicatedAdapter"/> 
            </server> 
        </node> 
    </application> 
</icegrid>

The adapter’s descriptor declares itself to be a member of the replica group 
ReplicatedAdapter, which must have been previously created by a replica 
group descriptor.

The replica group ReplicatedAdapter declares a well-known object so 
that an indirect proxy of the form TheObject is equivalent to the indirect proxy 
TheObject@ReplicatedAdapter. Since this trivial example defines only 
one adapter in the replica group, the proxy TheObject is also equivalent to 
TheObject@TheAdapter.
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36.8.2 Replica Group Membership
An object adapter participates in a replica group by specifying the group’s id in 
the adapter’s ReplicaGroupId configuration property. Identifying the replica 
group in the IceGrid descriptor for an object adapter causes the node to include the 
equivalent ReplicaGroupId property in the configuration file it generates for 
the server.

By default, the IceGrid registry requires the membership of a replica group to 
be statically defined. When you create a descriptor for an object adapter that iden-
tifies a replica group, the registry adds that adapter to the group’s list of valid 
members. During an adapter’s activation, when it describes its endpoints to the 
registry, an adapter that also claims membership in a replica group is validated 
against the registry’s internal list.

In a properly configured IceGrid application, this activity occurs without inci-
dent, but there are situations in which validation can fail. For example, adapter 
activation fails if an adapter’s id is changed without notifying the registry, such as 
by manually modifying the server configuration file that was generated by a node.

It is also possible for activation to fail when the IceGrid registry is being used 
solely as a location service, in which case descriptors have not been created and 
therefore the registry has no advance knowledge of the replica groups or their 
members. In this situation, adapter activation causes the server to receive NotReg-
isteredException unless the registry is configured to allow dynamic registra-
tion, which you can do by defining the following property:

IceGrid.Registry.DynamicRegistration=1

With this configuration, a replica group is created implicitly as soon as an adapter 
declares membership in it, and any adapter is allowed to participate.

The use of dynamic registration often leads to the accumulation of obsolete 
replica groups and adapters in the registry. The IceGrid administration tools (see 
Section 36.19) allow you to inspect and clean up the registry’s state.

36.8.3 Application Changes
Replication is a perfect fit for the ripper application. The collection of encoder 
factory objects should be treated as a single logical object, and replication makes 
that possible.

Descriptors

Adding a replica group descriptor to our application is very straightforward:
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<icegrid> 
    <application name="Ripper"> 
        <replica-group id="EncoderAdapters"> 
            <object identity="EncoderFactory" 
                type="::Ripper::MP3EncoderFactory"/> 
        </replica-group> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <parameter name="exepath" 
                default="/opt/ripper/bin/server"/> 
            <server id="EncoderServer${index}" 
                exe="${exepath}" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    replica-group="EncoderAdapters" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
                index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
                index="2"/> 
        </node> 
    </application> 
</icegrid>

The new descriptor adds the replica group called EncoderAdapters and regis-
ters a well-known object with the identity EncoderFactory. The adapter 
descriptor in the server template has been changed to declare its membership in 
the replica group.

Client

In comparison to the examples from Section 36.5.6 that used queries, the new 
version of our client has become much simpler:

Ice::ObjectPrx obj = 
    communicator->stringToProxy("EncoderFactory"); 
Ripper::MP3EncoderFactoryPrx factory = 
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj); 
Ripper::MP3EncoderPrx encoder = factory->createEncoder();
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 The client no longer needs to use the IceGrid::Query interface, but simply 
creates a proxy for a well-known object and lets the Ice run time transparently 
interact with the location service. In response to a locate request for Encoder-
Factory, the registry returns a proxy containing the endpoints of both object 
adapters. The Ice run time in the client selects one of the endpoints at random, 
meaning we have now lost some functionality compared to the prior example in 
which system load was considered when selecting an endpoint. We will learn how 
to rectify this situation in Section 36.9.

36.9 Load Balancing

Replication is an important IceGrid feature but, when combined with load 
balancing, replication becomes even more useful.

IceGrid nodes regularly report the system load of their hosts to the registry. A 
replica group’s configuration determines whether the registry considers system 
loads when deciding which endpoint(s) to return to a client in response to a locate 
request.

IceGrid’s load balancing capability assists the client in selecting an initial 
endpoint for a connection. As discussed in Section 30.17.2, once a client has 
established a connection, all subsequent requests on the proxy that initiated the 
connection are sent to the same server without further consideration for load 
balancing.

36.9.1 Configuring a Replica Group
A replica group descriptor optionally contains a load balancing descriptor that 
determines how system loads are used in locate requests. The load balancing 
descriptor specifies the following information:

• Type

Several types of load balancing are supported. See Section 36.9.2 for details.

• Sampling interval

One of the load balancing types considers system load statistics, which are 
reported by each node at regular intervals. The replica group can specify a 
sampling interval of one, five, or fifteen minutes. Choosing a sampling 
interval requires balancing the need for up-to-date load information against 
the desire to minimize transient spikes.
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• Number of replicas

The replica group can instruct the registry to return the endpoints of one (the 
default) or more object adapters. If the specified number N is larger than one, 
the proxy returned in response to a locate request contains the endpoints of at 
most N object adapters. The Ice run time in the client selects one of these 
endpoints at random (see Section 30.10.3).

For example, the descriptor shown below uses adaptive load balancing to return 
the endpoints of the two least-loaded object adapters sampled with five-minute 
intervals:

<replica-group id="ReplicatedAdapter"> 
    <load-balancing type="adaptive" load-sample="5" 
        n-replicas="2"/> 
</replica-group>

The type must be specified, but the remaining attributes are optional.

36.9.2 Load Balancing Types
A replica group can select one of the following load balancing types.

None

If no load balancing is requested, a locate request receives the endpoints of all 
object adapters in the group. The registry does not consider system load in this 
case.

Random

Random load balancing selects the requested number of object adapters at 
random. The registry does not consider system load for a replica group with this 
type.

Adaptive

Adaptive load balancing uses system load information to choose the least-loaded 
object adapters over the requested sampling interval. This is the only load 
balancing type that uses sampling intervals.

Round Robin

Round robin load balancing returns the least recently used object adapters. The 
registry does not consider system load for a replica group with this type.
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36.9.3 Application Changes
The only change we need to make to the ripper application is the addition of a load 
balancing descriptor:

<icegrid> 
    <application name="Ripper"> 
        <replica-group id="EncoderAdapters"> 
            <load-balancing type="adaptive"/> 
            <object identity="EncoderFactory" 
                type="::Ripper::MP3EncoderFactory"/> 
        </replica-group> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <parameter name="exepath" 
                default="/opt/ripper/bin/server"/> 
            <server id="EncoderServer${index}" 
                exe="${exepath}" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    replica-group="EncoderAdapters" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
                index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
                index="2"/> 
        </node> 
    </application> 
</icegrid>

Using adaptive load balancing, we have regained the functionality we forfeited in 
Section 36.8.3. Namely, we now select the object adapter on the least-loaded 
node, and no changes were necessary in the client.

36.10 Sessions

IceGrid provides a resource allocation facility that coordinates access to the 
objects and servers of an IceGrid application. To allocate a resource for exclusive 
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use, a client must first establish a session by authenticating itself with the IceGrid 
registry or a Glacier2 router, after which the client may reserve objects and servers 
that the application indicates are allocatable. The client should release the 
resource when it is no longer needed, otherwise IceGrid reclaims it when the 
client’s session terminates or expires due to inactivity.

An allocatable server offers at least one allocatable object. The server is 
considered to be allocated when its first allocatable object is claimed, and is not 
released until all of its allocated objects are released. While the server is allocated 
by a client, no other clients can allocate its objects.

36.10.1 Creating a Session
A client must create an IceGrid session before it can allocate objects. If you have 
configured a Glacier2 router to use IceGrid’s session managers (see 
Section 36.13), the client’s router session satisfies this requirement. For more 
information on creating a Glacier2 session, see Section 40.3.6.

In the absence of Glacier2, an IceGrid client invokes createSession or crea-
teSessionFromSecureConnection on IceGrid’s Registry interface to create a 
session:

module IceGrid { 
    exception PermissionDeniedException { 
        string reason; 
    }; 
 
    interface Registry { 
        Session* createSession(string userId, string password) 
            throws PermissionDeniedException; 
 
        Session* createSessionFromSecureConnection() 
            throws PermissionDeniedException; 
 
        nonmutating int getSessionTimeout(); 
    }; 
};

The createSession operation expects a username and password and returns a 
session proxy if the client is allowed to create a session. By default, IceGrid does 
not allow the creation of sessions. You must define the registry property 
IceGrid.Registry.PermissionsVerifier with the proxy of a permis-
sions verifier object to enable session creation with createSession (see 
Section 36.10.2).
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The createSessionFromSecureConnection operation does not require a 
username and password because it uses the credentials supplied by an SSL 
connection to authenticate the client (see Chapter 39). As with createSession, 
you must configure the proxy of a permissions verifier object before clients can 
use createSessionFromSecureConnection to create a session. In this case, the 
property is IceGrid.Registry.SSLPermissionsVerifier (see 
Section 36.10.2).

To create a session, the client obtains the registry proxy by converting the 
well-known proxy string "IceGrid/Registry" to a proxy object with the 
communicator, downcasts the proxy to the IceGrid::Registry interface, and 
invokes on one of the operations. The sample code below demonstrates how to do 
it in C++; the code will look very similar in other language mappings.

Ice::ObjectPrx base = 
    communicator->stringToProxy("IceGrid/Registry"); 
IceGrid::RegistryPrx registry = 
    IceGrid::RegistryPrx::checkedCast(base);  
string username = ...;  
string password = ...;  
IceGrid::SessionPrx session;  
try {  
    session = registry->createSession(username, password);  
} catch (const IceGrid::PermissionDeniedException & ex) {  
    cout << "permission denied:\n" << ex.reason << endl;  
}

After creating the session, the client must keep it alive by periodically invoking its 
keepAlive operation. The session expires if the client does not invoke keepAlive 
within the configured timeout period, which can be obtained by calling the 
getSessionTimeout operation on the Registry interface.

If a session times out, or if the client explicitly terminates the session by 
invoking its destroy operation, IceGrid automatically releases all objects allo-
cated using that session.

36.10.2 Access Control
As described in Section 36.10.1 above, you must configure the IceGrid registry 
with the proxy of at least one permissions verifier object to enable session 
creation:
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• IceGrid.Registry.PermissionsVerifier

This property supplies the proxy of an object that implements the interface 
Glacier2::PermissionsVerifier. Defining this property allows clients to 
create sessions using createSession.

• IceGrid.Registry.SSLPermissionsVerifier

This property supplies the proxy of an object that implements the interface 
Glacier2::SSLPermissionsVerifier. Defining this property allows clients 
to create sessions using createSessionFromSecureConnection.

IceGrid supplies built-in permissions verifier objects:

• A null permissions verifier for TCP/IP. This object accepts any username and 
password and should only be used in a secure environment where no access 
control is necessary. You select this verifier object by defining the following 
configuration property:

IceGrid.Registry.PermissionsVerifier=\ 
    IceGrid/NullPermissionsVerifier

• A null permissions verifier for SSL, analogous to the one for TCP/IP. You 
select this verifier object by defining the following configuration property:

IceGrid.Registry.SSLPermissionsVerifier=\ 
    IceGrid/NullSSLPermissionsVerifier

• A file-based permissions verifier. This object uses an access control list in a 
file that contains username-password pairs. The format of the password file is 
the same as the format of Glacier2 password files described in Section 40.3.2. 
You enable this verifier implementation by defining the configuration prop-
erty IceGrid.Registry.CryptPasswords with the pathname of the 
password file. Note that this property is ignored if you specify the proxy of a 
permissions verifier object using IceGrid.Registry.Permissions-
Verifier.

If you decide to implement your own permissions verifier object, Section 40.5.1 
describes the Glacier2 interfaces in detail.

36.10.3 Allocating Objects
A client allocates objects using the session proxy returned from createSession 
or createSessionFromSecureConnection. The proxy supports the Session 
interface shown below:
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module IceGrid { 
    exception ObjectNotRegisteredException { 
        Ice::Identity id; 
    }; 
 
    exception AllocationException { 
        string reason; 
    }; 
 
    exception AllocationTimeoutException 
        extends AllocationException { 
    }; 
 
    interface Session extends Glacier2::Session { 
 
        idempotent void keepAlive(); 
 
        Object* allocateObjectById(Ice::Identity id) 
            throws ObjectNotRegisteredException, 
                   AllocationException; 
 
        Object* allocateObjectByType(string type) 
            throws AllocationException; 
 
        void releaseObject(Ice::Identity id) 
            throws ObjectNotRegisteredException, 
                   AllocationException; 
 
        idempotent void setAllocationTimeout(int timeout); 
    }; 
};

The client is responsible for keeping the session alive by periodically invoking 
keepAlive, as discussed in Section 36.10.1.

The allocateObjectById operation allocates and returns the proxy for the 
allocatable object with the given identity. If no allocatable object with the given 
identity is registered, the client receives ObjectNotRegisteredException. If the 
object cannot be allocated, the client receives AllocationException. An alloca-
tion attempt can fail for the following reasons:

• the object is already allocated by the session

• the object is allocated by another session and did not become available during 
the configured allocation timeout period

• the session was destroyed.
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The allocateObjectByType operation allocates and returns a proxy for an allo-
catable object registered with the given type. If more than one allocatable object is 
registered with the given type, the registry selects one at random. The client 
receives AllocationException if no objects with the given type could be allo-
cated. An allocation attempt can fail for the following reasons:

• no objects are registered with the given type

• all objects with the given type are already allocated (either by this session or 
other sessions) and none became available during the configured allocation 
timeout period

• the session was destroyed.

The releaseObject operation releases an object allocated by the session. The 
client receives ObjectNotRegisteredException if no allocatable object is regis-
tered with the given identity and AllocationException if the object is not allo-
cated by the session. Upon session destruction, IceGrid automatically releases all 
allocated objects.

The setAllocationTimeout operation configures the timeout used by the 
allocation operations. If no allocatable objects are available when the client 
invokes allocateObjectById or allocateObjectByType, IceGrid waits for the 
specified timeout period for an allocatable object to become available. If the 
timeout expires, the client receives AllocationTimeoutException.

36.10.4 Allocating Servers
A client does not need to explicitly allocate a server. If a server is allocatable, 
IceGrid implicitly allocates it to the first client that claims one of the server’s allo-
catable objects. Likewise, IceGrid releases the server when all of its allocatable 
objects are released.

Server allocation is useful in two situations:

• Only allocatable servers can use the session activation mode, in which the 
server is activated on demand when allocated by a client and deactivated upon 
release.

• An allocatable server can be secured with IceSSL or Glacier2 so that its 
objects can only be invoked by the client that allocated it.
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36.10.5 Security
IceGrid’s resource allocation facility allows clients to coordinate access to objects 
and servers but does not place any restrictions on client invocations to allocated 
objects; any client that has a proxy for an allocated object could conceivably 
invoke an operation on it. IceGrid assumes that clients are cooperating with each 
other and respecting allocation semantics.

To prevent unauthorized clients from invoking operations on an allocated 
object or server, you can use IceSSL or Glacier2:

• Using IceSSL, you can secure access to a server or a particular object adapter 
with the properties IceSSL.TrustOnly.Server or IceSSL.Trus-
tOnly.Server.AdapterName.

For example, if you configure a server with the session activation mode, you 
can set one of the IceSSL.TrustOnly property to the ${session.id} 
variable, which is substituted with the session id when the server is activated 
for the session. If the IceGrid session was created from a secure connection, 
the session id will be the distinguished name associated with the secure 
connection, which effectively restricts access to the server or one of its 
adapters to the client that established the session with IceGrid.

• With Glacier2, you can secure access to an allocated object or the object 
adapters of an allocated server with the Glacier2 filtering mechanism (see 
Section 40.5.2). By default, IceGrid sessions created with a Glacier2 router 
are automatically given access to allocated objects as well as the object 
adapters of allocated servers. See Section 36.13 for more information.

36.10.6 Descriptors
Allocatable objects are registered using a descriptor that is similar to well-known 
object descriptors (see Section Section 36.14.13). Allocatable objects cannot be 
replicated and therefore can only be specified within an object adapter descriptor.

Servers can be specified as allocatable by setting the server
descriptor’s allocatable attribute.

As an example, the following application defines an allocatable server and an 
allocatable object:

<icegrid>  
    <application name="Ripper">  
        <node name="Node1">  
            <server id="EncoderServer"  
                exe="/opt/ripper/bin/server"  
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                activation="on-demand" 
                allocatable="true">  
                <adapter name="EncoderAdapter"  
                    id="EncoderAdapter"  
                    register-process="true"  
                    endpoints="tcp">  
                    <allocatable identity="EncoderFactory"  
                        type="::Ripper::MP3EncoderFactory"/>  
                </adapter>  
            </server>  
        </node>  
    </application> 
</icegrid> 

36.10.7 Application Changes
We can use the allocation facility in our MP3 encoder factory to coordinate access 
to the MP3 encoder factories. First we need to modify the descriptors to define an 
allocatable object:

<icegrid>  
    <application name="Ripper">  
        <server-template id="EncoderServerTemplate">  
            <parameter name="index"/>  
            <server id="EncoderServer${index}"  
                exe="/opt/ripper/bin/server"  
                activation="on-demand">  
                <adapter name="EncoderAdapter"  
                    register-process="true"  
                    endpoints="tcp"> 
                    <allocatable identity="EncoderFactory${index}" 
                        type="::Ripper::MP3EncoderFactory"/>  
                </adapter>  
            </server>  
        </server-template>  
        <node name="Node1">  
            <server-instance template="EncoderServerTemplate"  
                index="1"/>  
        </node>  
        <node name="Node2">  
            <server-instance template="EncoderServerTemplate"  
                index="2"/>  
        </node>  
    </application>  
</icegrid> 
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Next, the client needs to create a session and allocate a factory:

Ice::ObjectPrx obj = session->allocateObjectByType( 
    Ripper::MP3EncoderFactory::ice_staticId()); 
try { 
    Ripper::MP3EncoderPrx encoder = factory->createEncoder();  
    // Use the encoder to encode a file ... 
} 
catch (const Ice::LocalException & ex) { 
    // There was a problem with the encoding, we catch the 
    // exception to make sure we release the factory. 
} 
session->releaseObject(obj->ice_getIdentity());

It is important to release an allocated object when it is no longer needed so that 
other clients may use it. If you forget to release an object, it remains allocated 
until the session is destroyed.

36.11 Application Distribution

In the chapter so far, “deployment” has meant the creation of descriptors in the 
registry. A broader definition involves a number of other tasks:

• Writing IceGrid configuration files and preparing data directories on each 
computer

• Installing the IceGrid binaries and dependent libraries on each computer

• Starting the registry and/or node on each computer, and possibly configuring 
the systems to launch them automatically

• Distributing your server executables, dependent libraries and supporting files 
to the appropriate nodes.

The first three tasks are the responsibility of the system administrator, but IceGrid 
can help with the fourth. Using an IcePatch2 server (see Chapter 43), you can 



1098 IceGrid

configure the nodes to download servers automatically and patch them at any 
time. Figure 36.5 shows the interactions of the components.

Figure 36.5. Overview of application distribution.

As you can see, deploying an IceGrid application has greater significance when 
IcePatch2 is also involved. After deployment, the administrative tool initiates a 
patch, causing the registry to notify all active nodes that are configured for appli-
cation distribution to begin the patching process. Since each IceGrid node is an 
IcePatch2 client, the node performs the patch just like any IcePatch2 client: it 
downloads everything if no local copy of the distribution exists, otherwise it does 
an incremental patch in which it downloads only new files and those whose signa-
tures have changed.

The benefits of this feature are clear:

• The distribution files are maintained in a central location

• Updating a distribution on all of the nodes is a simple matter of preparing the 
master distribution and letting IceGrid do the rest

• Manually transferring executables and supporting files to each computer is 
avoided, along with the mistakes that manual intervention sometimes intro-
duces.

36.11.1 Deploying an IcePatch2 Server
If you plan to use IceGrid’s distribution capabilities, we generally recommend 
deploying an IcePatch2 server along with your application. Doing so gives you the 
same benefits as any other IceGrid server, including on-demand activation and 
remote administration. We’ll only use one server in our sample application, but 
you might consider replicating a number of IcePatch2 servers in order to balance 
the patching load for large distributions.

Host: Server1

Registry

Host: Server2

Node

Admin PC

Admin
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3 patch

IcePatch2
4 download
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Patching Considerations

Deploying an IcePatch2 server with your application presents a chicken-and-egg 
dilemma: how do the nodes download their distributions if the IcePatch2 server is 
included in the deployment? To answer this question, we need to learn more about 
IceGrid’s behavior.

Deploying and patching are treated as two separate steps: first you deploy the 
application, then you initiate the patching process. The icegridadmin utility 
combines these steps into one command (application add), but also 
provides an option to disable the patching step if so desired.

Let’s consider the state of the application after deployment but before 
patching: we have described the servers that run on each node, including file-
system-dependent attributes such as the pathnames of their executables and 
default working directories. If these pathnames refer to directories in the distribu-
tion, and the distribution has not yet been downloaded to that node, then clearly 
we cannot attempt to use those servers until patching has completed. Similarly, we 
cannot deploy an IcePatch2 server whose executable resides in the distribution to 
be downloaded2.

For these reasons, we assume that the IcePatch2 server and supporting 
libraries are distributed by the system administrator along with the IceGrid 
registry and nodes to the appropriate computers. The server should be configured 
for on-demand activation so that its node starts it automatically when patching 
begins. If the server is configured for manual activation, you must start it prior to 
patching.

Server Template

The Ice distribution includes an IcePatch2 server template that simplifies the 
inclusion of IcePatch2 in your application. The relevant portion from the file 
config/templates.xml is shown below:

<server-template id="IcePatch2"> 
    <parameter name="instance-name" 
        default="${application}.IcePatch2"/> 
    <parameter name="endpoints" default="default"/> 
    <parameter name="directory"/> 
 
    <server id="${instance-name}" exe="icepatch2server" 

2. We are ignoring the case where a temporary IcePatch2 server is used to bootstrap other IcePatch2 
servers.
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        application-distrib="false" activation="on-demand"> 
        <adapter name="IcePatch2" endpoints="${endpoints}"> 
            <object identity="${instance-name}/server" 
                type="::IcePatch2::FileServer"/> 
        </adapter> 
        <adapter name="IcePatch2.Admin" id="" 
            endpoints="tcp -h 127.0.0.1" register-process="true"/> 
        <property name="IcePatch2.InstanceName" 
            value="${instance-name}"/> 
        <property name="IcePatch2.Directory" 
            value="${directory}"/> 
    </server> 
</server-template>

Notice that the server’s pathname is icepatch2server, meaning the program 
must be present in the node’s executable search path. The only mandatory param-
eter is directory, which specifies the server’s data directory and becomes the 
value of the IcePatch2.Directory property. The value of the instance-
name parameter is used as the server’s identifier when the template is instanti-
ated; its default value includes the name of the application in which the template is 
used. This identifier also affects the identities of the two well-known objects 
declared by the server (see Section 43.6).

Consider the following sample application:

<icegrid> 
    <application name="PatchDemo"> 
        <node name="Node"> 
            <server-instance template="IcePatch2" 
                directory="/opt/icepatch2/data"/> 
            ... 
        </node> 
    </application> 
</icegrid>

Instantiating the IcePatch2 template creates a server identified as Patch-
Demo.IcePatch2 (as determined by the default value for the instance-
name parameter). The well-known objects use this value as the category in their 
identities, such as PatchDemo.IcePatch2/server.

In order to refer to the IcePatch2 template in your application, you must 
have already configured the registry to use the config/templates.xml file 
as your default templates (see Section 36.6.4), or copied the template into the 
XML file describing your application.
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36.11.2 Distribution Descriptor
A distribution descriptor provides the details that a node requires in order to 
download the necessary files. Specifically, the descriptor supplies the proxy of the 
IcePatch2 server and the names of the subdirectories comprising the distribution, 
all of which are optional. If the descriptor does not define the proxy, the following 
default value is used instead:

${application}.IcePatch2/server

You may recall that this value matches the default identity configured by the 
IcePatch2 server template described in Section 36.11.1. Also notice that this is an 
indirect proxy, implying that the IcePatch2 server was deployed with the applica-
tion and can be started on-demand if necessary.

If the descriptor does not select any subdirectories, the node downloads the 
entire contents of the IcePatch2 data directory.

In XML, a descriptor having the default behavior as described above can be 
written as shown below:

<distrib/>

To specify a proxy, use the icepatch attribute:

<distrib icepatch="PatchDemo.IcePatch2/server"/>

Finally, select subdirectories using a nested element:

<distrib> 
    <directory>dir1</directory> 
    <directory>dir2/subdir</directory> 
</distrib>

By including only certain subdirectories in a distribution, you are minimizing the 
time and effort required to download and patch each node. For example, each 
node in a heterogeneous network might download a platform-specific subdirec-
tory and another subdirectory containing files common to all platforms.

36.11.3 Application and Server Distributions
A distribution descriptor can be used in two contexts: within an application, and 
within a server. When the descriptor appears at the application level, it means 
every node in the application downloads that distribution. This is useful for 
distributing files required by all of the nodes on which servers are deployed, espe-
cially in a grid of homogeneous computers where it would be tedious to repeat the 
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same distribution information in each server descriptor. Here is a simple XML 
example:

<icegrid> 
    <application name="PatchDemo"> 
        <distrib> 
            <directory>Common</directory> 
        </distrib> 
        ... 
    </application> 
</icegrid>

At the server level, a distribution descriptor downloads the specified directories 
for the private use of the server:

<icegrid> 
    <application name="PatchDemo"> 
        <distrib> 
            <directory>Common</directory> 
        </distrib> 
        <node name="Node"> 
            <server id="SimpleServer" ...> 
                <distrib> 
                    <directory>ServerFiles</directory> 
                </distrib> 
            </server> 
        </node> 
    </application> 
</icegrid>

When a distribution descriptor is defined at both the application and server levels, 
as shown in the previous example, IceGrid assumes that a dependency relationship 
exists between the two unless the server is configured otherwise. IceGrid checks 
this dependency before patching a server; if the server is dependent on the applica-
tion’s distribution, IceGrid patches the application’s distribution first, and then 
proceeds to patch the server’s. You can disable this dependency by modifying the 
server’s descriptor:

<icegrid> 
    <application name="PatchDemo"> 
        <distrib> 
            <directory>Common</directory> 
        </distrib> 
        <node name="Node"> 
            <server id="SimpleServer" application-distrib="false" 
                ...> 
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                <distrib> 
                    <directory>ServerFiles</directory> 
                </distrib> 
            </server> 
        </node> 
    </application> 
</icegrid>

Setting the application-distrib attribute to false informs IceGrid to 
consider the two distributions independent of one another.

36.11.4 Server Integrity
Before an IceGrid node begins patching a distribution, it ensures that all relevant 
servers are shut down and prevents them from reactivating until patching 
completes. For example, the node disables all of the servers whose descriptors 
declare a dependency on the application distribution (see Section 36.11.3).

36.11.5 Using Distributions
The node stores application and server distributions in its data directory. The path-
names of the distributions are represented by reserved variables that you can use 
in your descriptors:

• application.distrib

This variable can be used within server descriptors to refer to the top-level 
directory of the application distribution.

• server.distrib

The value of this variable is the top-level directory of a server distribution. It 
can be used only within a server descriptor that has a distribution.

The XML example shown below illustrates the use of these variables:

<icegrid> 
    <application name="PatchDemo"> 
        <distrib> 
            <directory>Common</directory> 
        </distrib> 
        <node name="Node"> 
            <server id="Server1" 
                exe="${application.distrib}/Common/Bin/Server1" 
                ...> 
            </server> 
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            <server id="Server2" 
                exe="${server.distrib}/Server2Files/Bin/Server2" 
                ...> 
                <option>-d</option> 
                <option>${server.distrib}/Server2Files</option> 
                <distrib> 
                    <directory>Server2Files</directory> 
                </distrib> 
            </server> 
        </node> 
    </application> 
</icegrid>

Notice that the descriptor for Server2 supplies the server’s distribution direc-
tory as command-line options.

For more information on variables, see Section 36.15.

36.11.6 Application Changes
Adding an application distribution to our ripper example requires two minor 
changes to our descriptors from Section 36.8.3:

<icegrid> 
    <application name="Ripper"> 
        <replica-group id="EncoderAdapters"> 
            <load-balancing type="adaptive"/> 
            <object identity="EncoderFactory" 
                type="::Ripper::MP3EncoderFactory"/> 
        </replica-group> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <parameter name="exepath" 
                default="/opt/ripper/bin/server"/> 
            <server id="EncoderServer${index}" 
                exe="${exepath}" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    replica-group="EncoderAdapters" 
                    register-process="true" 
                    endpoints="tcp"/> 
            </server> 
        </server-template> 
        <distrib/> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
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                index="1"/> 
            <server-instance template="IcePatch2" 
                directory="/opt/ripper/icepatch"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
                index="2"/> 
        </node> 
    </application> 
</icegrid>

An application distribution is sufficient for this example because we are deploying 
the same server on each node. We have also deployed an IcePatch2 server on 
Node1 using the template described in Section 36.11.1.

36.12 Dynamic Monitoring

IceGrid allows an application to monitor relevant state changes by registering call-
back objects. (The IceGrid GUI tool uses these callback interfaces for its imple-
mentation.) The callback interfaces are useful to, for example, automatically 
generate an email notification when a node goes down or some other state change 
of interest occurs.

36.12.1 The Observer Interfaces
IceGrid supports two such callback interfaces, NodeObserver and RegistryOb-
server:

module IceGrid { 
interface NodeObserver { 
    void init(NodeDynamicInfoSeq nodes); 
    void nodeUp(NodeDynamicInfo node); 
    void nodeDown(string name); 
    void updateServer(string node, ServerDynamicInfo updatedInfo); 
    void updateAdapter(string node, 
                       AdapterDynamicInfo updatedInfo); 
}; 
 
interface RegistryObserver 
{ 
    void init(int serial, ApplicationDescriptorSeq applications, 
              AdapterInfoSeq adpts, ObjectInfoSeq objects); 
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    void applicationAdded(int serial, ApplicationDescriptor desc); 
    void applicationRemoved(int serial, string name); 
    void applicationUpdated(int serial, 
                            ApplicationUpdateDescriptor desc); 
    void adapterAdded(int serial, AdapterInfo info); 
    void adapterUpdated(int serial, AdapterInfo info); 
    void adapterRemoved(int serial, string id); 
    void objectAdded(int serial, ObjectInfo info); 
    void objectUpdated(int serial, ObjectInfo info); 
    void objectRemoved(int serial, Ice::Identity id); 
}; 
 
};

The NodeObserver interface is notified of state changes that happen at run time 
(such as a node coming up or going down), whereas the RegistryObserver inter-
face is notified of updates to the registry database (such as an application being 
added).

36.12.2 Creating an Administrative Session
To receive notification of state changes, you need to establish an administrative 
session with the registry and install your observers. The Registry interface 
provides two operations for creating an administrative session:

module IceGrid { 
    exception PermissionDeniedException { 
        string reason; 
    }; 
 
    interface Registry { 
        AdminSession* createAdminSession(string userId, 
                                         string password) 
            throws PermissionDeniedException; 
 
        AdminSession* createAdminSessionFromSecureConnection() 
            throws PermissionDeniedException; 
 
        nonmutating int getSessionTimeout(); 
 
        // ... 
    }; 
};
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The createAdminSession operation expects a username and password and 
returns a session proxy if the client is allowed to create a session. By default, 
IceGrid does not allow the creation of administrative sessions. You must define 
the property IceGrid.Registry.AdminPermissionsVerifier with 
the proxy of a permissions verifier object to enable session creation with 
createAdminSession. The verifier object must implement the interface 
Glacier2::PermissionsVerifier (see Section 40.5.1).

The createAdminSessionFromSecureConnection operation does not require 
a username and password because it uses the credentials supplied by an SSL 
connection to authenticate the client (see Chapter 39). As with createAdminSes-
sion, you must configure the proxy of a permissions verifier object before clients 
can use createAdminSessionFromSecureConnection to create a session. In this 
case, the IceGrid.Registry.AdminSSLPermissionsVerifier prop-
erty specifies the proxy of a verifier object that implements the interface 
Glacier2::SSLPermissionsVerifier (see Section 40.5.1).

The session creation functions are very similar to those for allocating objects. 
Refer to Section 36.10.1 for an example of accessing the registry, and 
Section 36.10.2 for details on access control.

Use caution when enabling these session operations. As you can see from the 
definition of AdminSession in the next section, a client that successfully creates a 
session is able to obtain a proxy for the IceGrid::Admin object and gain complete 
access to your registry.

36.12.3 Registering Observers
The AdminSession interface provides two operations for registering your 
observers:

module IceGrid { 
    interface AdminSession extends Glacier2::Session { 
        idempotent void keepAlive(); 
 
        nonmutating Admin* getAdmin(); 
 
        idempotent void setObservers( 
            RegistryObserver* registryObs, 
            NodeObserver* nodeObs); 
 
        idempotent void setObserversByIdentity( 
            Ice::Identity registryObs, 
            Ice::Identity nodeObs); 
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        // ... 
    }; 
};

You should invoke setObservers and supply proxies when it is possible for the 
registry to establish a separate connection to the client to deliver its callbacks. If 
network restrictions such as firewalls prevent such a connection, you should use 
the setObserversByIdentity operation, which creates a bi-directional connec-
tion instead (see Section 34.7).

You can pass a null proxy for either parameter to setObservers, or an empty 
identity for either parameter to setObserversByIdentity, if you want to use only 
one of the two observers. In addition, passing a null proxy or an empty identity for 
an observer cancels a previous registration of that observer.

Once the observers are registered, operations corresponding to state changes 
will be invoked on the observers. (See Appendix B for details on the data passed 
to the observers. You can also look at the source code for the IceGrid GUI imple-
mentation in the Ice for Java distribution to see how observers are used by the 
GUI.)

You are responsible for preventing the administrative session from expiring by 
invoking keepAlive periodically. You can determine the timeout period by 
calling getSessionTimeout on the Registry interface (see Section 36.12.2).

36.13 Glacier2 Integration

This section provides information on integrating a Glacier2 router (see 
Chapter 40) into your IceGrid environment.

36.13.1 Configuration Requirements
A typical IceGrid client must be configured with a locator proxy (see 
Section 36.4.4), but the configuration requirements change when the client 
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accesses the location service indirectly via a Glacier2 router as shown in 
Figure 36.6.

Figure 36.6. Using IceGrid via a Glacier2 router.

In this situation, it is the router that must be configured with a locator proxy.
Assuming the registry’s client endpoint in Figure 36.6 uses port 8000, the 

router requires the following configuration property:

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 8000

Fortunately, the node supplies this property when it starts the router, so there is no 
need to configure it explicitly. Note that all of the router’s clients use the same 
locator.

36.13.2 Remote Administration
If you intend to administer IceGrid remotely via a Glacier2 router, you must 
define one of the following properties (or both), depending on whether you use 
user name and password authentication or a secure connection:

Glacier2.SessionManager=IceGrid/AdminSessionManager 
Glacier2.SSLSessionManager=IceGrid/AdminSSLSessionManager

These session managers are accessible via the administrative endpoints, so the 
Glacier2 router must be authorized to establish a connection to these endpoints. 
Note that you must secure these endpoints, otherwise arbitrary clients can manip-
ulate the session managers. An administrative session is only allowed to access 
the IceGrid::AdminSession object and the IceGrid::Admin object that is 
returned by the session’s getAdmin operation.
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36.13.3 Allocating Servers and Objects
To allocate servers and objects, a client can establish a client session via Glacier2. 
Depending on the authentication method, one or both of the following properties 
must be set in the Glacier2 configuration:

Glacier2.SessionManager=IceGrid/SessionManager 
Glacier2.SSLSessionManager=IceGrid/SSLSessionManager

Like the administrative session managers, these session managers are accessible 
via the administrative endpoints, so the Glacier2 router must be authorized to 
establish a connection to these endpoints.

A client session is allowed to access only the IceGrid::Session and 
IceGrid::Query objects. However, you can use the allocation mechanism to 
access more objects and adapters. IceGrid adds an identity filter when a client 
allocates an object and removes that filter again when the object is released. When 
a client allocates a server, IceGrid adds an adapter identity filter for the server’s 
indirect adapters and removes that filter again when the server is released.

36.13.4 Deploying a Router
The Ice distribution includes default server templates for Ice services such as 
IcePatch2 (see Section 36.11.1) and Glacier2 that simplify the task of deploying 
these servers in an IceGrid domain.

The relevant portion from the file config/template.xml is shown 
below:

<server-template id="Glacier2"> 
    <parameter name="instance-name" 
               default="${application}.Glacier2"/> 
    <parameter name="client-endpoints"/>    
    <parameter name="server-endpoints"/> 
    <parameter name="session-timeout" default="0"/> 
 
    <server id="${instance-name}" exe="glacier2router"> 
    <properties> 
        <property name="Glacier2.Client.Endpoints" 
                  value="${client-endpoints}"/> 
        <property name="Glacier2.Server.Endpoints" 
                  value="${server-endpoints}"/> 
        <property name="Glacier2.Admin.Endpoints" 
                  value="tcp -h 127.0.0.1"/> 
        <property name="Glacier2.Admin.RegisterProcess" 
                  value="1"/> 
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        <property name="Glacier2.InstanceName" 
                  value="${instance-name}"/> 
        <property name="Glacier2.SessionTimeout" 
                  value="${session-timeout}"/> 
    </properties> 
</server-template>

Notice that the server’s pathname is glacier2router, meaning the program 
must be present in the node’s executable search path. Another important point is 
the server’s activation mode: it uses manual activation (the default), meaning the 
router must be started manually. This requirement becomes clear when you 
consider that the router is the point of contact for remote clients; if the router is not 
running, there is no way for a client to contact the locator and cause the router to 
be started on-demand.

The template defines only a few properties; if you want to set additional prop-
erties, you can define them in the server instance property set.

Of interest is the instance-name parameter, which allows you to 
configure the Glacier2.InstanceName property. The parameter’s default 
value includes the name of the application in which the template is used. This 
parameter also affects the identities of the objects implemented by the router (see 
Section 40.3.5).

Consider the following sample application:

<icegrid> 
    <application name="Glacier2Demo"> 
        <node name="Node"> 
            <server-instance template="Glacier2" 
                client-endpoints="tcp -h 5.6.7.8 -p 8000" 
                session-timeout="300" 
                server-endpoints="tcp -h 10.0.0.1"/> 
            ... 
        </node> 
    </application> 
</icegrid>

Instantiating the Glacier2 template creates a server identified as 
Glacier2Demo.Glacier2 (as determined by the default value for the 
instance-name parameter). The router’s objects use this value as the category 
in their identities, such as Glacier2Demo.Glacier2/router. The router 
proxy used by clients must contain a matching identity.

In order to refer to the Glacier2 template in your application, you must 
have already configured the registry to use the config/templates.xml file 
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as your default templates (see Section 36.6.4), or copied the template into the 
XML file describing your application.

Note that IceGrid cannot start a Glacier2 router if the router’s security config-
uration requires that a passphrase be entered. In this situation, you have no choice 
but to start the router yourself so that you can provide the passphrase when 
prompted.

36.14 XML Reference

This section provides a reference for the XML elements that define IceGrid 
descriptors, in alphabetical order.

36.14.1 Adapter
An adapter element defines an indirect object adapter. Refer to Section 30.4 for 
more information on object adapters.

Context

This element may only appear as a child of a server or service element.

Attributes

This element supports the attributes in Table 36.2.

Table 36.2. Attributes of the adapter element.

Attribute Description Required

endpoints Specifies one or more endpoints for this 
object adapter. These endpoints typically do 
not specify a port. This attribute is translated 
into a definition of the adapter’s Endpoints 
configuration property (see Appendix C).

No
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An optional nested description element provides free-form descriptive text.

id Specifies an object adapter identifier. The 
identifier must be unique among all adapters 
and replica groups in the registry. This 
attribute is translated into a definition of the 
adapter’s AdapterId configuration prop-
erty (see Appendix C). If not defined, a 
default value is constructed from the adapter 
name and server id (and service name for an 
IceBox service).

Yes

name The name of the object adapter as used in the 
server that creates it.

Yes

register-process If the value is true, this object adapter regis-
ters an object in the IceGrid registry that 
facilitates graceful shutdown of the server. 
Only one object adapter in a server should set 
this attribute to true. If not defined, the 
default value is false.

No

replica-group Specifies a replica group identifier. A non-
empty value signals that this object adapter is 
a member of the indicated replica group. This 
attribute is translated into a definition of the 
adapter’s RepliaGroupId configuration 
property (see Appendix C). See Section 36.8 
for more information on replication. If not 
defined, the default value is an empty string.

No

wait-for-activation If the value is true, server activation is con-
sidered complete only when this object 
adapter has been activated and has registered 
itself in the IceGrid registry. If not defined, 
the default value is true.

No

Table 36.2. Attributes of the adapter element.

Attribute Description Required
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Example

<adapter name="MyAdapter" 
    endpoints="default" 
    id="MyAdapterId" 
    register-process="true" 
    replica-group="MyReplicaGroup" 
    wait-for-activation="true"> 
    <description>A description of the adapter.</description> 
    ... 
</adapter>

36.14.2 Allocatable
An allocatable element defines an allocatable object in the IceGrid registry. 
Clients can allocate this object using only its identity, or they can allocate objects 
of a specific type. Refer to Section 36.10.3 for more information on allocatable 
objects.

Context

This element may only appear as a child of an adapter element 
(Section 36.14.1).

Attributes

This element supports the attributes in Table 36.3.

Table 36.3. Attributes of the allocatable element.

Attribute Description Required

identity Specifies the identity by which this allocat-
able object is known.

Yes

type An arbitrary string used to group allocatable 
objects. By convention, the string represents 
the most-derived Slice type of the object, but 
an application is free to use another conven-
tion.

No
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36.14.3 Application
An application element defines an IceGrid application. Refer to Section 36.3 
for more information. An application typically contains at least one node 
element, but it may also be used for other purposes such as defining server and 
service templates, default templates, replica groups and property sets.

Context

This element must be a child of an icegrid element. Only one application 
element is permitted per file.

Attributes

This element supports the attributes in Table 36.4.

An optional nested description element provides free-form descriptive text.

Example

<icegrid> 
    <application name="MyApplication" 
        import-default-templates="true"> 
        <description>A description of the 

Table 36.4. Attributes of the application element.

Attribute Description Required

import-default-tem-
plates

If true, the default templates configured for 
the IceGrid registry are imported and avail-
able for use within this application. See 
Section 36.6.4 for more information on 
default templates. If not specified, the default 
value is false.

No

name The name of the application. This name must 
be unique among all applications in the regis-
try. Within the application, child elements can 
refer to its name using the reserved variable 
${application}.

Yes
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            application.</description> 
        ... 
    </application> 
</icegrid>

36.14.4 DbEnv
A dbenv element causes an IceGrid node to generate Freeze configuration prop-
erties for the server or service in which it is defined, and may cause the node to 
create a database environment directory if necessary. This element may contain 
dbproperty elements (Section 36.14.5). See Chapter 37 for more information 
on Freeze.

Context

This element may only appear as a child of a server element (Section 36.14.18) 
or a service element (Section 36.14.21).

Attributes

This element supports the attributes in Table 36.5.

The values of the name and home attributes are used to define the configuration 
property shown below:

Freeze.DbEnv.name.DbHome=home

An optional nested description element provides free-form descriptive text.

Table 36.5. Attributes of the dbenv element.

Attribute Description Required

home Specifies the directory to use as the database 
environment. If not defined, a subdirectory 
within the node’s data directory is used.

No

name The name of the database environment. Yes
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Example

<dbenv name="MyEnv" home="/opt/data/db"> 
    <description>A description of the 
        database environment.</description> 
    ... 
</dbenv>

36.14.5 DbProperty
A dbproperty element defines a BerkeleyDB configuration property. See 
Chapter 37 for more information on Freeze.

Context

This element may only appear as a child of a dbenv element (Section 36.14.4).

Attributes

This element supports the attributes in Table 36.6.

Example

<dbenv name="MyEnv" home="/opt/data/db"> 
    <description>A description of the 
        database environment.</description> 
    <dbproperty name="set_cachesize" value="0 52428800 1"/> 
</dbenv>

36.14.6 Description
A description element specifies a description of its parent element.

Table 36.6. Attributes of the dbproperty element.

Attribute Description Required

name The name of the configuration property. Yes

value The value of the configuration property. If not 
defined, the value is an empty string.

No
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Context

This element may only appear as a child of the application, replica-
group, node, server, service, icebox, adapter, and dbenv elements. 

Attributes

This element supports no attributes.

Example

<node name="localnode"> 
    <description>Free form descriptive text for 
    localnode</description> 
</node>

36.14.7 Directory
A directory element specifies a directory in a distribution. Refer to 
Section 36.11 for more information on distribution descriptors.

Context

This element may only appear as a child of the distrib element 
(Section 36.14.8). 

Attributes

This element supports no attributes.

36.14.8 Distrib
A distrib element specifies the files to download from an IcePatch2 server as 
well as the server’s proxy. Refer to Section 36.11 for more information on distri-
bution descriptors.

Context

This element may only appear as a child of a application element 
(Section 36.14.3) or a server element (Section 36.14.18).
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Attributes

This element supports the attributes in Table 36.7.

Example

<distrib icepatch="DemoIcePatch2/server:tcp -p 12345">   
    <directory>dir1</directory>  
    <directory>dir2/subdir</directory>  
</distrib>

36.14.9 IceBox
An icebox element defines an IceBox server to be deployed on a node. It typi-
cally contains at least one service element (Section 36.14.21), and may supply 
additional information such as command-line options (Section 36.14.25), environ-
ment variables (Section 36.14.26), configuration properties (Section 36.14.16) 
and a server distribution (Section 36.11).

The element may optionally contain a single adapter element 
(Section 36.14.1) that configures the IceBox service manager’s object adapter and 
must have the name IceBox.ServiceManager. If no such element is 
defined, the adapter’s default configuration is shown below:

<adapter name="IceBox.ServiceManager" 
    register-process="true" 
    id="" 
    endpoints="tcp -h 127.0.0.1"/>

See Chapter 41 for more information on IceBox.

Table 36.7. Attributes of the distrib element.

Attribute Description Required

icepatch Specifies the proxy of the IcePatch2 server. If 
not defined, the default value is 
${applica-
tion}.IcePatch2/server.

No
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Context

This element may only appear as a child of a node element (Section 36.14.12) or 
a server-template element (Section 36.14.20).

Attributes

This element supports the attributes in Table 36.8.

Table 36.8. Attributes of the icebox element.

Attribute Description Required

activation-mode Specifies whether the server uses manual or 
on-demand activation. If not defined, manual 
activation is used by default.

No

activation-timeout Defines the number of seconds a node will 
wait for the server to activate. If the timeout 
expires, a client waiting to receive the end-
points of an object adapter in this server will 
receive an empty set of endpoints. If not 
defined, the default timeout is the value of the 
IceGrid.Node.WaitTime property con-
figured for the server’s node.

No

application-distrib Specifies whether this server’s distribution is 
dependent on the application’s distribution. If 
the value is true, the server cannot be 
patched until the application has been 
patched. If not defined, the default value is 
true. See Section 36.11.3 for more informa-
tion on distribution dependencies.

No

deactivation-timeout Defines the number of seconds a node will 
wait for the server to deactivate. If the timeout 
expires, the node terminates the server pro-
cess. If not defined, the default timeout is the 
value of the node’s configuration property 
IceGrid.Node.WaitTime.

No

exe The pathname of the server executable. Yes
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The IceGrid node on which this server is deployed generates the following config-
uration property for the server:

IceBox.InstanceName=${server}

An optional nested description element provides free-form descriptive text.

Example

<icebox id="MyIceBox" 
    activation="on-demand" 
    activation-timeout="60" 
    application-distrib="false" 
    deactivation-timeout="60" 
    exe="/opt/Ice/bin/icebox" 
    pwd="/"> 
    <option>--Ice.Trace.Network=1</option> 
    <env>PATH=/opt/Ice/bin:$PATH</env> 
    <property name="ServerId" value="${server}"/> 
    <service id="Service1" .../> 
    <service-instance id="Service2" 
        template="ServiceTemplate .../> 
</icebox>

36.14.10 IceGrid
The icegrid element is the top-level element for IceGrid descriptors in XML 
files. This elements supports no attributes.

id Specifies the identifier for this IceBox server. 
The identifier must be unique among all serv-
ers in the registry. Within the server, child ele-
ments can refer to its identifier using the 
reserved variable ${server}.

Yes

pwd The default working directory for the server. 
If not defined, the server is started in the 
node’s current working directory.

No

Table 36.8. Attributes of the icebox element.

Attribute Description Required
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36.14.11 Load Balancing
A load-balancing element determines the load balancing policy used by a 
replica group. Refer to Section 36.9 for details on load balancing.

Context

This element may only appear as a child of a replica-group element 
(Section 36.14.17).

Attributes

This element supports the attributes in Table 36.9.

Example

<application name="MyApp"> 
    <replica-group id="ReplicatedAdapter"> 
        <load-balancing type="adaptive" load-sample="15" 
            n-replicas="3"/> 
        <description>A description of this 
            replica group.</description> 

Table 36.9. Attributes of the load-balancing element.

Attribute Description Required

load-sample Specifies the load sample to use for the 
adaptive load balancing policy. It can 
only be defined if type is set to adap-
tive. Legal values are 1, 5 and 15. If 
not specified, the load sample default 
value is 1.

No

n-replicas Specifies the maximum number of repli-
cas used to compute the endpoints of the 
replica group.

No

type Specifies the type of load balancing. Legal 
values are adaptive, round-robin 
and random.

Yes
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        <object identity="WellKnownObject" .../> 
    </replica-group> 
    ... 
</application>

36.14.12 Node
A node element defines an IceGrid node. The servers that the node is responsible 
for managing are described in child elements.

Context

This element may only appear as a child of an application element 
(Section 36.14.3). Multiple node elements having the same name may appear in 
an application. Their contents are merged and the last definition of load-
factor has precedence.

Attributes

This element supports the attributes in Table 36.10.

Table 36.10. Attributes of the node element.

Attribute Description Required

load-factor A floating point value defining the factor that 
is multiplied with the node’s load average. 
The load average is used by the adaptive load 
balancing policy to figure out which node is 
the least loaded (see Section 36.9.2). The 
default is 1.0 on Unix platforms and 
1/NCPUS on Windows (where NCPUS is the 
number of CPUs in the node’s computer).
Note that, if Unix and Windows machines are 
part of a replica group, the Unix and Win-
dows figures are not directly comparable, but 
still make an attempt to pick the least-loaded 
node.

No
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Example

<node name="Node1" load-factor="2.0"> 
    <description>A description of this node.</description> 
    <server id="Server1" ...> 
        <property name="NodeName" value="${node}"/> 
        ... 
    </server> 
</node>

36.14.13 Object
An object element defines a well-known object in the IceGrid registry. Clients 
can refer to this object using only its identity, or they can search for well-known 
objects of a specific type. Refer to Section 36.5 for more information on well-
known objects.

Context

This element may only appear as a child of an adapter element 
(Section 36.14.1) or a replica-group element (Section 36.14.17).

name Specifies the name of this node. The name 
must be unique among all nodes in the regis-
try. Within the node, child elements can refer 
to its name using the reserved variable 
${node}. An icegridnode process 
representing this node must be started on the 
desired computer and its configuration prop-
erty IceGrid.Node.Name must match 
this attribute (see Section 36.18.2).

Yes

Table 36.10. Attributes of the node element.

Attribute Description Required
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Attributes

This element supports the attributes in Table 36.11.

Example

<adapter name="MyAdapter" id="WellKnownAdapter" ...> 
    <object identity="WellKnownObject" 
        type="::Module::WellKnownInterface"/> 
</adapter>

In the configuration above, the object can be located via the equivalent proxies 
WellKnownObject and WellKnownObject@WellKnownAdapter.

36.14.14 Parameter
A parameter element defines a template parameter. Template parameters must 
be declared with this element to be used in template instantiation.

Context

This element may only appear as a child of a server-template element 
(Section 36.14.20) or a service-template element (Section 36.14.23).

Table 36.11. Attributes of the object element.

Attribute Description Required

identity Specifies the identity by which this object is 
known.

Yes

type An arbitrary string used to group objects. By 
convention, the string represents the most-
derived Slice type of the object, but an appli-
cation is free to use another convention.

No
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Attributes

This element supports the attributes in Table 36.12.

Example

<server-template id="MyServerTemplate">  
    <parameter name="index"/>  
    <parameter name="exepath" default="/opt/myapp/bin/server"/>  
    ... 
</server-template> 

36.14.15 Properties
The properties element is used in three situations:

• as a named property set if the id attribute is specified

• as a reference to a named property set if the refid attribute is specified

• as an unnamed property set if no attributes are specified.

A property set is useful to define a set of properties (a named property set) in 
application or node descriptors. Named property sets can be included in named or 
unnamed property sets with property set references.

Context

A named property set element may only be a child of an application element 
(Section 36.14.3) or a node (Section 36.14.12) element. An unnamed property 
set element may only be a child of a server, icebox, service, server-

Table 36.12. Attributes of the parameter element.

Attribute Description Required

name The name of the parameter. For example, if 
index is used as the name of a parameter, it 
can be referenced using ${index} in the 
server or service template.

Yes

default An optional default value for the parameter. 
This value is used if the parameter is not 
defined when a server or service is instanti-
ated.

No
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instance or service-instance element. A reference to a named property 
set can only be a child of a named or unnamed property set element.

Attributes

This element supports the attributes in Table 36.13.

Example

<application name="Simple"> 
   <properties id="Debug"> 
        <property name="Ice.Trace.Network" value="1"/> 
   </properties> 
 
    <server id="MyServer" exe="./server"> 
        <properties> 
            <properties refid="Debug"/> 
            <property name="AppProperty" value="1"/> 
        </properties> 
    </server> 
</application>

36.14.16 Property
An IceGrid node generates a configuration file for each of its servers and services. 
This file generally should not be edited manually because any changes will be lost 

Table 36.13. Attributes of the properties element.

Attribute Description Required

id Defines a new named property set with the 
given identifier. The identifier must be unique 
among all named property sets defined in the 
same scope. If not specified, the properties 
element refers to an unnamed property set or 
a property set reference.

No

refid Defines a reference to the named property set 
with the given identifier. If not specified, the 
element refers to an unnamed or named prop-
erty set.

No
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the next time the node generates the file. The property element is the correct 
way to define additional properties in a configuration file.

Context

This element may only appear as a child of a server element 
(Section 36.14.18), a service element (Section 36.14.21), an icebox element 
(Section 36.14.9) or a properties element (Section 36.14.15).

Attributes

This element supports the attributes in Table 36.14.

Example

<server id="MyServer" ...> 
    <property name="Ice.ThreadPool.Server.SizeMax" value="10"/> 
    ... 
</server>

This property element adds the following definition to the server’s configura-
tion file:

Ice.ThreadPool.Server.SizeMax=10

36.14.17 Replica Group
A replica-group element creates a virtual object adapter in order to provide 
replication and load balancing for a collection of object adapters. An adapter 
element (Section 36.14.1) declares its membership in a group by identifying the 
desired replica group. The element may declare well-known objects 
(Section 36.5) that are available in all of the participating object adapters. A 
replica-group element may contain a load-balancing child element 

Table 36.14. Attributes of the property element.

Attribute Description Required

name Specifies the property name. Yes

value Specifies the property value. If not defined, 
the value is an empty string.

No
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that specifies the load-balancing algorithm the registry should use when resolving 
locate requests.

Refer to Section 36.8 for more information on replication and Section 36.9 for 
details on load balancing.

Context

This element may only appear as a child of an application element 
(Section 36.14.3).

Attributes

This element supports the attributes in Table 36.15.

An optional nested description element provides free-form descriptive text.

Example

<application name="MyApp"> 
    <replica-group id="ReplicatedAdapter"> 
        <load-balancing type="adaptive" load-sample="15" 
            n-replicas="3"/> 
        <description>A description of this 
            replica group.</description> 
        <object identity="WellKnownObject" .../> 
    </replica-group> 
    ... 
</application>

In this example, the proxy WellKnownObject is equivalent to the proxy 
WellKnownObject@ReplicatedAdapter.

Table 36.15. Attributes of the replica-group element.

Attribute Description Required

id Specifies the identifier of the replica group, 
which must be unique among all adapters and 
replica groups in the registry. This identifier 
can be used in indirect proxies in place of an 
adapter identifier.

Yes
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36.14.18 Server
A server element defines a server to be deployed on a node. It typically 
contains at least one adapter element (Section 36.14.1), and may supply addi-
tional information such as command-line options (Section 36.14.25), environment 
variables (Section 36.14.26), configuration properties (Section 36.14.16), and a 
server distribution (Section 36.11).

Context

This element may only appear as a child of a node element (Section 36.14.12) or 
a server-template element (Section 36.14.20).

Attributes

This element supports the attributes in Table 36.16.

Table 36.16. Attributes of the server element.

Attribute Description Required

activation Specifies whether the server’s activation 
mode. Legal values are manual, 
on-demand, always and session. If not 
specified, manual activation is used by 
default. See Section 36.20 for more informa-
tion.

No

activation-timeout Defines the number of seconds a node will 
wait for the server to activate. If the timeout 
expires, a client waiting to receive the end-
points of an object adapter in this server will 
receive an empty set of endpoints. If not 
defined, the default timeout is the value of the 
IceGrid.Node.WaitTime property con-
figured for the server’s node.

No
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allocatable Specifies whether the server can be allocated. 
A server is allocated implicitly when one of 
its allocatable objects is allocated. The value 
of this attribute is ignored if the server activa-
tion mode is session; a server with this 
activation mode is always allocatable. Other-
wise, if not specified and the server activation 
mode is not session, the server is not allo-
catable.

No

application-distrib Specifies whether this server’s distribution is 
dependent on the application’s distribution. If 
the value is true, the server cannot be 
patched until the application has been 
patched. If not defined, the default value is 
true. See Section 36.11.3 for more informa-
tion on distribution dependencies.

No

deactivation-timeout Defines the number of seconds a node will 
wait for the server to deactivate. If the timeout 
expires, the node terminates the server pro-
cess. If not defined, the default timeout is the 
value of the node’s configuration property 
IceGrid.Node.WaitTime.

No

exe The pathname of the server executable. Yes

id Specifies the identifier for this server. The 
identifier must be unique among all servers in 
the registry. Within the server, child elements 
can refer to its identifier using the reserved 
variable ${server}.

Yes

pwd The default working directory for the server. 
If not defined, the server is started in the 
node’s current working directory.

No

Table 36.16. Attributes of the server element.

Attribute Description Required
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An optional nested description element provides free-form descriptive text.

Example

<server id="MyServer" 
    activation="on-demand" 
    activation-timeout="60" 
    application-distrib="false" 
    deactivation-timeout="60" 
    exe="/opt/app/bin/myserver" 
    pwd="/"> 
    <option>--Ice.Trace.Network=1</option> 
    <env>PATH=/opt/Ice/bin:$PATH</env> 
    <property name="ServerId" value="${server}"/> 
    <adapter name="Adapter1" .../> 
</server>

user Specifies the name of the user account under 
which the server is activated and run. If a user 
account mapper is configured for the node, 
the value of this attribute is used to find the 
corresponding account in the map. 
 
On Unix, the node must be running as root to 
be able to run servers under a different user 
account. On Windows, or if the node is not 
running as root on Unix, the only permissible 
value for this attribute is an empty string or 
the name of the user account under which the 
node is running. 
 
On Unix, if the node is running as root and 
this attribute is not specified, the server is run 
under the user ${session.id} if the 
server activation mode is session or under 
the user nobody if the activation mode is 
manual, on-demand or always.

No

Table 36.16. Attributes of the server element.

Attribute Description Required
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36.14.19 Server Instance
A server-instance element deploys an instance of a server-template 
element (Section 36.14.20) on a node. Refer to Section 36.6 for more information 
on templates.

Context

This element may only appear as a child of a node element (Section 36.14.12).

Attributes

This element supports the attributes in Table 36.17.

All other attributes of the element must correspond to parameters declared by the 
template. The server-instance element must provide a value for each 
parameter that does not have a default value supplied by the template.

Example

<icegrid> 
    <application name="SampleApp"> 
        <server-template id="ServerTemplate"> 
            <parameter name="id"/> 
            <server id="${id}" activation="manual" .../> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="ServerTemplate" 
                id="TheServer"/> 
        </node> 
    </application> 
</icegrid>

Table 36.17. Attributes of the server-instance element.

Attribute Description Required

template Identifies the server template. Yes
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36.14.20 Server Template
A server-template element defines a template for a server element 
(Section 36.14.18), simplifying the task of deploying multiple instances of the 
same server definition. The template should contain a parameterized server 
element that is instantiated using a server-instance element 
(Section 36.14.19). Refer to Section 36.6 for more information on templates.

Context

This element may only appear as a child of an application element 
(Section 36.14.3).

Attributes

This element supports the attributes in Table 36.18.

Parameters

A template may declare parameters that are used to instantiate the server 
element. You can define a default value for each parameter. Parameters without a 
default value are considered mandatory and values for them must be supplied by 
the server-instance element. See Section 36.15 for more information on 
parameter semantics.

Example

<icegrid> 
    <application name="SampleApp"> 
        <server-template id="ServerTemplate"> 
            <parameter name="id"/> 
            <server id="${id}" activation="manual" .../> 
        </server-template> 
        <node name="Node1"> 

Table 36.18. Attributes of the server-template element.

Attribute Description Required

id Specifies the identifier for the server tem-
plate. This identifier must be unique among 
all server templates in the application.

Yes
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            <server-instance template="ServerTemplate" 
                id="TheServer"/> 
        </node> 
    </application> 
</icegrid>

36.14.21 Service
A service element defines an IceBox service. It typically contains at least one 
adapter element (Section 36.14.1), and may supply additional information such 
as configuration properties (Section 36.14.16).

Refer to Section 36.7 for more information on using IceBox services in 
IceGrid.

Context

This element may only appear as a child of an icebox element (Section 36.14.9) 
or a service-template element (Section 36.14.23).

Attributes

This element supports the attributes in Table 36.19.

An optional nested description element provides free-form descriptive text.

Example

<icebox id="MyIceBox" ...> 
    <service name="Service1" entry="service1:Create"> 
        <description>A description of this service.</description> 
        <property name="ServiceName" value="${service}"/> 

Table 36.19. Attributes of the service element.

Attribute Description Required

entry Specifies the entry point of this service. Yes

name Specifies the name of this service. Within the 
service, child elements can refer to its name 
using the reserved variable ${service}.

Yes
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        <adapter name="MyAdapter" id="${service}Adapter" .../> 
    </service> 
    <service name="Service2" entry="service2:Create"/> 
</icebox>

36.14.22 Service Instance
A service-instance element creates an instance of a service-
template element in an IceBox server (see Section 36.7). Refer to Section 36.6 
for more information on templates.

Context

This element may only appear as a child of an icebox element 
(Section 36.14.9).

Attributes

This element supports the attributes in Table 36.20.

All other attributes of the element must correspond to parameters declared by the 
template. The service-instance element must provide a value for each 
parameter that does not have a default value supplied by the template.

Example

<icebox id="IceBoxServer" ...> 
    <service-instance template="ServiceTemplate" name="Service1"/> 
</icebox>

36.14.23 Service Template
A service-template element defines a template for a service element 
(Section 36.14.21), simplifying the task of deploying multiple instances of the 

Table 36.20. Attributes of the service-instance element.

Attribute Description Required

template Identifies the service template. Yes
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same service definition. The template should contain a parameterized service 
element that is instantiated using a service-instance element 
(Section 36.14.22). Refer to Section 36.7.2 for more information on service 
templates.

Context

This element may only appear as a child of an application element 
(Section 36.14.3).

Attributes

This element supports the attributes in Table 36.21.

Parameters

A template may declare parameters that are used to instantiate the service 
element. You can define a default value for each parameter. Parameters without a 
default value are considered mandatory and values for them must be supplied by 
the service-instance element. See Section 36.15 for more information on 
parameter semantics.

Example

<icegrid> 
    <application name="IceBoxApp"> 
        <service-template id="ServiceTemplate"> 
            <parameter name="name"/> 
            <service name="${name}" entry="DemoService:create"> 
                <adapter name="${service}" .../> 
            </service> 
        </service-template> 
        <node name="Node1"> 
            <icebox id="IceBoxServer" ...> 

Table 36.21. Attributes of the service-template element.

Attribute Description Required

id Specifies the identifier for the service tem-
plate. This identifier must be unique among 
all service templates in the application.

Yes
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                <service-instance template="ServiceTemplate" 
                    name="Service1"/> 
            </icebox> 
        </node> 
    </application> 
</icegrid>

36.14.24 Variable
A variable element defines a variable. See Section 36.15 for more information 
on variable semantics.

Context

This element may only appear as a child of an application element 
(Section 36.14.3) or node element (Section 36.14.12).

Attributes

This element supports the attributes in Table 36.22.

Example

<icegrid> 
    <application name="SampleApp"> 
        <variable name="Var1" value="foo"/> 
        <variable name="Var2" value="${Var1}bar"/> 
        ... 
    </application> 
</icegrid>

Table 36.22. Attributes of the variable element.

Attribute Description Required

name Specifies the variable name. The value of this 
variable is substituted whenever its name is 
used in variable syntax, as in ${name}.

Yes

value Specifies the variable value. If not defined, 
the default value is an empty string.

No
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36.14.25 Command Line Options
Server descriptors (Section 36.14.18) and icebox descriptors (Section 36.14.9) 
may specify command-line options that the node will pass to the program at 
startup. As the node prepares to execute the server, it assembles the command by 
appending options to the server executable’s pathname.

In XML, you define a command-line option using the option element:

<server id="Server1" ...> 
    <option>--Ice.Trace.Protocol</option> 
    ... 
</server>

The node preserves the order of options, which is especially important for Java 
servers. For example, JVM options must appear before the class name, as shown 
below:

<server id="JavaServer" exe="java" ...> 
    <option>-Xnoclassgc</option> 
    <option>ServerClassName</option> 
    <option>--Ice.Trace.Protocol</option> 
    ... 
</server>

The node translates these options into the following command:

java -Xnoclassgc ServerClassName --Ice.Trace.Protocol

36.14.26 Environment Variables
Server descriptors (Section 36.14.18) and icebox descriptors (Section 36.14.9) 
may specify environment variables that the node will define when starting a 
server. An environment variable definition uses the familiar name=value 
syntax, and you can also refer to other environment variables within the value. 
The exact syntax for variable references depends on the platform on which the 
server’s descriptor is deployed.

On a Unix platform, the Bourne shell syntax is required:

LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH

On a Windows platform, the syntax uses the conventional style:

PATH=/opt/Ice/lib;%PATH%

In XML, the env element supplies a definition for an environment variable:
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<node name="UnixBox"> 
    <server id="UnixServer" exe="/opt/app/bin/server" ...> 
        <env>LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH</env> 
        ... 
    </server> 
</node> 
<node name="WindowsBox"> 
    <server id="WindowsServer" exe="C:/app/bin/server.exe" ...> 
        <env>PATH=C:/Ice/lib;%PATH%</env> 
        ... 
    </server> 
</node>

If a value refers to an environment variable that is not defined, the reference is 
substituted with an empty string.

Environment variable definitions may also refer to descriptor variables and 
template parameters:

<node name="UnixBox"> 
    <server id="UnixServer" exe="/opt/app/bin/server" ...> 
        <env>PATH=${server.distrib}/bin:$PATH</env> 
        ... 
    </server> 
</node>

On Unix, an environment variable VAR can be referenced as $VAR or ${VAR}. 
You must be careful when using the latter syntax because IceGrid assumes 
${VAR} refers to a descriptor variable or parameter and will report an error if no 
match is found. If you prefer to use this style to refer to environment variables, 
you must escape these occurrences as shown in the example below:

<node name="UnixBox"> 
    <server id="UnixServer" exe="/opt/app/bin/server" ...> 
        <env>PATH=${server.distrib}/bin:$${PATH}</env> 
        ... 
    </server> 
</node>

IceGrid does not attempt to perform substitution on $${PATH}, but rather 
removes the leading $ character and then performs environment variable substitu-
tion on ${PATH}. See Section 36.15.1 for more information on escaping vari-
ables.
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36.15 Variable and Parameter Semantics

Variable descriptors (see Section 36.14.24) allow you to define commonly-used 
information once and refer to them symbolically throughout your application 
descriptors.

36.15.1 Syntax
Substitution for a variable or parameter VP is attempted whenever the symbol 
${VP} is encountered, subject to the limitations and rules described below. 
Substitution is case-sensitive, and a fatal error occurs if VP is not defined.

Limitations

Substitution is only performed in string values, and excludes the following cases:

• in the identifier of a template descriptor definition:

<server-template id="${invalid}" ...>

• in the name of a variable definition

<variable name="${invalid}" ...>

• in the name of a template parameter definition

<parameter name="${invalid}" ...>

• in the name of a template parameter assignment

<server-instance template="T" ${invalid}="val" ...>

• in the name of a node definition

<node name="${invalid}" ...>

• in the name of an application definition

<application name="${invalid}" ...>

Substitution is not supported for values of other types. The example below 
demonstrates an invalid use of substitution:

<variable name="register" value="true"/> 
<node name="Node"> 
    <server id="Server1" ...> 
        <adapter name="Adapter1" register-process=${register} .../>
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In this case, a variable cannot supply the value of register-process because 
that attribute expects a boolean value, not a string.

Most values are strings, however, so this limitation is rarely a problem.

Escaping a Variable

You can prevent substitution by escaping a variable reference with an additional 
leading $ character. For example, in order to assign the literal string ${abc} to a 
variable, you must escape it as shown below:

<variable name="x" value="$${abc}"/>

The extra $ symbol is only meaningful when immediately preceding a variable 
reference, therefore text such as US$$55 is not modified. Each occurrence of the 
characters $$ preceding a variable reference is replaced with a single $ character, 
and that character does not initiate a variable reference. Consider these examples:

<variable name="a" value="hi"/> 
<variable name="b" value="$${a}"/> 
<variable name="c" value="$$${a}"/> 
<variable name="d" value="$$$${a}"/>

After substitution, b has the value $${a}, c has the value $hi, and d has the 
value $${a}.

36.15.2 Reserved Names
IceGrid defines a set of read-only variables to hold information that may be of use 
to descriptors. The names of these variables are reserved and cannot be used as 
variable or parameter names. Table 36.23 describes the purpose of each variable 
and defines the context in which it is valid.

Table 36.23. Reserved names.

Name Description

application The name of the enclosing application.

application.distrib The pathname of the enclosing application’s distri-
bution directory, and an alias for ${node.data-
dir}/distrib/${application}.
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node The name of the enclosing node.

node.os The name of the enclosing node’s operating sys-
tem. On Unix, this is value is provided by uname. 
On Windows, the value is Windows.

node.hostname The host name of the enclosing node.

node.release The operation system release of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value is obtained from the 
OSVERSIONINFO data structure.

node.version The operation system version of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value represents the current ser-
vice pack level.

node.machine The machine hardware name of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value is x86.

node.datadir The absolute pathname of the enclosing node’s 
data directory.

server The id of the enclosing server.

server.distrib The pathname of the enclosing server’s distribution 
directory, and an alias for ${node.data-
dir}/servers/${server}/distrib.

service The name of the enclosing service.

session.id The client session identifier. For sessions created 
with a user name and password, the value is the 
user ID; for sessions created from a secure connec-
tion, the value is the distinguished name associated 
with the connection.

Table 36.23. Reserved names.

Name Description
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The availability of a variable is easily determined in some cases, but may not be 
readily apparent in others. For example, the following example represents a valid 
use of the ${node} variable:

<icegrid> 
    <application name="App"> 
        <server-template id="T" ...> 
            <parameter name="id"/> 
            <server id="${id}" ...> 
                <property name="NodeName" value="${node}"/> 
                ... 
            </server> 
        </server-template> 
        <node name="TheNode"> 
            <server-instance template="T" id="TheServer"/> 
        </node> 
    </application> 
</icegrid>

Although the server template descriptor is defined as a child of an application 
descriptor, its variables are not evaluated until it is instantiated. Since a template 
instance is always enclosed within a node, it is able to use the ${node} variable.

36.15.3 Scoping Rules
Descriptors may only define variables at the application and node levels. Each 
node introduces a new scope, such that defining a variable at the node level over-
rides (but does not modify) the value of an application variable with the same 
name. Similarly, a template parameter overrides the value of a variable with the 
same name in an enclosing scope. A descriptor may refer to a variable defined in 
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any enclosing scope, but its value is determined by the nearest scope. Figure 36.7 
illustrates these concepts.

Figure 36.7. Variable scoping semantics.

In this diagram, the variable x is defined at the application level with the value 1. 
In nodeA, x is overridden with the value 2, whereas x remains unchanged in 
nodeB. Within the context of nodeA, x continues to have the value 2 in a server 
instance definition. However, when x is used as the name of a template parameter, 

application

<variable name="x" 
   value="1">

${x} == 1

server instance

<server-instance 
   template="T" x="3">

${x} == 2

nodeA

<variable name="x" 
   value="2">

${x} == 2

nodeB

<variable name="y" 
   value="4">

${x} == 1

server template

<server-template ...> 
   <parameter name="x">

${x} == 3
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the node’s definition of x is overridden and x has the value 3 in the template’s 
scope.

Resolving a Reference

To resolve a variable reference ${var}, IceGrid searches for a definition of var 
using the following order of precedence:

1. Pre-defined variables (see Section 36.15.2)

2. Template parameters, if applicable

3. Node variables, if applicable

4. Application variables

After the initial substitution, any remaining references are resolved recursively 
using the following order of precedence:

1. Pre-defined variables (see Section 36.15.2)

2. Node variables, if applicable

3. Application variables

Template Parameters

Template parameters are not visible in nested template instances. This situation 
can only occur when an IceBox server template instantiates a service template, as 
shown in the following example:

<icegrid> 
    <application name="IceBoxApp"> 
        <service-template id="ServiceTemplate"> 
            <parameter name="name"/> 
            <service name="${name}" entry="DemoService:create"> 
                ... 
                <property name="${name}.Identity" 
                    value="${id}-${name}"/> <!-- WRONG! --> 
            </service> 
        </service-template> 
        <server-template id="ServerTemplate"> 
            <parameter name="id"/> 
            <icebox id="${id}" endpoints="default" ...> 
                <service-instance template="ServiceTemplate" 
                    name="Service1"/> 
            </icebox> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="ServerTemplate" 
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                id="IceBoxServer"/> 
        </node> 
    </application> 
</icegrid>

The service template incorrectly refers to id, which is a parameter of the server 
template.

Modifying a Variable

A variable definition can be overridden in an inner scope, but the inner definition 
does not modify the outer variable. If a variable is defined multiple times in the 
same scope (which is only relevant in XML definitions), the most recent definition 
is used for all references to that variable. Consider the following example:

<application name="MyApp"> 
    <variable name="x" value="1"/> 
    <variable name="y" value="${x}"/> 
    <variable name="x" value="2"/> 
    ... 
</application>

When descriptors such as these are created, IceGrid validates their variable refer-
ences but does not perform substitution until the descriptor is acted upon (such as 
when a node is generating a configuration file for a server). As a result, the value 
of y in the above example is 2 because that is the most recent definition of x.

36.16 Property Set Semantics

Ice servers and clients are configured with properties. For servers deployed with 
IceGrid, these properties are automatically generated into a configuration file 
from the information contained in the application descriptor. The settings in that 
configuration file are passed to server via the --Ice.Config command-line 
option.

Descriptors allow you to define property sets to efficiently manage and specify 
properties. Here are some of the benefits of using property sets:

• You can define sets of properties at the application or node element level and 
reference these properties in other property sets.

• You can specify properties for a specific server or service instance.

There are two kinds of property sets:
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• Named property sets

Named property sets are defined at the application or node level. They are 
useful only as the target of references from other property sets. Specifically, a 
named property set has no effect unless you reference it from a server 
descriptor.

• Unnamed property sets

Unnamed property sets are defined at the server, service, icebox, 
server-instance or service-instance element level and define 
the properties for a server or service. Unnamed property sets can reference 
named property sets.

Named and unnamed property sets are defined with the same properties 
element. The context and the attributes of a properties element distinguish 
named property sets from unnamed property sets. Here is an example that defines 
a named and an unnamed property set:

<application name="App"> 
    <properties id="Debug"> 
        <property name="UseDebug" value="1"/> 
    </properties> 
 
    <node name="TheNode"> 
        <server id="TheServer" exe="./server"> 
            <properties> 
                <property name="Identity" value="hello"/> 
            </properties> 
        </server> 
    </node> 
</application>

In this example, we define the named property set UseDebug and the unnamed 
property set of the server TheServer. The server configuration will contain only 
the Identity property because the server property set does not reference the 
Debug named property set.

The properties element is used to reference a named property set: if a 
properties element appears inside another properties element, it is a 
reference to another property set and it must specify the refid attribute. With the 
previous example, to reference the Debug property set, we would write the 
following:
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<application name="App"> 
    <properties id="Debug"> 
        <property name="UseDebug" value="1"/> 
    </properties> 
 
    <node name="TheNode"> 
        <server id="TheServer" exe="./server"> 
            <properties> 
                <properties refid="Debug"/> 
                <property name="Identity" value="hello"/> 
        </properties> 
        </server> 
    </node> 
</application>

Property sets, whether named or unnamed, are evaluated as follows:

1. Within a properties element, IceGrid locates all references to named 
property sets and evaluates all property settings in the referenced property 
sets.

2. Explicit property definitions following any named references are then evalu-
ated and added to the property set formed in the preceding step. This means 
that explicit property settings override corresponding settings in any refer-
enced property sets.

It is illegal to define a reference to a property set after setting a property value, so 
references to property sets must precede property definitions. For example, the 
following is illegal:

<properties> 
    <property name="Prop1" value="Value1"/> 
    <properties refid="Ref1"/> 
</properties>

Just as the order of the property definitions is important, the order of property set 
references is also important. For example, the following two property sets are not 
equivalent:

<properties> 
    <properties refid="Ref1"/> 
    <properties refid="Ref2"/> 
</properties> 
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<properties> 
    <properties refid="Ref2"/> 
    <properties refid="Ref1"/> 
</properties>

Named property sets are evaluated at the point of definition. If you reference other 
property sets or use variables in a named property set definition, you must make 
sure that the referenced property sets or variables are defined in the same scope. 
For example, the following is correct:

<application name="App"> 
 
    <variable name="level" value="1"/> 
 
    <properties id="DebugApp"> 
        <property name="DebugLevel value="${level}"> 
    </properties> 
 
</application>

However, the following example is wrong because the ${level} variable is not 
defined at the application scope:

<application name="App"> 
 
    <properties id="DebugApp"> 
        <property name="DebugLevel value="${level}"> 
    </properties> 
 
    <node name="TheNode"> 
        <variable name="level" value="1"/> 
    </node> 
 
</application>

If both the application and the node define the ${level} variable, the 
value of the ${level} variable in the DebugApp property set will be the value 
of the variable defined in the application descriptor.

So far, we have seen the definition of an unnamed property set only in a server 
descriptor. However, it is also possible to define an unnamed property set for 
server or service instances. This is a good way to specify or override properties 
specific to a server or service instance. For example:
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<application name="TheApp"> 
  <server-template id="Template"> 
   
    <parameter name="instance-name"/> 
   
    <server id="${instance-name}" exe="./server"> 
      <properties> 
        <property name="Timeout" value="30"/> 
      </properties> 
    </server> 
  </server-template> 
   
  <node name="TheNode"> 
    <server-instance template="Template" instance-name="MyInst"> 
      <properties> 
        <property name="Debug" value="1"/> 
        <property name="Timeout" value="-1"/> 
      </properties> 
    </server-instance> 
  </node> 
</application>

Here, the server instance overrides the Timeout property and defines an addi-
tional Debug property.

The server or service instance properties are evaluated as follows:

1. The unnamed property set from the template server or service descriptor is 
evaluated.

2. The unnamed property set from the server or service instance descriptor is 
evaluated and the resulting properties are added to the property set formed in 
the preceding step. This means that property settings in a server or service 
instance descriptor override corresponding settings in a template server or 
service descriptor.

The server or service instance unnamed property set and its parameters provide 
two different ways to customize the properties of a server or service template 
instance. It might not always be obvious which method to use: is it better to use a 
parameter to parameterize a given property or is it better to just specify it in the 
server or service instance property set?

For example, in the previous descriptor, we could have used a parameter with 
a default value for the Timeout property:
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<application name="TheApp"> 
  <server-template id="Template"> 
     
    <parameter name="instance-name"/> 
    <parameter name="timeout" default="30"/> 
     
    <server id="${instance-name}" exe="./server"> 
      <properties> 
        <property name="Timeout" value="${timeout}"/> 
      </properties> 
    </server> 
  </server-template> 
   
  <node name="TheNode"> 
    <server-instance template="Template" 
                     instance-name="MyInst" timeout="-1"> 
      <properties> 
        <property name="Debug" value="1"/> 
      </properties> 
    </server-instance> 
  </node> 
</application>

Here are some guidelines to help you decide whether to use a parameter or a prop-
erty:

• Use a parameter for a property that should always be set.

• Use a parameter if you want to make the property obvious to the reader and 
user of the template.

• Do not use a parameter for optional properties if you want to rely on a default 
value for the server.

• Do not use parameters for properties that are rarely used.

36.17 XML Features

IceGrid provides some convenient features to simplify the task of defining 
descriptors in XML.
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36.17.1 Targets
An IceGrid XML file may contain optional definitions that are deployed only 
when specifically requested. These definitions are called targets and must be 
defined within a target element. The elements that may legally appear within a 
target element are determined by its enclosing element. For example, a node 
element is legal inside a target element of an application element, but not 
inside a target element of a server element. Each target element must 
define a value for the name attribute, but names are not required to be unique. 
Rather, targets should be considered as optional components or features of an 
application that are deployed in certain circumstances.

The example below defines targets named debug that, if requested during 
deployment, configure their servers with an additional property:

<icegrid> 
    <application name="MyApp"> 
        <node name="Node"> 
            <server id="Server1" ...> 
                <target name="debug"> 
                    <property name="Ice.Trace.Network" value="2"/> 
                </target> 
                ... 
            </server> 
            <server id="Server2" ...> 
                <target name="debug"> 
                    <property name="Ice.Trace.Network" value="2"/> 
                </target> 
                ... 
            </server> 
        </node> 
    </application> 
</icegrid>

Target names specified in an icegridadmin command (see Section 36.19.1) 
can be unqualified names like debug, in which case every target with that name 
is deployed, regardless of the target’s nesting level. If you want to deploy targets 
more selectively, you can specify a fully-qualified name instead. A fully-qualified 
target name consists of its unqualified name prefaced by the names or identifiers 
of each enclosing element. For instance, a fully-qualified target name from the 
example above is MyApp.Node.Server1.debug.
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36.17.2 Including Files
You can include the contents of another XML file into the current file using the 
include element, which is replaced with the contents of the included file. The 
elements in the included file must be enclosed in an icegrid element, as shown 
in the following example:

<!-- File: A.xml --> 
<icegrid> 
    <server-template id="ServerTemplate"> 
        <parameter name="id"/> 
        ... 
    </server-template> 
</icegrid> 
 
<!-- File: B.xml --> 
<icegrid> 
    <application name="MyApp"> 
        <include file="A.xml"/> 
        <node name="Node"> 
            <server-instance template="ServerTemplate" .../> 
        </node> 
    </application> 
</icegrid>

In B.xml, the include element identifies the name of the file to include using 
the file attribute. The top-level icegrid element is discarded from A.xml 
and its contents are inserted at the position of the include element in B.xml.

You can include specific targets (see Section 36.17.1) from a file by specifying 
their names in the optional targets attribute. If multiple targets are included, 
their names must be separated by whitespace. The example below illustrates the 
use of a target:

<!-- File: A.xml --> 
<icegrid> 
    <server-template id="ServerTemplate"> 
        <parameter name="id"/> 
        ... 
    </server-template> 
    <target name="targetA"> 
        <server-template id="AnotherTemplate"> 
            ... 
        </server-template> 
    </target> 
</icegrid> 
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<!-- File: B.xml --> 
<icegrid> 
    <application name="MyApp"> 
        <include file="A.xml" targets="targetA"/> 
        <node name="Node"> 
            <server-instance template="ServerTemplate" .../> 
            <server-instance template="AnotherTemplate" .../> 
        </node> 
    </application> 
</icegrid>

36.18 Server Reference

36.18.1 icegridregistry
The IceGrid registry is a centralized repository of information, including deployed 
applications and well-known objects. A registry can optionally be collocated with 
an IceGrid node, which conserves resources and can be convenient during devel-
opment and testing. The registry server is implemented by the 
icegridregistry executable.

Usage

The registry supports the following command-line options:

$ icegridregistry -h 
Usage: icegridregistry [options] 
Options: 
-h, --help           Show this message. 
-v, --version        Display the Ice version. 
--nowarn             Don't print any security warnings.

The registry can optionally be run as a Unix daemon or Win32 service. On Unix, 
the following additional commands are supported:

--daemon             Run as a daemon. 
--noclose            Do not close open file descriptors. 
--nochdir            Do not change the current working directory.

On Windows, the following additional commands are supported:
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--service NAME       Run as the Windows service NAME. 
 
--install NAME [--display DISP] [--executable EXEC] [args] 
                     Install as Windows service NAME. If DISP is 
                     provided, use it as the display name, 
                     otherwise NAME is used. If EXEC is provided, 
                     use it as the service executable, otherwise 
                     this executable is used. Any additional 
                     arguments are passed unchanged to the 
                     service at startup. 
--uninstall NAME     Uninstall Windows service NAME. 
--start NAME [args]  Start Windows service NAME. Any additional 
                     arguments are passed unchanged to the 
                     service. 
--stop NAME          Stop Windows service NAME.

Please see Section 8.3.2 for more information on these options.

Configuring Endpoints

The IceGrid registry creates up to four sets of endpoints, configured with the 
following properties:

• IceGrid.Registry.Client.Endpoints

Client-side endpoints supporting the Ice::Locator, IceGrid::Query, and 
IceGrid::Registry interfaces.

• IceGrid.Registry.Server.Endpoints

Server-side endpoints for object and object adapter registration.

• IceGrid.Registry.Admin.Endpoints

Administrative endpoints supporting the IceGrid::Admin and 
Glacier2::SessionManager interfaces (optional).

• IceGrid.Registry.Internal.Endpoints

Internal endpoints used by IceGrid nodes as well as the graphical administra-
tion tool to communicate with the registry. This property must be defined even 
if no nodes are being used.

See Appendix C for more information on these properties.
Access to an IceGrid registry’s administrative interface should be restricted if 

the registry is running on an insecure host, such as an application firewall. The 
IceGrid.Registry.Admin.Endpoints property offers several alterna-
tives:

• Disable administrative access completely by not defining the property.
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• Block external access to the administrative endpoints defined by the property.

• Use only SSL endpoints in the property (see Chapter 39).

The method you choose depends on your deployment requirements. For example, 
if no administrative access is necessary, then the first technique is the most secure. 
If that is not feasible, then physically blocking (via a firewall) external access to 
the administrative endpoints is recommended. Finally, if a registry must be admin-
istered externally, then SSL endpoints should be used to ensure that only authenti-
cated clients gain access.

Configuring a Data Directory

You must provide an empty directory in which the registry can initialize its data-
bases. The pathname of this directory is supplied by the configuration property 
IceGrid.Registry.Data.

The files in this directory must not be edited manually, but rather indirectly 
using one of the administrative tools described in Section 36.19. To clear a 
registry’s databases, first ensure the server is not currently running, then remove 
all of the files in its data directory and restart the server.

Minimal Configuration

The registry requires values for the three mandatory endpoint properties, as well 
as the data directory property, as shown in the following example:

IceGrid.Registry.Client.Endpoints=tcp -p 10000 
IceGrid.Registry.Server.Endpoints=tcp 
IceGrid.Registry.Internal.Endpoints=tcp 
IceGrid.Registry.Data=/opt/ripper/registry

In addition, we also recommend defining IceGrid.InstanceName, which is 
discussed in Section 36.18.3.

Note that by omitting a definition for the administrative endpoints, we are 
denying the use of any administrative tool. Add a definition for the property 
IceGrid.Registry.Admin.Endpoints to allow administrative access.

The remaining configuration properties are discussed in Appendix C.

36.18.2 icegridnode
An IceGrid node is a process that activates, monitors, and deactivates registered 
server processes. You can run any number of nodes in a domain, but typically 
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there is one node per host. A node must be running on each host on which servers 
are activated automatically, and nodes cannot run without an IceGrid registry.

The IceGrid node server is implemented by the icegridnode executable. If 
you wish to run a registry and node in one process, icegridnode is the execut-
able you must use.

Usage

The node supports the following command-line options:

Usage: icegridnode [options] 
Options: 
-h, --help           Show this message. 
-v, --version        Display the Ice version. 
--nowarn             Don't print any security warnings. 
 
--deploy DESCRIPTOR [TARGET1 [TARGET2 ...]] 
                     Add or update descriptor in file DESCRIPTOR, 
                     with optional targets.

The --deploy option allows an application to be deployed automatically as the 
node process starts, which can be especially useful during testing. The command 
expects the name of the XML deployment file, and optionally allows the names of 
the individual targets within the file to be specified.

The node can optionally be run as a Unix daemon or Win32 service. On Unix, 
the following additional commands are supported:

--daemon             Run as a daemon. 
--noclose            Do not close open file descriptors. 
--nochdir            Do not change the current working directory.

On Windows, the following additional commands are supported:

--service NAME       Run as the Windows service NAME. 
 
--install NAME [--display DISP] [--executable EXEC] [args] 
                     Install as Windows service NAME. If DISP is 
                     provided, use it as the display name, 
                     otherwise NAME is used. If EXEC is provided, 
                     use it as the service executable, otherwise 
                     this executable is used. Any additional 
                     arguments are passed unchanged to the 
                     service at startup. 
--uninstall NAME     Uninstall Windows service NAME. 
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--start NAME [args]  Start Windows service NAME. Any additional 
                     arguments are passed unchanged to the 
                     service. 
--stop NAME          Stop Windows service NAME.

See Section 8.3.2 for more information on these options.

Security Considerations

It is important that you give careful consideration to the permissions of the 
account under which the node runs. If the servers that the node will activate have 
no special access requirements, and all of the servers can use the same account, it 
is recommended that you do not run the node under an account with system priv-
eleges, such as the root account on Unix or the Administrator account on 
Windows. See Section 36.20.4 for more information on this subject.

Configuring Endpoints

The IceGrid node’s endpoints are defined by the IceGrid.Node.Endpoints 
property and must be accessible to the registry. It is not necessary to use a fixed 
port because each node contacts the registry at startup to provide its current 
endpoint information.

Configuring a Data Directory

The node requires an empty directory that it can use to store server files. The path-
name of this directory is supplied by the configuration property 
IceGrid.Node.Data. To clear a node’s state, first ensure the server is not 
currently running, then remove all of the files in its data directory and restart the 
server.

When running a collocated node and registry server, we recommend using 
separate directories for the registry and node data directories.

Minimal Configuration

A minimal node configuration is shown in the following example:

IceGrid.Node.Endpoints=tcp 
IceGrid.Node.Name=Node1 
IceGrid.Node.Data=/opt/ripper/node 
 
Ice.Default.Locator=IceGrid/Locator:tcp -p 10000

The value of the IceGrid.Node.Name property must match that of a deployed 
node known by the registry.
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The Ice.Default.Locator property is used by the node to contact the 
registry. The value is a proxy that contains the registry’s client endpoints (see 
Section 36.4.3).

If you wish to run a collocated registry and node server, add the property 
IceGrid.Node.CollocateRegistry=1 and include the registry’s config-
uration properties as described in Section 36.18.1.

The remaining configuration properties are discussed in Appendix C.

36.18.3 Object Identities
The IceGrid registry hosts several well-known objects. Table 36.24 shows the 
default identities of these objects and their corresponding Slice interfaces.

It is a good idea to assign unique identities to these objects by configuring them 
with different values for the IceGrid.InstanceName property, as shown in 
the following example:

IceGrid.InstanceName=MP3Grid

Table 36.24. IceGrid’s well-known objects.

Default Identity Interface

IceGrid/Registry IceGrid::Registry

IceGrid/Locator Ice::Locator

IceGrid/Admin IceGrid::Admin

IceGrid/Query IceGrid::Query

IceGrid/SessionManager Glacier2::SessionManager

IceGrid/SSLSessionManager Glacier2::SSLSessionManager

IceGrid/AdminSessionManager Glacier2::SessionManager

IceGrid/AdminSSLSessionManager Glacier2::SSLSessionManager

IceGrid/RegistryUserAccountMapper IceGrid::UserAccountMapper
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This property changes the identities of the well-known objects to use MP3Grid 
instead of IceGrid as the identity category. For example, the identity of the 
locator becomes MP3Grid/Locator.

The client’s configuration must also be changed to reflect the new identity:

Ice.Default.Locator=MP3Grid/Locator:tcp -h registryhost -p 10000

Furthermore, any uses of these identities in application code must be updated as 
well.

36.19 Administrative Utilities

IceGrid provides two administrative clients: a command-line tool and a graphical 
application.

36.19.1 Command Line Client
The icegridadmin utility is a command-line tool for administering an IceGrid 
domain. Deploying an application with this utility requires an XML that defines 
the descriptors.

Usage

The IceGrid administration tool supports the following command-line options:

Usage: icegridadmin [options] [file...] 
Options: 
-h, --help           Show this message. 
-v, --version        Display the Ice version. 
-DNAME               Define NAME as 1. 
-DNAME=DEF           Define NAME as DEF. 
-UNAME               Remove any definition for NAME. 
-IDIR                Put DIR in the include file search path. 
-e COMMANDS          Execute COMMANDS. 
-d, --debug          Print debug messages.

The -e option causes the tool to execute the given commands and then exit 
without entering an interactive session. Otherwise, the tool enters an interactive 
session; the help command displays the following usage information:

help

Print this message.
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exit, quit

Exit this program.

application add [-n | --no-patch] DESC [TARGET ... ] 
    [NAME=VALUE ... ]

Add applications described in the XML descriptor file DESC. If specified the 
optional targets are deployed. Variables are defined using the NAME=VALUE 
syntax. The application is automatically patched unless the -n or --no-
patch option is used to disable it (see Section 36.11).

application remove NAME

Remove the application named NAME.

application describe NAME

Describe the application named NAME.

application diff DESC [TARGET ...] [NAME=VALUE ...]

Print the differences between the application in the XML descriptor file DESC 
and the current deployment. Variables are defined using the NAME=VALUE 
syntax.

application update DESC [TARGET ...] [NAME=VALUE ...]

Update the application in the XML descriptor file DESC. Variables are 
defined using the NAME=VALUE syntax.

application patch [-f | --force] NAME

Patch the application named NAME. If -f or --force is specified, IceGrid 
will first shut down any servers that depend on the data to be patched.

application list

List all deployed applications.

server template instantiate APPLICATION NODE TEMPLATE 
    [NAME=VALUE ...]

Instantiate the requested server template defined in the given application on a 
node. Variables are defined using the NAME=VALUE syntax.
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server template describe APPLICATION TEMPLATE

Describe a server template TEMPLATE from the given application.

service template describe APPLICATION TEMPLATE

Describe a service template TEMPLATE from the given application.

node list

List all registered nodes.

node describe NAME

Show information about node NAME.

node ping NAME

Ping node NAME.

node load NAME

Print the load of the node NAME.

node shutdown NAME

Shutdown node NAME.

server list

List all registered servers.

server remove ID

Remove server ID.

server describe ID

Describe server ID.

server state ID

Get the state of server ID.

server pid ID

Get the process id of server ID.

server start ID

Start server ID.
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server stop ID

Stop server ID.

server patch ID

Patch server ID.

server signal ID SIGNAL

Send SIGNAL (e.g. SIGTERM or 15) to server NAME.

server stdout ID MESSAGE

Write MESSAGE on server NAME's stdout.

server stderr ID MESSAGE

Write MESSAGE on server NAME's stderr.

server enable ID

Enable server ID.

server disable ID

Disable server ID (a disabled server can't be started on demand or administra-
tively).

adapter list

List all registered adapters.

adapter endpoints ID

Show the endpoints of adapter or replica group ID.

adapter remove ID

Remove adapter or replica group ID.

object add PROXY [TYPE]

Add a well-known object to the registry, optionally specifying its type.

object remove IDENTITY

Remove a well-known object from the registry.
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object find TYPE

Find all well-known objects with the type TYPE.

object describe EXPR

Describe all well-known objects whose stringified identities match the expres-
sion EXPR. A trailing wildcard is supported in EXPR, for example "object 
describe Ice*".

object list EXPR

List all well-known objects whose stringified identities match the expression 
EXPR. A trailing wildcard is supported in EXPR, for example "object 
list Ice*".

shutdown

Shut the IceGrid registry down.

show copying

Show conditions for redistributing copies of this program.

show warranty

Show the warranty for this program.

Configuration

icegridadmin requires that the locator proxy be defined in the configuration 
property Ice.Default.Locator. If a configuration file already exists that 
defines this property, you can start icegridadmin using the configuration file 
as shown below:

$ icegridadmin --Ice.Config=<file>

Otherwise, you can define the property on the command line:

$ icegridadmin --Ice.Default.Locator=<proxy>

Section 36.4.4 describes how to configure the Ice.Default.Locator prop-
erty for an IceGrid client.
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36.19.2 Graphical Client
The graphical administration tool (IceGrid.AdminGUI) allows you to perform 
anything that you can do from the command line via a GUI. Please refer to the 
instructions included with your Ice distribution for details on how to set your 
CLASSPATH and how to start the administration tool.

36.20 Server Activation

You can choose among four activation modes for servers deployed and managed 
by an IceGrid node:

• manual

You must the server explicitly via the IceGrid GUI or icegridadmin, or 
programmatically via the IceGrid::Admin interface.

• always

IceGrid activates the server when its node starts. If the server stops, IceGrid 
automatically reactivates it.

• on demand

IceGrid activates the server when a client invokes an operation on an object in 
the server.

• session

This mode also provides on-demand activation but requires the server to be 
allocated by a session.

36.20.1 Activation in Detail
On-demand server activation is a valuable feature of distributed computing archi-
tectures for a number of reasons:

• It minimizes application startup times by avoiding the need to pre-start all 
servers.

• It allows administrators to use their computing resources more efficiently 
because only those servers that are actually needed are running.

• It provides more reliability in the case of some server failure scenarios, e.g., 
the server is reactivated after a failure and may still be capable of providing 
some services to clients until the failure is resolved.
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• It allows remote activation and deactivation.

On-demand activation occurs when an Ice client requests the endpoints of one of 
the server’s object adapters via a locate request (see Section 36.3.1). If the server 
is not active at the time the client issues the request, the node activates the server 
and waits for the target object adapter to register its endpoints. Once the object 
adapter endpoints are registered, the registry returns the endpoint information 
back to the client. This sequence ensures that the client receives the endpoint 
information after the server is ready to receive requests.

36.20.2 Requirements
In order to use on-demand activation for an object adapter, the adapter must have 
an identifier and be entered in the IceGrid registry.

When using session activation mode, IceGrid requires that the server be allo-
cated; on-demand activation fails for servers that have not been allocated. (See 
Section 36.10 for more information on server allocation.)

The session activation mode recognizes an additional reserved variable in the 
server descriptor, ${session.id}. The value of this variable is the user ID or, 
for SSL sessions, the distinguished name associated with the session.

36.20.3 Efficiency
Once a server is activated, it remains running indefinitely (unless it uses the 
session activation mode). A node deactivates a server only when explicitly 
requested to do so (see Section 30.17.6). As a result, server processes tend to 
accumulate on the node’s host.

One of the advantages of on-demand activation is the ability to manage 
computing resources more efficiently. Of course there are many aspects to this, 
but Ice makes one technique particularly simple: servers can be configured to 
terminate gracefully after they have been idle for a certain amount of time.

A typical scenario involves a server that is activated on demand, used for a 
while by one or more clients, and then terminated automatically when no requests 
have been made for a configurable number of seconds. All that is necessary is 
setting the server’s configuration property Ice.ServerIdleTime to the 
desired idle time. See Appendix C for more information on this property.

For a server activated in session activation mode, IceGrid deactivates the 
server when the session releases the server or when the session is destroyed.
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36.20.4 Activating Servers with Specific User IDs
On UNIX platforms you can activate server processes with specific effective user 
IDs, provided that the IceGrid node is running as root. If the IceGrid node does 
not run as root, servers are always activated with the effective user ID of the 
IceGrid node process. (The same is true for Windows—servers always run with 
the same user ID as the IceGrid node process.)

For the remainder of this section, we assume that the node runs as root on a 
UNIX machine.

The user attribute of the server descriptor specifies the user ID for a 
server. If this attribute is not specified and the activation mode is not session, 
the default value is nobody. Otherwise, the default value is ${session.id} if 
the activation mode is session.

Since individual users often have different account names and user IDs on 
different machines, IceGrid provides a mechanism to map the value of the user 
attribute in the server descriptor to a user account. To do this, you must 
configure the node to use a user account mapper object. This object must imple-
ment the IceGrid::UserAccountMapper interface:

exception UserAccountNotFoundException {}; 
 
interface UserAccountMapper { 
    string getUserAccount(string user) 
            throws UserAccountNotFoundException; 
};

The IceGrid node invokes getUserAccount and passes the value of the server 
descriptor’s user attribute. The return value is the name of the user account.

IceGrid provides a built-in file-based user account mapper that you can 
configure for the node and the registry. The file contains any number of user–
account-ID pairs. Each pair appears on a separate line, with white space sepa-
rating the user account from the identifier. For example, the file shown below 
contains two entries that map two distinguished names to the user account lisa:

lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa 
lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa S.

The distinguished names must be unique. If the same distinguished name appears 
several times in a file, the last entry is used.

You can specify the path of the user account file with the 
IceGrid.Registry.UserAccounts property for the registry and the
IceGrid.Node.UserAccounts property for a node.
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To configure an IceGrid node to use the IceGrid registry file-based user 
account mapper, you need to set the IceGrid.Node.UserAccountMapper 
property to the well-known proxy 
IceGrid/RegistryUserAccountMapper. Alternatively, you can set this 
property to the proxy of your own user account mapper object. Note that if this
property is set, the node ignores the setting of 
IceGrid.Node.UserAccounts.

36.20.5 Endpoint Registration
Section 30.17.5 discusses the configuration requirements for enabling automatic 
endpoint registration in servers. It should be noted however that IceGrid simplifies 
the configuration process in two ways:

1. A server that is activated automatically by an IceGrid node does not need to 
explicitly configure a proxy for the locator because the IceGrid node defines it 
on the server’s command-line.

2. The IceGrid deployment mechanism automates the creation of a configuration 
file for the server, including the definition of object adapter identifiers and 
endpoints (see Section 36.4.5).

36.21 Solving Problems

36.21.1 Activation Failure
Server activation failure is usually indicated by the receipt of a NoEndpointEx-
ception. This can happen for a number of reasons, but the most likely cause is an 
incorrect configuration. For example, an IceGrid node may fail to activate a server 
because the server’s executable file, shared libraries, or classes could not be found. 
There are several steps you can take in this case:

1. Enable activation tracing in the node by setting the configuration property 
IceGrid.Node.Trace.Activator=3.

2. Examine the tracing output and verify the server’s command line and working 
directory are correct.

3. Relative pathnames specified in a command line may not be correct relative to 
the node’s current working directory. Either replace relative pathnames with 
absolute pathnames, or restart the node in the proper working directory.
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4. Verify that the server is configured with the correct PATH or 
LD_LIBRARY_PATH settings for its shared libraries. For a Java server, its 
CLASSPATH may also require changes.

Another cause of activation failure is a server fault during startup. After you have 
confirmed that the node successfully spawns the server process using the steps 
above, you should then check for signs of a server fault (e.g., on UNIX, look for a 
core file in the node’s current working directory). See Section 36.21.3 for more 
information on server failures.

36.21.2 Proxy Failure
A client may receive Ice::NotRegisteredException if binding fails for an indi-
rect proxy (see Section 30.17.2). This exception indicates that the proxy’s object 
identity or object adapter is not known by the IceGrid registry. The following steps 
may help you discover the cause of the exception:

1. Use icegridadmin (see Section 36.19.1) to verify that the object identity 
or object adapter identifier is actually registered, and that it matches what is 
used by the proxy:

>>> adapter list 
... 
>>> object find ::Hello 
...

2. If the problem persists, review your configuration to ensure that the locator 
proxy used by the client matches the registry’s client endpoints, and that those 
endpoints are accessible to the client (i.e., are not blocked by a firewall).

3. Finally, enable locator tracing in the client by setting the configuration prop-
erty Ice.Trace.Location=2, then run the client again to see if any log 
messages are emitted that may indicate the problem.

36.21.3 Server Failure
Diagnosing a server failure can be difficult, especially when servers are activated 
automatically on remote hosts. Here are a few suggestions:

1. If the server is running on a UNIX host, check the current working directory of 
the IceGrid node process for signs of a server failure, such as a core file.

2. Judicious use of tracing can help to narrow the search. For example, if the 
failure occurs as a result of an operation invocation, enable protocol tracing in 
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the Ice run time by setting the configuration property 
Ice.Trace.Protocol=1 to discover the object identity and operation 
name of all requests.

Of course, the default log output channels (standard out and standard error) 
will probably be lost if the server is activated automatically, so either start the 
server manually (see below) or redirect the log output (see Appendix C for a 
description of the Ice.UseSyslog property).

You can also use the Ice::Logger interface to emit your own trace messages.

3. Run the server in a debugger; a server configured for automatic activation can 
also be started manually if necessary. However, since the IceGrid node did not 
activate the server, it cannot monitor the server process and therefore will not 
know when the server terminates. This will prevent subsequent activation 
unless you clean up the IceGrid state when you have finished debugging and 
terminated the server. You can do this by starting the server using 
icegridadmin (see Section 36.19.1):

>>> server start TheServer

This will cause the node to activate (and therefore monitor) the server process. 
If you do not want to leave the server running, you can stop it with the 
server stop command.

4. After the server is activated and is in a quiescent state, attach your debugger to 
the running server process. This avoids the issues associated with starting the 
server manually (as described in the previous step), but does not provide as 
much flexibility in customizing the server’s startup environment.

Another cause for a server to fail to activate correctly is if there is a mismatch in 
the adapter names used by the server for its adapters, and the adapter names spec-
ified in the server’s deployment descriptor. After starting a server process, the 
node waits for the server to activate all its object adapters and report them as 
ready; if the server does not do this, the node reports a failure after once a timeout 
expires. The timeout is controlled by the setting of the property 
IceGrid.Node.WaitTime. (The default value is 60 seconds.)

You can check the status of each of a server’s adapters using 
icegridadmin or the GUI tool. While the node waits for an adapter to be acti-
vated by the server, it reports the status of the adapter as “activating”. If you expe-
rience timeouts before each adapter’s status changes to “active”, the most likely 
cause is that the deployment descriptor for the server either mentions more object 
adapters than are actually created by the server, or that the server uses a name for 
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one or more adapters that does not match the corresponding name in the deploy-
ment descriptor.

36.21.4 Disabling Faulty Servers
You may find it necessary to disable a server that terminates in an error condition. 
For example, on a Unix platform each server failure might result in the creation of 
a new (and potentially quite large) core file. This problem is exacerbated when the 
server is used frequently, in which case repeated cycles of activation and failure 
can consume a great deal of disk space and threaten the viability of the application 
as a whole.

As a defensive measure, you can configure an IceGrid node to disable these 
servers automatically using the IceGrid.Node.DisableOnFailure prop-
erty. In the disabled state, a server cannot be activated on demand. The default 
value of the property is zero, meaning the node does not disable a server that 
terminates improperly. A positive value causes the node to temporarily disable a 
faulty server, with the value representing the number of seconds the server should 
remain disabled. If the property has a negative value, the server is disabled indefi-
nitely, or until the server is explicitly enabled or started via an administrative 
action.

36.22 Summary

This chapter provided a detailed discussion of IceGrid, including the modifica-
tions required to incorporate IceGrid into client and server applications, as well as 
the configuration and administration of IceGrid components. Once you under-
stand the basic concepts on which IceGrid is founded, you quickly begin to appre-
ciate the flexibility, power, and convenience of IceGrid’s capabilities:

• Replication, load balancing and automatic server activation increase reliability 
and make more efficient use of processing resources.

• The location service simplifies administrative requirements and minimizes 
coupling between clients and servers.

• Deploying an application can be done using easily-understood, reusable XML 
files, or interactively using a graphical client.

• Distributing and updating executables, dependent libraries and other files on 
all nodes can be automated and managed remotely.
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In short, IceGrid provides the tools you need to develop robust, enterprise-class 
Ice applications.
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Chapter 37
Freeze

37.1 Chapter Overview

This chapter describes how to use Freeze to add persistence to Ice applications. 
Section 37.3 discusses the Freeze map and shows how to use it in a simple 
example. Section 37.4 examines an implementation of the file system using a 
Freeze map. Section 37.5 presents the Freeze evictor, and Section 37.6 demon-
strates the Freeze evictor in another file system implementation.
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37.2 Introduction

Freeze represents a set of persistence services, as shown in Figure 37.1.

Figure 37.1. Layer diagram for Freeze persistence services.

The Freeze persistence services are described below:

• The Freeze evictor is a highly-scalable implementation of an Ice servant 
locator that provides automatic persistence and eviction of Ice objects with 
only minimal application code.

• The Freeze map is a generic associative container. Code generators are 
provided which produce type-specific maps for any Slice key and value types. 
Applications interact with a Freeze map just like any other associative 
container, except the keys and values of a Freeze map are persistent.

As you will see from the examples in this chapter, integrating a Freeze map or 
evictor into your Ice application is quite straightforward: once you define your 
persistent data in Slice, Freeze manages the mundane details of persistence.

Freeze is implemented using Berkeley DB, a compact and high-performance 
embedded database. The Freeze map and evictor APIs insulate applications from 
the Berkeley DB API, but do not prevent applications from interacting directly 
with Berkeley DB if necessary.

37.3 The Freeze Map

A Freeze map is a persistent, associative container in which the key and value 
types can be any primitive or user-defined Slice types. For each pair of key and 
value types, the developer uses a code-generation tool to produce a language-
specific class that conforms to the standard conventions for maps in that language. 

Berkeley DB

Freeze Map

Application

Freeze Evictor Freeze Map

Berkeley DB

Freeze Evictor

Application



37.3 The Freeze Map 1177

For example, in C++ the generated class resembles a std::map, and in Java it 
implements the java.util.SortedMap interface. Most of the logic for 
storing and retrieving state to and from the database is implemented in a Freeze 
base class. The generated map classes derive from this base class, so they contain 
little code and therefore are efficient in terms of code size.

You can only store data types that are defined in Slice in a Freeze map. Types 
without a Slice definition (that is, arbitrary C++ or Java types) cannot be stored 
because a Freeze map reuses the Ice-generated marshaling code to create the 
persistent representation of the data in the database. This is especially important to 
remember when defining a Slice class whose instances will be stored in a Freeze 
map; only the “public” (Slice-defined) data members will be stored, not the 
private state members of any derived implementation class.

37.3.1 Freeze Connections
In order to create a Freeze map object, you first need to obtain a Freeze Connec-
tion object by connecting to a database environment.

As illustrated in Figure 37.2, a Freeze map is associated with a single connec-
tion and a single database file. Connection and map objects are “single threaded”: 
if you want to use a connection or any of its associated maps from multiple 
threads, you must serialize access to them. If your application requires concurrent 
access to the same database file (persistent map), you must create several connec-
tions and associated maps.

Figure 37.2. Freeze Connections and Maps.
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environment

Map 2 database file

Connection

Connection

Map1

Map2
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37.3.2 Transactions
You may optionally use transactions with Freeze maps. Freeze transactions 
provide the usual ACID (atomicity, concurrency, isolation, durability) properties. 
For example, a transaction allows you to group several database updates in one 
atomic unit: either all or none of the updates within the transaction occur.

A transaction is started using the beginTransaction operation on the 
Connection object. Once a connection has an associated transaction, all opera-
tions on the map objects associated with this connection use this transaction. 
Eventually, you end the transaction by calling commit or rollback: commit saves 
all your updates while rollback undoes them.

module Freeze { 
 
local interface Transaction { 
    void commit(); 
    void rollback(); 
};  
 
local interface Connection { 
    Transaction beginTransaction(); 
    nonmutating Transaction currentTransaction(); 
    // ... 
}; 
};

If you do not use transactions, every non-iterator update is enclosed in its own 
internal transaction, and every read-write iterator has an associated internal trans-
action which is committed when the iterator is closed.

37.3.3 Iterators
Iterators allow you to traverse the contents of a Freeze map. Iterators are imple-
mented using Berkeley DB cursors and acquire locks on the underlying database 
page files. In C++, both read-only (const_iterator) and read-write iterators 
(iterator) are available; in Java only read-write iterators are supported. 

Locks held by an iterator are released when the iterator is closed (if you do not 
use transactions) or when the enclosing transaction is ended. Releasing locks held 
by iterators is very important to let other threads access the database file through 
other connection and map objects. Occasionally it is even necessary to release 
locks to avoid self-deadlock (waiting forever for a lock held by an iterator created 
by the same thread).
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To improve ease of use and make self-deadlocks less likely, Freeze often 
closes iterators automatically. If you close a map or connection, associated itera-
tors are closed. Similarly, when you start or end a transaction, Freeze closes all the 
iterators associated with the corresponding maps. If you do not use transactions, 
any write operation on a map (such as inserting a new element) automatically 
closes all iterators opened on the same map object, except for the current iterator 
when the write operation is performed through that iterator.

There is, however, one situation where an explicit iterator close is needed to 
avoid self-deadlock: 

• you do not use transactions, and

• you have an opened iterator that was used to update a map (it holds a write 
lock), and

• in the same thread, you read that map.

Read operations never close iterators automatically. In that situation, you need to 
either use transactions or explicitly close the iterator that holds the write lock.

37.3.4 Recovering from Deadlock Exceptions
If you use multiple threads to access a database file, Berkeley DB may acquire 
locks in conflicting orders (on behalf of different transactions or iterators). For 
example, an iterator could have a read-lock on page P1 and attempt to acquire a 
write-lock on page P2, while another iterator (on a different map object associated 
with the same database file) could have a read-lock on P2 and attempt to acquire a 
write-lock on P1. 

When this occurs, Berkeley DB detects a deadlock and resolves it by returning 
a “deadlock” error to one or more threads. For all non-iterator operations 
performed outside any transaction, such as an insertion into a map, Freeze catches 
such errors and automatically retries the operation until it succeeds. (In that case, 
the most-recently acquired lock is released before retrying.) For other operations, 
Freeze reports this deadlock by raising Freeze::DeadlockException. In that 
case, the associated transaction or iterator is also automatically rolled back or 
closed. A properly written application is expected to catch deadlock exceptions 
and retry the transaction or iteration.

37.3.5 Indexing a Map
Freeze maps support efficient reverse lookups: if you define an index when you 
generate your map (with slice2freeze or slice2freezej), the generated 
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code provides additional methods for performing reverse lookups. If your value 
type is a structure or a class, you can also index on a member of the value, and 
several such indices can be associated with the same Freeze map.

Indexed searches are easy to use and very efficient. However, be aware that an 
index adds significant write overhead: with Berkeley DB, every update triggers a 
read from the database to get the old index entry and, if necessary, replace it.

If you later add an index to an existing map, Freeze automatically populates 
the index the next time the map is reopened. Freeze populates the index by instan-
tiating each map entry, therefore it is important that you register the object facto-
ries for any class types in your map before you open the map.

37.3.6 Key Sorting
Keys in Freeze maps and indexes are always sorted. By default, Freeze sorts keys 
according to their Ice-encoded binary representation; it’s very efficient but the 
resulting order is rarely meaningful for the application.

Starting with Ice 3.0, Freeze offers the ability to specify your own comparator 
objects. In C++, you specify these comparators as options to the slice2freeze 
utility (see below). In Java, the generated Java map class provides a number of 
constructors to accept these comparator objects.

The generated map provides the standard features from std::map (in C++) 
and java.util.SortedMap (in Java). Iterators return entries according to the 
order you have defined for the main key with your comparator object. In C++, 
lower_bound, upper_bound and equal_range provide range-searches; 
see the definition of these functions on std::map. In Java, use headMap, 
tailMap and subMap for range-searches; these methods come from the 
java.util.SortedMap interface

In addition to these standard features, the generated map provides additional 
functions and methods to perform range-searches using secondary keys. In C++, 
the additional functions are lowerBoundForMember, 
upperBoundForMember and equalRangeForMember, where Member is 
the name of the secondary-key member. These functions return regular iterators 
on the Freeze map.

In Java, the additional non-standard methods are:

public java.util.SortedMap 
headMapForIndex(String indexName, Object toKey) 
 
public java.util.SortedMap 
tailMapForIndex(String indexName, Object fromKey) 
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public java.util.SortedMap 
subMapForIndex(String indexName, 
               Object fromKey, 
               Object toKey)

The key of the returned submap is the secondary key (the index) and its value 
is a java.util.Set of Map.Entry objects from the main Freeze map. This 
set provides all the entries in the main Freeze map with the given secondary key. 
When iterating over this submap, you may need to close iterators explicitely, like 
with iterators obtained for the main Freeze map. See the Iterators section above.

37.3.7 slice2freeze Command-Line Options
The Slice-to-Freeze compiler, slice2freeze, offers the following command-
line options in addition to the standard options described in Section 4.19:

• --header-ext EXT

Changes the file extension for the generated header files from the default h to 
the extension specified by EXT.

• --source-ext EXT

Changes the file extension for the generated source files from the default cpp 
to the extension specified by EXT.

• --add-header HDR[,GUARD]

This option adds an include directive for the specified header at the beginning 
of the generated source file (preceding any other include directives). If GUARD 
is specified, the include directive is protected by the specified guard. For 
example, --add-header precompiled.h,__PRECOMPILED_H__ 
results in the following directives at the beginning of the generated source file:

#ifndef __PRECOMPILED_H__ 
#define __PRECOMPILED_H__ 
#include <precompiled.h> 
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to inte-
grate the generated code with a compiler’s precompiled header mechanism.
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• --include-dir DIR

Modifies #include directives in source files to prepend the pathname of 
each header file with the directory DIR. See Section 6.15.1 for more informa-
tion.

• --dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. See the slice2cpp 
description for details.

• --dict NAME,KEY,VALUE[,sort[,COMPARE]]

Generate a Freeze map (C++ map) named NAME using KEY as key and 
VALUE as value. This option may be specified multiple times to generate 
several Freeze maps. NAME may be a scoped C++ name, such as 
Demo::Struct1ObjectMap. By default, keys are sorted using their 
binary Ice-encoded representation. Include sort to sort with the COMPARE 
functor class. If COMPARE is not specified, the default value is 
std::less<KEY>.

• --dict-index MAP[,MEMBER][,case-sensitive|case-
insensitive][,sort[,COMPARE]]

Add an index to the Freeze map named MAP. If MEMBER is specified, then the 
map value type must be a structure or a class, and MEMBER must be a member 
of this structure or class. Otherwise, the entire value is indexed. When the 
indexed member (or entire value) is a string, the index can be case-sensitive 
(default) or case-insensitive. An index adds nine member functions to the 
generated C++ map:
iterator findByMEMBER(MEMBER_TYPE, bool = true);

const_iterator findByMEMBER(MEMBER_TYPE, bool = true) const;

iterator lowerBoundForMEMBER(MEMBER_TYPE);

const_iterator lowerBoundForMEMBER(MEMBER_TYPE) const;

iterator upperBoundForMEMBER(MEMBER_TYPE);

const_iterator upperBoundForMEMBER(MEMBER_TYPE) const;

std::pair<iterator, iterator> 
equalRangeForMEMBER(MEMBER_TYPE);

std::pair<const_iterator, const_iterator> 
equalRangeForMEMBER(MEMBER_TYPE) const;

int MEMBERCount(MEMBER_TYPE) const;

When MEMBER is not specified, these functions are findByValue (const 
and non-const), lowerBoundForValue (const and non-const), value-
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Count etc. When MEMBER is specified, its first letter is capitalized in the 
findBy function name. MEMBER_TYPE corresponds to an in-parameter of the 
type of MEMBER (or the type of the value when MEMBER is not specified). For 
example, if MEMBER is a string, MEMBER_TYPE is a const 
std::string&.

By default, keys are sorted using their binary Ice-encoded representation. 
Include sort to sort with the COMPARE functor class. If COMPARE is not 
specified, the default value is std::less<MEMBER_TYPE>.

• --index CLASS,TYPE,MEMBER[,case-sensitive|case-
insensitive]

Generate a Freeze Evictor Index (in C++). CLASS is the name of the class to 
be generated. TYPE denotes the type of class to be indexed (objects of 
different classes are not included in this index). MEMBER is the name of the 
data member in TYPE to index. When MEMBER has type string, it is possible 
to specify whether the index is case-sensitive or not. The default is case-sensi-
tive. See Section 37.5.7 for more information.

Section 6.15.1 provides a discussion of the semantics of #include directives 
that is also relevant for users of slice2freeze.

37.3.8 slice2freezej Command-Line Options
The Slice-to-Freeze-for-Java compiler, slice2freezej, offers the following 
command-line options in addition to the standard options described in 
Section 4.19:

• --dict NAME,KEY,VALUE

Generate a Freeze map (Java map) named NAME using KEY as key and 
VALUE as value. This option may be specified multiple times to generate 
several Freeze dictionaries. NAME may be a scoped Java name, such as 
Demo.Struct1ObjectMap.

• --dict-index MAP[,MEMBER][,case-sensitive|case-
insensitive]

Add an index to the Freeze map named MAP. If MEMBER is specified, then the 
map value type must be a structure or a class, and MEMBER must be a member 
of this structure or class. Otherwise, the entire value is indexed. When the 
indexed member (or entire value) is a string, the index can be case-sensitive 
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(default) or case-insensitive. An index adds two methods to the generated Java 
map:
public Freeze.Map.Iterator findByMEMBER(MEMBER_TYPE) {...}

public int MEMBERCount(MEMBER_TYPE) {...}

When MEMBER is not specified, these functions are findbyValue and 
valueCount. When MEMBER is specified, its first letter is capitalized in the 
findBy function name. MEMBER_TYPE corresponds to an in-parameter of the 
type of MEMBER (or the type of the value when MEMBER is not specified). For 
example, if MEMBER is a string, MEMBER_TYPE is a java.lang.String.

• --index CLASS,TYPE,MEMBER[,case-sensitive|case-insen-
sitive]

Generate a Freeze Evictor Index (in Java). CLASS is the name of the class to 
be generated. TYPE denotes the type of class to be indexed (objects of 
different classes are not included in this index). MEMBER is the name of the 
data member in TYPE to index. When MEMBER has type string, it is possible 
to specify whether the index is case-sensitive or not. The default is case-sensi-
tive. See Section 37.5.7 for more information.

• --meta META

Define the global metadata directive META. Using this option is equivalent to 
defining the global metadata META in each named Slice file, as well as in any 
file included by a named Slice file. See Section 10.15 for more information.

37.3.9 Using a Simple Map in C++
As an example, the following command generates a simple map:

$ slice2freeze --dict StringIntMap,string,int StringIntMap

The slice2freeze compiler creates C++ classes for Freeze maps. The 
command above directs the compiler to create a map named StringIntMap, 
with the Slice key type string and the Slice value type int. The final argument is 
the base name for the output files, to which the compiler appends the .h and 
.cpp suffixes. Therefore, this command produces two C++ source files: 
StringIntMap.h and StringIntMap.cpp.

Here is a simple program that demonstrates how to use a StringIntMap to 
store <string, int> pairs in a database. You will notice that there are no 
explicit read or write operations called by the program; instead, simply using 
the map has the side effect of accessing the database.
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#include <Freeze/Freeze.h> 
#include <StringIntMap.h> 
 
int 
main(int argc, char* argv[]) 
{ 
    // Initialize the Communicator. 
    // 
    Ice::CommunicatorPtr communicator = 
        Ice::initialize(argc, argv); 
 
    // Create a Freeze database connection. 
    // 
    Freeze::ConnectionPtr connection = 
        Freeze::createConnection(communicator, "db"); 
 
    // Instantiate the map. 
    // 
    StringIntMap map(connection, "simple"); 
 
    // Clear the map. 
    // 
    map.clear(); 
 
    Ice::Int i; 
    StringIntMap::iterator p; 
 
    // Populate the map. 
    // 
    for (i = 0; i < 26; i++) { 
        std::string key(1, 'a' + i); 
        map.insert(make_pair(key, i)); 
    } 
 
    // Iterate over the map and change the values. 
    // 
    for (p = map.begin(); p != map.end(); ++p) 
        p.set(p->second + 1); 
 
    // Find and erase the last element. 
    // 
    p = map.find("z"); 
    assert(p != map.end()); 
    map.erase(p); 
 
    // Clean up. 
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    // 
    connection->close(); 
    communicator->destroy(); 
 
    return 0; 
}

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB 
database environment.

Freeze::ConnectionPtr connection = 
    Freeze::createConnection(communicator, "db");

The second argument is the name of a Berkeley DB database environment; by 
default, this is also the file system directory in which Berkeley DB creates all 
database and administrative files.

Next, the code instantiates the StringIntMap on the connection. The 
constructor’s second argument supplies the name of the database file, which by 
default is created if it does not exist. Note that a database can only contain the 
persistent state of one map type. Any attempt to instantiate maps of different types 
on the same database results in undefined behavior.

StringIntMap map(connection, "simple");

Next, we clear the map. This ensures we have an empty map (and therefore an 
empty database) in case the program is run more than once.

map.clear();

We populate the map, using a single-character string as the key. The Freeze map 
supports several insert methods for adding entries, similar to a std::map. Inser-
tion via operator[] is not supported.

for (i = 0; i < 26; i++) { 
    std::string key(1, 'a' + i); 
    map.insert(make_pair(key, i)); 
}

Iterating over the map will look familiar to std::map users. However, to modify a 
value at the iterator’s current position, you must use the nonstandard set method:

for (p = map.begin(); p != map.end(); ++p) 
    p.set(p->second + 1);

Next, the program obtains an iterator positioned at the element with key z, and 
erases it.
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p = map.find("z"); 
assert(p != map.end()); 
map.erase(p);

Finally, the program closes the database connection, destroys its communicator 
and terminates.

connection->close();

It is not necessary to explicitly close the database connection, but we demonstrate 
it here for the sake of completeness.

37.3.10 Using a Simple Map in Java
As an example, the following command generates a simple map:

$ slice2freezej --dict StringIntMap,string,int

The slice2freezej compiler creates Java classes for Freeze maps. The 
command above directs the compiler to create a map named StringIntMap, 
with the Slice key type string and the Slice value type int. This command 
produces one Java source file: StringIntMap.java.

Here is a simple program that demonstrates how to use a StringIntMap to 
store <string, int> pairs in a database. You will notice that there are no 
explicit read or write operations called by the program; instead, simply using 
the map has the side effect of accessing the database.

public class Client 
{ 
    public static void 
    main(String[] args) 
    { 
        // Initialize the Communicator. 
        // 
        Ice.Communicator communicator = Ice.Util.initialize(args); 
 
        // Create a Freeze database connection. 
        // 
        Freeze.Connection connection = 
            Freeze.Util.createConnection(communicator, "db"); 
 
        // Instantiate the map. 
        // 
        StringIntMap map =  
            new StringIntMap(connection, "simple", true); 
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        // Clear the map. 
        // 
        map.clear(); 
 
        int i; 
        java.util.Iterator p; 
 
        // Populate the map. 
        // 
        for (i = 0; i < 26; i++) { 
            final char[] ch = { (char)('a' + i) }; 
            map.put(new String(ch), new Integer(i)); 
        } 
 
        // Iterate over the map and change the values. 
        // 
        p = map.entrySet().iterator(); 
        while (p.hasNext()) { 
            java.util.Map.Entry e = (java.util.Map.Entry)p.next(); 
            Integer in = (Integer)e.getValue(); 
            e.setValue(new Integer(in.intValue() + 1)); 
        } 
 
        // Find and erase the last element. 
        // 
        boolean b; 
        b = map.containsKey("z"); 
        assert(b); 
        b = map.fastRemove("z"); 
        assert(b); 
 
        // Clean up. 
        // 
        map.close(); 
        connection.close(); 
        communicator.destroy(); 
 
        System.exit(0); 
    } 
}

Prior to instantiating a Freeze map, the application must connect to the Berkeley 
DB database environment.

Freeze.Connection connection = 
    Freeze.Util.createConnection(communicator, "db");
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The second argument is the name of a Berkeley DB database environment; by 
default, this is also the file system directory in which Berkeley DB creates all 
database and administrative files.

Next, the code instantiates the StringIntMap on the connection. The 
constructor’s second argument supplies the name of the database file, and the third 
argument is a flag indicating whether the database should be created if it does not 
exist. Note that a database can only contain the persistent state of one map type. 
Any attempt to instantiate maps of different types on the same database results in 
undefined behavior.

StringIntMap map = new StringIntMap(connection, "simple", true);

Next, we clear the map. This ensures we have an empty map (and therefore an 
empty database) in case the program is run more than once.

map.clear();

We populate the map, using a single-character string as the key. As with 
java.util.Map, the key and value types must be Java objects.

for (i = 0; i < 26; i++) { 
    final char[] ch = { (char)('a' + i) }; 
    map.put(new String(ch), new Integer(i)); 
}

Iterating over the map is no different from iterating over any other map that imple-
ments the java.util.Map interface:

p = map.entrySet().iterator(); 
while (p.hasNext()) { 
    java.util.Map.Entry e = 
        (java.util.Map.Entry)p.next(); 
    Integer in = (Integer)e.getValue(); 
    e.setValue(new Integer(in.intValue() + 1)); 
}

Next, the program verifies that an element exists with key z, and then removes it. 
Note that the program uses a non-standard method for removing the element. The 
fastRemove method differs from the standard remove method in that it does 
not return the value associated with the removed element; instead it returns a 
boolean indicating whether the element was found. By eliminating the need to 
return the element value, the method avoids the overhead of reading the value 
from the database and decoding it. The standard remove method could also be 
used here; we chose to use fastRemove instead simply to demonstrate its use:
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b = map.containsKey("z"); 
assert(b); 
b = map.fastRemove("z"); 
assert(b);

Finally, the program closes the map and its connection.

map.close(); 
connection.close();

37.4 Using a Freeze Map in the File System Server

We can use a Freeze map to add persistence to the file system server, and we 
present C++ and Java implementations in this section. However, as you will see in 
Section 37.5, a Freeze evictor is often a better choice for applications (such as the 
file system server) in which the persistent value is an Ice object.

In general, incorporating a Freeze map into your application requires the 
following steps:

1. Evaluate your existing Slice definitions for suitable key and value types.

2. If no suitable key or value types are found, define new (possibly derived) types 
that capture your persistent state requirements. Consider placing these defini-
tions in a separate file: these types are only used by the server for persistence, 
and therefore do not need to appear in the “public” definitions required by 
clients. Also consider placing your persistent types in a separate module to 
avoid name clashes.

3. Generate a Freeze map for your persistent types using the Freeze compiler.

4. Use the Freeze map in your operation implementations.

37.4.1 Choosing Key and Value Types
Our goal is to implement the file system using a Freeze map for all persistent 
storage, including files and their contents. Our first step is to select the Slice types 
we will use for the key and value types of our map. We will keep the same basic 
design as in XREF, therefore we need a suitable representation for persistent files 
and directories, as well as a unique identifier for use as a key.

Conveniently enough, Ice objects already have a unique identifier of type 
Ice::Identity, and this will do fine as the key type for our map. 
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Unfortunately, the selection of a value type is more complicated. Looking over 
the Filesystem module in XREF, we do not find any types that capture all of our 
persistent state, so we need to extend the module with some new types:

module Filesystem { 
    class PersistentNode { 
        string name; 
    }; 
 
    class PersistentFile extends PersistentNode { 
        Lines text; 
    }; 
 
    class PersistentDirectory extends PersistentNode { 
        NodeDict nodes; 
    }; 
};

Our Freeze map will therefore map from Ice::Identity to PersistentNode, 
where the values are actually instances of the derived classes PersistentFile or 
PersistentDirectory. If we had followed the advice at the beginning of 
Section 37.4, we would have defined File and Directory classes in a separate 
PersistentFilesystem module, but in this example we use the existing File-
system module for the sake of simplicity.

37.4.2 Implementing the File System Server in C++
In this section we present a C++ file system implementation that utilizes a Freeze 
map for persistent storage. The implementation is based on the one discussed in 
XREF, and, in this section, we only discuss code that illustrates use of the Freeze 
map.

Generating the Map

Now that we have selected our key and value types, we can generate the map as 
follows:

$ slice2freeze -I$(ICE_HOME)/slice --dict \ 
    IdentityNodeMap,Ice::Identity,Filesystem::PersistentNode\ 
    IdentityNodeMap Filesystem.ice \ 
    $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map class is named IdentityNodeMap.



1192 Freeze

The Server main Program

The server’s main program is responsible for initializing the root directory node. 
Many of the administrative duties, such as creating and destroying a communi-
cator, are handled by the class Ice::Application, as described in 
Section 8.3.1. Our server main program has now become the following:

#include <FilesystemI.h> 
#include <Ice/Application.h> 
#include <Freeze/Freeze.h> 
 
using namespace std; 
using namespace Filesystem; 
 
class FilesystemApp : public virtual Ice::Application { 
public: 
    FilesystemApp(const string& envName) :  
        _envName(envName) { } 
 
    virtual int run(int, char*[]) { 
        // Terminate cleanly on receipt of a signal 
        // 
        shutdownOnInterrupt(); 
 
        // Install object factories 
        // 
        communicator()->addObjectFactory( 
            PersistentFile::ice_factory(),  
            PersistentFile::ice_staticId()); 
         
        communicator()->addObjectFactory( 
            PersistentDirectory::ice_factory(),  
            PersistentDirectory::ice_staticId()); 
 
        // Create an object adapter (stored in the NodeI::_adapter 
        // static member) 
        // 
        NodeI::_adapter = communicator()-> 
            createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
 
        // 
        // Set static members used to create connections and maps 
        // 
        NodeI::_communicator = communicator(); 
        NodeI::_envName = _envName; 
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        NodeI::_dbName = "mapfs"; 
 
        // Find the persistent node for the root directory, or 
        // create it if not found 
        // 
        Freeze::ConnectionPtr connection =  
            Freeze::createConnection(communicator(), _envName); 
        IdentityNodeMap persistentMap(connection, NodeI::_dbName); 
 
        Ice::Identity rootId = communicator()->stringToIdentity("R
ootDir"); 
        PersistentDirectoryPtr pRoot; 
        { 
            IdentityNodeMap::iterator p =  
                persistentMap.find(rootId); 
             
            if (p != persistentMap.end()) { 
                pRoot =  
                    PersistentDirectoryPtr::dynamicCast( 
                        p->second); 
                assert(pRoot); 
            } else { 
                pRoot = new PersistentDirectory; 
                pRoot->name = "/"; 
                persistentMap.insert( 
                    IdentityNodeMap::value_type(rootId, pRoot)); 
            } 
        } 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryIPtr root = new DirectoryI(rootId, pRoot, 0); 
 
        // Ready to accept requests now 
        // 
        NodeI::_adapter->activate(); 
 
        // Wait until we are done 
        // 
        communicator()->waitForShutdown(); 
        if (interrupted()) { 
            cerr << appName() 
                 << ": received signal, shutting down" << endl; 
        } 
 
        return 0; 
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    } 
 
private: 
    string _envName; 
 
}; 
 
int 
main(int argc, char* argv[]) 
{ 
    FilesystemApp app("db"); 
    return app.main(argc, argv); 
}

Let us examine the changes in detail. First, we are now including 
Freeze/Freeze.h instead of Ice/Ice.h. This Freeze header file includes 
all of the other Freeze (and Ice) header files this source file requires.

Next, we define the class FilesystemApp as a subclass of Ice::Appli-
cation, and provide a constructor taking a string argument:

  FilesystemApp(const string& envName) :  
      _envName(envName) { }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. Since these Slice classes have no operations, we can use their built-in 
factories.

 
        communicator()->addObjectFactory( 
            PersistentFile::ice_factory(),  
            PersistentFile::ice_staticId()); 
         
        communicator()->addObjectFactory( 
            PersistentDirectory::ice_factory(),  
            PersistentDirectory::ice_staticId());

Next, we set all the NodeI static members.
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        NodeI::_adapter = communicator()-> 
            createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
 
        NodeI::_communicator = communicator(); 
        NodeI::_envName = _envName; 
        NodeI::_dbName = "mapfs";

Then we create a Freeze connection and a Freeze map. When the last connection 
to a Berkeley DB environment is closed, Freeze automatically closes this environ-
ment, so keeping a connection in the main function ensures the underlying 
Berkeley DB environment remains open. Likewise, we keep a map in the main 
function to keep the underlying Berkeley DB database open.

        Freeze::ConnectionPtr connection =  
            Freeze::createConnection(communicator(), _envName); 
        IdentityNodeMap persistentMap(connection, NodeI::_dbName);

Now we need to initialize the root directory node. We first query the map for the 
identity of the root directory node; if no match is found, we create a new Persis-
tentDirectory instance and insert it into the map. We use a scope to close the 
iterator after use; otherwise, this iterator could keep locks and prevent subsequent 
access to the map through another connection.

        Ice::Identity rootId = communicator()->stringToIdentity("R
ootDir"); 
        PersistentDirectoryPtr pRoot; 
        { 
            IdentityNodeMap::iterator p =  
                persistentMap.find(rootId); 
             
            if (p != persistentMap.end()) { 
                pRoot =  
                    PersistentDirectoryPtr::dynamicCast( 
                        p->second); 
                assert(pRoot); 
            } else { 
                pRoot = new PersistentDirectory; 
                pRoot->name = "/"; 
                persistentMap.insert( 
                    IdentityNodeMap::value_type(rootId, pRoot)); 
            } 
        }

Finally, the main function instantiates the FilesystemApp, passing db as the 
name of the database environment.
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int 
main(int argc, char* argv[]) 
{ 
    FilesystemApp app("db"); 
    return app.main(argc, argv); 
}

The Servant Class Definitions

We also must change the servant classes to incorporate the Freeze map. We are 
maintaining the multiple-inheritance design from XREF, but we have added some 
methods and changed the constructor arguments and state members.

Let us examine the definition of NodeI first. You will notice the addition of 
the getPersistentNode method, which allows NodeI to gain access to the 
persistent node in order to implement the Node operations. Another alternative 
would have been to add a PersistentNodePtr member to NodeI, but that 
would have forced the FileI and DirectoryI classes to downcast this 
member to the appropriate subclass.

namespace Filesystem { 
    class NodeI : virtual public Node { 
    public: 
        // ... Ice operations ... 
        static Ice::ObjectAdapterPtr _adapter; 
        static Ice::CommunicatorPtr _communicator; 
        static std::string _envName; 
        static std::string _dbName; 
    protected: 
        NodeI(const Ice::Identity&, const DirectoryIPtr&); 
        virtual PersistentNodePtr getPersistentNode() const = 0; 
        PersistentNodePtr find(const Ice::Identity&) const; 
        IdentityNodeMap _map; 
        DirectoryIPtr _parent; 
        IceUtil::RecMutex _nodeMutex; 
        bool _destroyed; 
    public: 
        const Ice::Identity _ID; 
    }; 
}

Other changes of interest in NodeI are the addition of the members _map and 
_destroyed, and we have changed the NodeI constructor to accept an 
Ice::Identity argument.
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The FileI class now has a single state member of type PersistentFi-
lePtr, representing the persistent state of this file. Its constructor has also 
changed to accept Ice::Identity and PersistentFilePtr.

namespace Filesystem { 
    class FileI : virtual public File, 
                  virtual public NodeI { 
    public: 
        // ... Ice operations ... 
        FileI(const Ice::Identity&, const PersistentFilePtr&, 
              const DirectoryIPtr&); 
    protected: 
        virtual PersistentNodePtr getPersistentNode() const; 
    private: 
        PersistentFilePtr _file; 
    }; 
}

The DirectoryI class has undergone a similar transformation.

namespace Filesystem { 
    class DirectoryI : virtual public Directory, 
                       virtual public NodeI { 
    public: 
        // ... Ice operations ... 
        DirectoryI(const Ice::Identity&, 
                   const PersistentDirectoryPtr&, 
                   const DirectoryIPtr&); 
        // ... 
    protected: 
        virtual PersistentNodePtr getPersistentNode() const; 
        // ... 
    private: 
        // ... 
        PersistentDirectoryPtr _dir; 
    }; 
}

Implementing FileI

Let us examine how the implementations have changed. The FileI methods are 
still fairly trivial, but there are a few aspects that need discussion.

First, each operation now checks the _destroyed member and raises 
Ice::ObjectNotExistException if the member is true. This is necessary in 
order to ensure that the Freeze map is kept in a consistent state. For example, if we 
allowed the write operation to proceed after the file node had been destroyed, 
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then we would have mistakenly added an entry back into the Freeze map for that 
file. Previous file system implementations ignored this issue because it was rela-
tively harmless, but that is no longer true in this version.

Next, notice that the write operation calls put on the map after changing 
the text member of its PersistentFile object. Although the file’s Persis-
tentFilePtr member points to a value in the Freeze map, changing that value 
has no effect on the persistent state of the map until the value is reinserted into the 
map, thus overwriting the previous value.

Finally, the constructor now accepts an Ice::Identity. This differs from 
previous implementations in that the identity used to be created by the NodeI 
constructor. However, as we will see later, the caller needs to determine the iden-
tity prior to invoking the subclass constructors. Similarly, the constructor is not 
responsible for creating a PersistentFile object, but rather is given one. This 
accommodates our two use cases: creating a new file, and restoring an existing file 
from the map.

Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    IceUtil::RWRecMutex::RLock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    return _file->text; 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    IceUtil::RWRecMutex::WLock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    _file->text = text; 
    _map.put(IdentityNodeMap::value_type(_ID, _file)); 
} 
 
Filesystem::FileI::FileI(const Ice::Identity& id,  
                         const PersistentFilePtr& file,  
                         const DirectoryIPtr& parent) : 
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    NodeI(id, parent), _file(file) 
{ 
} 
 
Filesystem::PersistentNodePtr 
Filesystem::FileI::getPersistentNode() const 
{ 
    return _file; 
}

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

Filesystem::DirectoryI::createDirectory( 
    const std::string& name,  
    const Ice::Current& current) 
{ 
    IceUtil::RWRecMutex::WLock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    checkName(name); 
 
    PersistentDirectoryPtr persistentDir  
        = new PersistentDirectory; 
    persistentDir->name = name; 
    DirectoryIPtr dir = new DirectoryI( 
        communicator()->stringToIdentity(IceUtil::generateUUID()),
  
        persistentDir, this); 
    assert(find(dir->_ID) == 0); 
    _map.put(make_pair(dir->_ID, persistentDir)); 
 
    DirectoryPrx proxy = DirectoryPrx::uncheckedCast( 
        current.adapter->createProxy(dir->_ID)); 
 
    NodeDesc nd; 
    nd.name = name; 
    nd.type = DirType; 
    nd.proxy = proxy; 
    _dir->nodes[name] = nd; 
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    _map.put(IdentityNodeMap::value_type(_ID, _dir)); 
 
    return proxy; 
}

After validating the node name, the operation creates a PersistentDirectory1 
object for the child directory, which is passed to the DirectoryI constructor 
along with a unique identity. Next, we store the child’s PersistentDirectory 
object in the Freeze map. Finally, we initialize a new NodeDesc value and insert it 
into the parent’s node table and then reinsert the parent’s PersistentDirectory 
object into the Freeze map.

The implementation of the createFile operation has the same structure as 
createDirectory.

Filesystem::FilePrx 
Filesystem::DirectoryI::createFile(const std::string& name,  
                                   const Ice::Current& current) 
{ 
    IceUtil::RWRecMutex::WLock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    checkName(name); 
 
    PersistentFilePtr persistentFile = new PersistentFile; 
    persistentFile->name = name; 
    FileIPtr file = new FileI( 
        communicator()->stringToIdentity(IceUtil::generateUUID()),
  
        persistentFile, this); 
    assert(find(file->_ID) == 0); 
    _map.put(make_pair(file->_ID, persistentFile)); 
 
    FilePrx proxy = FilePrx::uncheckedCast( 
        current.adapter->createProxy(file->_ID)); 
 
    NodeDesc nd; 
    nd.name = name; 
    nd.type = FileType; 

1. Since this Slice class has no operations, the compiler generates a concrete class that an applica-
tion can instantiate.
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    nd.proxy = proxy; 
    _dir->nodes[name] = nd; 
    _map.put(IdentityNodeMap::value_type(_ID, _dir)); 
 
    return proxy; 
}

The next significant change is in the DirectoryI constructor. The body of the 
constructor now instantiates all of its immediate children, which effectively causes 
all nodes to be instantiated recursively.

For each entry in the directory’s node table, the constructor locates the 
matching entry in the Freeze map. The key type of the Freeze map is Ice::Iden-
tity, so the constructor obtains the key by invoking ice_getIdentity on the 
child’s proxy.

Filesystem::DirectoryI::DirectoryI( 
    const Ice::Identity& id,  
    const PersistentDirectoryPtr& dir,                      
    const DirectoryIPtr& parent) : 
    NodeI(id, parent), _dir(dir) 
{ 
    // Instantiate the child nodes 
    // 
    for (NodeDict::iterator p = dir->nodes.begin();  
         p != dir->nodes.end(); ++p) { 
        Ice::Identity id = p->second.proxy->ice_getIdentity(); 
        PersistentNodePtr node = find(id); 
        assert(node != 0); 
        if (p->second.type == DirType) { 
            PersistentDirectoryPtr pDir =  
                PersistentDirectoryPtr::dynamicCast(node); 
            assert(pDir); 
            DirectoryIPtr d = new DirectoryI(id, pDir, this); 
        } else { 
            PersistentFilePtr pFile =  
                PersistentFilePtr::dynamicCast(node); 
            assert(pFile); 
            FileIPtr f = new FileI(id, pFile, this); 
        } 
    } 
}

If it seems inefficient for the DirectoryI constructor to immediately instantiate 
all of its children, you are right. This clearly will not scale well to large node trees, 
so why are we doing it?
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Previous implementations of the file system service returned transient proxies 
from createDirectory and createFile. In other words, if the server was 
stopped and restarted, any existing child proxies returned by the old instance of 
the server would no longer work. However, now that we have a persistent store, 
we should endeavor to ensure that proxies will remain valid across server restarts. 
There are a couple of implementation techniques that satisfy this requirement:

1. Instantiate all of the servants in advance, as shown in the DirectoryI 
constructor.

2. Use a servant locator.

We chose not to include a servant locator in this example because it complicates 
the implementation and, as we will see in Section 37.5, a Freeze evictor is ideally 
suited for this application and a better choice than writing a servant locator.

The last DirectoryI method we discuss is removeChild, which 
removes the entry from the node table, and then reinserts the PersistentDirec-
tory object into the map to make the change persistent.

void 
Filesystem::DirectoryI::removeChild(const string& name) 
{ 
    IceUtil::RecMutex::Lock lock(_nodeMutex); 
 
    _dir->nodes.erase(name); 
    _map.put(IdentityNodeMap::value_type(_ID, _dir)); 
}

Implementing NodeI

There are a few changes to the NodeI implementation that should be mentioned. 
First, you will notice the use of getPersistentNode in order to obtain the 
node’s name. We could have simply invoked the name operation, but that would 
incur the overhead of another mutex lock.

Then, the destroy operation removes the node from the Freeze map and sets 
the _destroyed member to true.

The NodeI constructor no longer computes a value for the identity. This is 
necessary in order to make our servants truly persistent. Specifically, the identity 
for a node is computed once when that node is created, and must remain the same 
for the lifetime of the node. The NodeI constructor therefore must not compute a 
new identity, but rather simply remember the identity that is given to it. The 
NodeI constructor also constructs the map object (_map data member). 
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Remember this object is single-threaded: we use it only in constructors or when 
we have a write lock on the recursive read-write _nodeMutex. 

Finally, the find function illustrates what needs to be done when iterating 
over a database that multiple threads can use concurrently. find catches 
Freeze::DeadlockException and retries.

std::string 
Filesystem::NodeI::name(const Ice::Current&) const 
{ 
    IceUtil::RecMutex::Lock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    return getPersistentNode()->name; 
} 
 
void 
Filesystem::NodeI::destroy(const Ice::Current& current) 
{ 
    IceUtil::RWRecMutex::WLock lock(_nodeMutex); 
 
    if (_destroyed) 
        throw Ice::ObjectNotExistException(__FILE__, __LINE__); 
 
    if (!_parent) { 
        Filesystem::PermissionDenied e; 
        e.reason = "cannot remove root directory"; 
        throw e; 
    } 
 
    _parent->removeChild(getPersistentNode()->name); 
    _map.erase(current.id); 
    current.adapter->remove(current.id); 
    _destroyed = true; 
} 
 
 
Filesystem::NodeI::NodeI(const Ice::Identity& id,  
                         const DirectoryIPtr& parent) 
    : _map(Freeze::createConnection(_communicator, _envName),  
           _dbName), 
      _parent(parent), _destroyed(false), _ID(id) 
{ 
    // Add the identity of self to the object adapter 
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    // 
    _adapter->add(this, _ID); 
} 
 
Filesystem::PersistentNodePtr  
Filesystem::NodeI::find(const Ice::Identity& id) const  
{ 
    for(;;) { 
        try { 
            IdentityNodeMap::const_iterator p = _map.find(id); 
            if(p == _map.end()) 
                return 0; 
            else 
                return p->second; 
        } 
        catch(const Freeze::DeadlockException&) { 
            // Try again 
            //  
        } 
    } 
}

37.4.3 Implementing the File System Server in Java
In this section we present a Java file system implementation that utilizes a Freeze 
map for persistent storage. The implementation is based on the one discussed in 
XREF; in this section we only discuss code that illustrates use of the Freeze map.

Generating the Map

Now that we have selected our key and value types, we can generate the map as 
follows:

$ slice2freezej -I$(ICE_HOME)/slice --dict \ 
    Filesystem.IdentityNodeMap,Ice::Identity,\ 
    Filesystem::PersistentNode\ 
    Filesystem.ice $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map class is named IdentityNodeMap and is defined in the 
package Filesystem2.

The Server main Program

The server’s main program is responsible for initializing the root directory node. 
Many of the administrative duties, such as creating and destroying a communi-
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cator, are handled by the class Ice.Application as described in 
Section 12.3.1. Our server main program has now become the following:

import Filesystem.*; 
 
public class Server extends Ice.Application { 
    public 
    Server(String envName) 
    { 
        _envName = envName; 
    } 
 
    public int 
    run(String[] args) 
    { 
        // Install object factories 
        // 
        communicator().addObjectFactory( 
            PersistentFile.ice_factory(), 
            PersistentFile.ice_staticId()); 
        communicator().addObjectFactory( 
            PersistentDirectory.ice_factory(), 
            PersistentDirectory.ice_staticId()); 
 
        // Create an object adapter (stored in the _adapter 
        // static member) 
        // 
        Ice.ObjectAdapter adapter = 
            communicator().createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
        DirectoryI._adapter = adapter; 
        FileI._adapter = adapter; 
 
        // 
        // Set static members used to create connections and maps 
        // 
        String dbName = "mapfs"; 
        DirectoryI._communicator = communicator(); 
        DirectoryI._envName = _envName; 
        DirectoryI._dbName = dbName; 

2. We cannot generate IdentityNodeMap in the unnamed (top-level) package because Java’s 
name resolution rules would prevent the implementation classes in the Filesystem package 
from using it. See the Java Language Specification for more information.
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        FileI._communicator = communicator(); 
        FileI._envName = _envName; 
        FileI._dbName = dbName; 
         
        // Find the persistent node for the root directory. If 
        // it doesn't exist, then create it. 
        Freeze.Connection connection = 
            Freeze.Util.createConnection( 
                communicator(), _envName); 
        IdentityNodeMap persistentMap =  
            new IdentityNodeMap(connection, dbName, true);  
 
        Ice.Identity rootId = 
            Ice.Util.stringToIdentity("RootDir"); 
        PersistentDirectory pRoot = 
            (PersistentDirectory)persistentMap.get(rootId); 
        if(pRoot == null) 
        { 
            pRoot = new PersistentDirectory(); 
            pRoot.name = "/"; 
            pRoot.nodes = new java.util.HashMap(); 
            persistentMap.put(rootId, pRoot); 
        } 
 
        // Create the root directory (with name "/" and no parent) 
        // 
        DirectoryI root = new DirectoryI(rootId, pRoot, null); 
 
        // Ready to accept requests now 
        // 
        adapter.activate(); 
 
        // Wait until we are done 
        // 
        communicator().waitForShutdown(); 
 
        // Clean up 
        // 
        connection.close(); 
 
        return 0; 
    } 
 
    public static void 
    main(String[] args) 
    { 
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        Server app = new Server("db"); 
        app.main("Server", args); 
        System.exit(0); 
    } 
 
    private String _envName; 
}

Let us examine the changes in detail. First, we define the class Server as a 
subclass of Ice.Application, and provide a constructor taking a string argu-
ment:

    public 
    Server(String envName) 
    { 
        _envName = envName; 
    }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. Since these Slice classes have no operations, we can use their built-in 
factories.

        communicator().addObjectFactory( 
            PersistentFile.ice_factory(), 
            PersistentFile.ice_staticId()); 
        communicator().addObjectFactory( 
            PersistentDirectory.ice_factory(), 
            PersistentDirectory.ice_staticId());

Next, we set all the DirectoryI and FileI static members.

       Ice.ObjectAdapter adapter = 
            communicator().createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
        DirectoryI._adapter = adapter; 
        FileI._adapter = adapter; 
 
        String dbName = "mapfs"; 
        DirectoryI._communicator = communicator(); 
        DirectoryI._envName = _envName; 
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        DirectoryI._dbName = dbName; 
        FileI._communicator = communicator(); 
        FileI._envName = _envName; 
        FileI._dbName = dbName;

Then we create a Freeze connection and a Freeze map. When the last connection 
to a Berkeley DB environment is closed, Freeze automatically closes this environ-
ment, so keeping a connection in the main function ensures the underlying 
Berkeley DB environment remains open. Likewise, we keep a map in the main 
function to keep the underlying Berkeley DB database open.

        Freeze.Connection connection = 
            Freeze.Util.createConnection( 
                communicator(), _envName); 
        IdentityNodeMap persistentMap =  
            new IdentityNodeMap(connection, dbName, true); 

Now we need to initialize the root directory node. We first query the map for the 
identity of the root directory node; if no match is found, we create a new Persis-
tentDirectory instance and insert it into the map.

        Ice.Identity rootId = 
            Ice.Util.stringToIdentity("RootDir"); 
        PersistentDirectory pRoot = 
            (PersistentDirectory)persistentMap.get(rootId); 
        if(pRoot == null) 
        { 
            pRoot = new PersistentDirectory(); 
            pRoot.name = "/"; 
            pRoot.nodes = new java.util.HashMap(); 
            persistentMap.put(rootId, pRoot); 
        }

Finally, the main function instantiates the Server class, passing db as the name 
of the database environment.

    public static void 
    main(String[] args) 
    { 
        Server app = new Server("db"); 
        app.main("Server", args); 
        System.exit(0); 
    }
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The Servant Class Definitions

We also must change the servant classes to incorporate the Freeze map. We are 
maintaining the design from XREF, but we have added some methods and 
changed the constructor arguments and state members.

The FileI class has three new static members, _communicator, 
_envName and _dbName, that are used to instantiate the new _connection 
(a Freeze connection) and _map (an IdentityNodeMap) members in each 
FileI object. We keep the connection so that we can close it explicitly when we 
no longer need it.

The class also has a new instance member of type PersistentFile, repre-
senting the persistent state of this file, and a boolean member to indicate 
whether the node has been destroyed. Finally, we have changed its constructor to 
accept Ice.Identity and PersistentFile.

package Filesystem; 
 
public class FileI extends _FileDisp 
{ 
    public 
    FileI(Ice.Identity id, PersistentFile file, DirectoryI parent) 
    { 
        // ... 
    } 
 
    // ... Ice operations ... 
 
    public static Ice.ObjectAdapter _adapter; 
    public static Ice.Communicator _communicator; 
    public static String _envName; 
    public static String _dbName; 
    public Ice.Identity _ID; 
    private Freeze.Connection _connection; 
    private IdentityNodeMap _map; 
    private PersistentFile _file; 
    private DirectoryI _parent; 
    private boolean _destroyed; 
}

The DirectoryI class has undergone a similar transformation.

package Filesystem; 
 
public final class DirectoryI extends _DirectoryDisp 
{ 
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    public 
    DirectoryI(Ice.Identity id, PersistentDirectory dir, 
               DirectoryI parent) 
    { 
        // ... 
    } 
 
    // ... Ice operations ... 
 
    public static Ice.ObjectAdapter _adapter; 
    public static Ice.Communicator _communicator; 
    public static String _envName; 
    public static String _dbName; 
    public Ice.Identity _ID; 
    private Freeze.Connection _connection; 
    private IdentityNodeMap _map; 
    private PersistentDirectory _dir; 
    private DirectoryI _parent; 
    private boolean _destroyed; 
}

Implementing FileI

Let us examine how the implementations have changed. The FileI methods are 
still fairly trivial, but there are a few aspects that need discussion.

First, each operation now checks the _destroyed member and raises 
Ice::ObjectNotExistException if the member is true. This is necessary in 
order to ensure that the Freeze map is kept in a consistent state. For example, if we 
allowed the write operation to proceed after the file node had been destroyed, 
then we would have mistakenly added an entry back into the Freeze map for that 
file. Previous file system implementations ignored this issue because it was rela-
tively harmless, but that is no longer true in this version.

Next, notice that the write operation calls put on the map after changing 
the text member of its PersistentFile object. Although this object is a value 
in the Freeze map, changing the text member has no effect on the persistent 
state of the map until the value is reinserted into the map, thus overwriting the 
previous value.

Finally, the constructor now accepts an Ice::Identity. This differs from 
previous implementations in that the identity used to be computed by the 
constructor. In order to make our servants truly persistent, the identity for a node 
is computed once when that node is created, and must remain the same for the 
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lifetime of the node. The FileI constructor therefore must not compute a new 
identity, but rather simply remember the identity that is given to it.

Similarly, the constructor is not responsible for creating a PersistentFile 
object, but rather is given one. This accommodates our two use cases: creating a 
new file, and restoring an existing file from the map.

    public 
    FileI(Ice.Identity id, PersistentFile file, 
          DirectoryI parent) 
    { 
        _connection =  
            Freeze.Util.createConnection(_communicator, _envName); 
        _map =  
            new IdentityNodeMap(_connection, _dbName, false); 
        _ID = id; 
        _file = file; 
        _parent = parent; 
        _destroyed = false; 
 
        assert(_parent != null); 
 
        // Add the identity of self to the object adapter 
        // 
        _adapter.add(this, _ID); 
    } 
 
    public synchronized String 
    name(Ice.Current current) 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        return _file.name; 
    } 
 
    public synchronized void 
    destroy(Ice.Current current) 
        throws PermissionDenied 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        _parent.removeChild(_file.name); 
        _map.remove(current.id); 
        current.adapter.remove(current.id); 
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        _map.close(); 
        _connection.close(); 
        _destroyed = true; 
    } 
 
    public synchronized String[] 
    read(Ice.Current current) 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        return _file.text; 
    } 
 
    public synchronized void 
    write(String[] text, Ice.Current current) 
        throws GenericError 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        _file.text = text; 
        _map.put(_ID, _file); 
    }

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

    public synchronized DirectoryPrx 
    createDirectory(String name, Ice.Current current) 
        throws NameInUse, IllegalName 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        checkName(name); 
 
        PersistentDirectory persistentDir 
                                = new PersistentDirectory(); 
        persistentDir.name = name; 
        persistentDir.nodes = new java.util.HashMap(); 
        DirectoryI dir = new DirectoryI( 
            Ice.Util.stringToIdentity(Ice.Util.generateUUID()), 
            persistentDir, this); 
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        assert(_map.get(dir._ID) == null); 
        _map.put(dir._ID, persistentDir); 
 
        DirectoryPrx proxy = DirectoryPrxHelper.uncheckedCast( 
            current.adapter.createProxy(dir._ID)); 
 
        NodeDesc nd = new NodeDesc(); 
        nd.name = name; 
        nd.type = NodeType.DirType; 
        nd.proxy = proxy; 
        _dir.nodes.put(name, nd); 
        _map.put(_ID, _dir); 
 
        return proxy; 
    }

After validating the node name, the operation creates a PersistentDirectory3 
object for the child directory, which is passed to the DirectoryI constructor 
along with a unique identity. Next, we store the child’s PersistentDirectory 
object in the Freeze map. Finally, we initialize a new NodeDesc value and insert it 
into the parent’s node table and then reinsert the parent’s PersistentDirectory 
object into the Freeze map.

The implementation of the createFile operation has the same structure as 
createDirectory.

    public synchronized FilePrx 
    createFile(String name, Ice.Current current) 
        throws NameInUse, IllegalName 
    { 
        if (_destroyed) 
            throw new Ice.ObjectNotExistException(); 
 
        checkName(name); 
 
        PersistentFile persistentFile = new PersistentFile(); 
        persistentFile.name = name; 
        FileI file = new FileI(Ice.Util.stringToIdentity( 
            Ice.Util.generateUUID()), persistentFile, this); 
        assert(_map.get(file._ID) == null); 
        _map.put(file._ID, persistentFile); 

3. Since this Slice class has no operations, the compiler generates a concrete class that an applica-
tion can instantiate.
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        FilePrx proxy = FilePrxHelper.uncheckedCast( 
            current.adapter.createProxy(file._ID)); 
 
        NodeDesc nd = new NodeDesc(); 
        nd.name = name; 
        nd.type = NodeType.FileType; 
        nd.proxy = proxy; 
        _dir.nodes.put(name, nd); 
        _map.put(_ID, _dir); 
 
        return proxy; 
    }

The next significant change is in the DirectoryI constructor. The body of the 
constructor now instantiates all of its immediate children, which effectively causes 
all nodes to be instantiated recursively.

For each entry in the directory’s node table, the constructor locates the 
matching entry in the Freeze map. The key type of the Freeze map is Ice::Iden-
tity, so the constructor obtains the key by invoking ice_getIdentity on the 
child’s proxy.

    public 
    DirectoryI(Ice.Identity id, PersistentDirectory dir, 
               DirectoryI parent) 
    { 
        _connection =  
            Freeze.Util.createConnection(_communicator, _envName); 
        _map =  
            new IdentityNodeMap(_connection, _dbName, false); 
        _ID = id; 
        _dir = dir; 
        _parent = parent; 
        _destroyed = false; 
 
        // Add the identity of self to the object adapter 
        // 
        _adapter.add(this, _ID); 
 
        // Instantiate the child nodes 
        // 
        java.util.Iterator p = dir.nodes.values().iterator(); 
        while (p.hasNext()) { 
            NodeDesc desc = (NodeDesc)p.next(); 
            Ice.Identity ident = desc.proxy.ice_getIdentity(); 
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            PersistentNode node = (PersistentNode)_map.get(ident); 
            assert(node != null); 
            if (desc.type == NodeType.DirType) { 
                PersistentDirectory pDir 
                                     = (PersistentDirectory)node; 
                DirectoryI d = new DirectoryI(ident, pDir, this); 
            } else { 
                PersistentFile pFile = (PersistentFile)node; 
                FileI f = new FileI(ident, pFile, this); 
            } 
        } 
    }

If it seems inefficient for the DirectoryI constructor to immediately instantiate 
all of its children, you are right. This clearly will not scale well to large node trees, 
so why are we doing it?

Previous implementations of the file system service returned transient proxies 
from createDirectory and createFile. In other words, if the server was 
stopped and restarted, any existing child proxies returned by the old instance of 
the server would no longer work. However, now that we have a persistent store, 
we should endeavor to ensure that proxies will remain valid across server restarts. 
There are a couple of implementation techniques that satisfy this requirement:

1. Instantiate all of the servants in advance, as shown in the DirectoryI 
constructor.

2. Use a servant locator.

We chose not to include a servant locator in this example because it complicates 
the implementation and, as we will see in Section 37.5, a Freeze evictor is ideally 
suited for this application and a better choice than writing a servant locator.

The last DirectoryI method we discuss is removeChild, which 
removes the entry from the node table, and then reinserts the PersistentDirec-
tory object into the map to make the change persistent.

    synchronized void 
    removeChild(String name) 
    { 
        _dir.nodes.remove(name); 
        _map.put(_ID, _dir); 
    }
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37.5 The Freeze Evictor

The Freeze evictor combines persistence and scalability features into a single 
facility that is easily incorporated into Ice applications.

As an implementation of the ServantLocator interface (see Section 30.7), the 
Freeze evictor takes advantage of the fundamental separation between Ice object 
and servant to activate servants on-demand from persistent storage, and to deacti-
vate them again using customized eviction constraints. Although an application 
may have thousands of Ice objects in its database, it is not practical to have 
servants for all of those Ice objects resident in memory simultaneously. The appli-
cation can conserve resources and gain greater scalability by setting an upper limit 
on the number of active servants, and letting the Freeze evictor handle the details 
of servant activation, persistence, and deactivation.

The Freeze evictor maintains a queue of active servants, ordered using a “least 
recently used” eviction algorithm: if the queue is full, the least recently used 
servant is evicted to make room for a new servant.

Here is the sequence of events for activating a servant as shown in Figure 37.3. 
Let us assume that we have configured the evictor with a size of five, that the 
queue is full, and that a request has arrived for a servant that is not currently 
active.

1. A client invokes an operation.

2. The object adapter invokes on the evictor to locate the servant.

3. The evictor first checks its active servant queue and fails to find the servant, so 
it instantiates the servant and restores its persistent state from the database.

4. The evictor adds an item for the servant (servant 1) at the head of the queue.

5. The queue’s length now exceeds the configured maximum, so the evictor 
removes servant 6 from the queue as soon as it is eligible for eviction. This 
occurs when there are no outstanding requests pending on servant 6, and its 
state has been safely stored in the database.
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6. The object adapter dispatches the request to the new servant.

Figure 37.3. An evictor queue after restoring servant 1 and evicting servant 6.

37.5.1 Object Factories
The Freeze evictor is a generic facility in that it manages instances of Object 
subclasses. Applications are therefore free to use as many object types as neces-
sary, with one requirement: an Ice object factory must be registered for each type.

37.5.2 Servant Association
With the Freeze evictor, each (object identity, facet) pair is associated with its own 
dedicated persistent object (servant). Such a persistent object cannot serve several 
identities or facets. Each servant is loaded and saved independently of other 
servants; in particular, there is no special grouping for the servants that serve the 
facets of a given Ice object.

Like the ObjectAdapter, the Freeze evictor provides operations named add, 
addFacet, remove and removeFacet. They have the same signature and semantics, 
except that with the Freeze evictor the mapping and the state of the mapped 
servants stored on in a database.

1

Client
Object 

Adapter

Evictor

Request

2 6

Database

1 2 3 4 5 6

Evictor Queue

Head Tail

1 2 3 4 5 6

Servants

3

4

5



1218 Freeze

37.5.3 Detecting Updates
The Freeze Evictor considers that a servant has been modified when a mutating 
operation on this servant completes. (See Section 4.10 for more information on 
mutating operations.) Updates made internally, through calls that are not 
dispatched through the Freeze Evictor, are not detected and can be lost. 

37.5.4 Saving Thread
All persistence activity of a Freeze evictor is handled in a background thread 
created by the evictor. This thread wakes up periodically and saves the state of all 
newly-registered, modified, and destroyed servant in the evictor’s queue. 

For applications that experience bursts of activity, resulting in a large number 
of modified servants in a short period of time, the evictor’s thread can also be 
configured to begin saving as soon as the number of modified servants reaches a 
certain threshold.

37.5.5 Synchronization
When the saving thread takes a snapshot of a servant it is about to save, it is neces-
sary to prevent the application from modifying the servant’s persistent data 
members at the same time. 

The Freeze evictor and the application need to use a common synchronization 
to ensure correct behavior. In Java, this common synchronization is the servant 
itself: the Freeze evictor synchronizes the servant (a Java object) while taking the 
snapshot. In C++, the servant is required to inherit from the class 
IceUtil::AbstractMutex: the Freeze evictor locks the servant through 
this interface while taking a snapshot. On the application side, the servant’s imple-
mentation is required to synchronize all operations that access the servant’s data 
members defined in Slice using the same mechanism.

37.5.6 Keeping Servants in Memory
Sometimes automatically evicting and reloading all servants can be inefficient. 
You can remove a servant from the evictor’s queue by locking this servant “in 
memory” using the keep or keepFacet operation on the evictor. keep and keep-
Facet are recursive: you need to call release or releaseFacet for this object the 
same number of times to put it back in the evictor queue and make it eligible again 
for eviction. 
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Servants kept in memory (using keep or keepFacet) do no consume a slot in 
the evictor queue. As a result, the maximum number of servants in memory is 
approximately the number of kept servants plus the evictor size. It can be larger 
when if you have many evictable objects that are modified but not yet saved.

37.5.7 Indexing a Database
The Freeze evictor supports the use of indices to quickly find persistent objects 
using the value of a data member as the search criteria. The types allowed for 
these indices are the same as those allowed for Slice dictionary keys (see 
Section 4.9.4).

The slice2freeze and slicefreezej tools can generate an Index 
class when passed the --index option:

• --index CLASS,TYPE,MEMBER[,case-sensitive|case-
insensitive]

CLASS is the name of the class to be generated. TYPE denotes the type of 
class to be indexed (objects of different classes are not included in this index). 
MEMBER is the name of the data member in TYPE to index. When MEMBER 
has type string, it is possible to specify whether the index is case-sensitive or 
not. The default is case-sensitive.

The generated Index class supplies three methods whose definitions are mapped 
from the following Slice operations:

• sequence<Ice::Identity> 
findFirst(member-type index, int firstN)

Returns up to firstN objects of TYPE whose MEMBER is equal to index. 
This is useful to avoid running out of memory if the potential number of 
objects matching the criteria can be very large.

• sequence<Ice::Identity> find(member-type index)

Returns all the objects of TYPE whose MEMBER is equal to index.

• int count(<type> index)

Returns the number of objects of TYPE having MEMBER equal to index.

Indices are associated with a Freeze evictor during evictor creation. See the defini-
tion of the createEvictor methods for details.

Indexed searches are easy to use and very efficient. However, be aware that an 
index adds significant write overhead: with Berkeley DB, every update triggers a 
read from the database to get the old index entry and, if necessary, replace it. 
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If you add an index to an existing database, by default existing facets are not 
indexed. If you need to populate a new or empty index using the facets stored in 
your Freeze evictor, set the property 
Freeze.Evictor.env-name.filename.PopulateEmptyIndices 
to a value other than 0, which instructs Freeze to iterate over the corresponding 
facets and create the missing index entries during the call to createEvictor. 
When you use this feature, you must register the object factories for all of the facet 
types before you invoke createEvictor.

37.5.8 Using a Servant Initializer
In some applications it may be necessary to initialize a servant after it is instanti-
ated by the evictor but before an operation is dispatched to it. The Freeze evictor 
allows an application to specify a servant initializer for this purpose.

To clarify the sequence of events, let us assume that a request has arrived for 
an Ice facet that is not currently active:

1. The evictor restores a servant for the Ice facet from the database. This involves 
two steps:

1.The Ice run time locates and invokes the factory for the Ice facet’s type, 
thereby obtaining a new instance with uninitialized data members.

2.The data members are populated from the persistent state.

2. The evictor invokes the application’s servant initializer (if any) for the servant.

3. The evictor adds the servant to its cache.

4. The evictor dispatches the operation.

The servant initializer is called before the object is inserted into the Freeze evictor 
internal cache, and without holding any internal lock, but in such a way that when 
the servant initializer is called, the servant is guaranteed to be inserted in the 
Freeze evictor cache.

There is only one restriction on a what a servant initializer can do: it must not 
make a remote invocation on the facet being initialized. Failing to follow this rule 
will result in deadlocks. 

The file system implementation presented in Section 37.6 on page 1222 
demonstrates the use of a servant initializer.
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37.5.9 Application Design Considerations
The Freeze evictor creates a snapshot of an Ice facet’s state for persistent storage 
by marshaling the facet, just as if the facet were being sent “over the wire” as a 
parameter to a remote invocation. Therefore, the Slice definitions for an object 
type must include the data members comprising the object’s persistent state.

For example, we could define a Slice class as follows:

class Stateless { 
    void calc(); 
};

However, without data members, there will not be any persistent state in the data-
base for objects of this type, and hence there is little value in using the Freeze 
evictor for this type.

Obviously, Slice object types need to define data members, but there are other 
design considerations as well. For example, suppose we define a simple applica-
tion as follows:

class Account { 
    void withdraw(int amount); 
    void deposit(int amount); 
 
    int balance; 
}; 
 
interface Bank { 
    Account* createAccount(); 
};

In this application, we would use the Freeze evictor to manage Account objects 
that have a data member balance representing the persistent state of an account.

From an object-oriented design perspective, there is a glaring problem with 
these Slice definitions: implementation details (the persistent state) are exposed in 
the client-server contract. The client cannot directly manipulate the balance 
member because the Bank interface returns Account proxies, not Account 
instances. However, the presence of the data member may cause unnecessary 
confusion for client developers.

A better alternative is to clearly separate the persistent state as shown below:

interface Account { 
    void withdraw(int amount); 
    void deposit(int amount); 
}; 
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interface Bank { 
    Account* createAccount(); 
}; 
 
class PersistentAccount implements Account { 
    int balance; 
};

Now the Freeze evictor can manage PersistentAccount objects, while clients 
interact with Account proxies. (Ideally, PersistentAccount would be defined in 
a different source file and inside a separate module.)

37.6 Using the Freeze Evictor in a File System Server

In this section, we present file system implementations that utilize a Freeze 
evictor. The implementations are based on the ones discussed in XREF, and in this 
section we only discuss code that illustrates use of the Freeze evictor.

In general, incorporating a Freeze evictor into your application requires the 
following steps:

1. Evaluate your existing Slice definitions for a suitable persistent object type.

2. If no suitable type is found, you typically define a new derived class which 
captures your persistent state requirements. Consider placing these definitions 
in a separate file: they are only used by the server for persistence, and there-
fore do not need to appear in the “public” definitions required by clients. Also 
consider placing your persistent types in a separate module to avoid name 
clashes.

3. Generate code (using slice2freeze or slice2freezej) for your new 
definitions.

4. Create an evictor and register it as a servant locator with an object adapter.

5. Create instances of your persistent type and register them with the evictor.

37.6.1 Slice Definitions
Fortunately, it is unnecessary for us to change any of the existing file system Slice 
definitions to incorporate the Freeze evictor. However, we do need to add some 
definitions to express our persistent state requirements:
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module Filesystem { 
    class PersistentDirectory; 
 
    class PersistentNode implements Node { 
        string nodeName; 
        PersistentDirectory* parent; 
    }; 
 
    class PersistentFile extends PersistentNode implements File { 
        Lines text; 
    }; 
 
    class PersistentDirectory extends PersistentNode 
        implements Directory { 
        void removeNode(string name); 
 
        NodeDict nodes; 
    }; 
};

As you can see, we have subclassed all of the node interfaces. Let us examine each 
one in turn.

The PersistentNode class adds two data members: nodeName4 and parent. 
The file system implementation requires that a child node know its parent node in 
order to properly implement the destroy operation. Previous implementations 
had a state member of type DirectoryI, but that is not workable here. It is no 
longer possible to pass the parent node to the child node’s constructor because the 
evictor may be instantiating the child node (via a factory), and the parent node will 
not be known. Even if it were known, another factor to consider is that there is no 
guarantee that the parent node will be active when the child invokes on it, because 
the evictor may have evicted it. We solve these issues by storing a proxy to the 
parent node. If the child node invokes on the parent node via the proxy, the evictor 
automatically activates the parent node if necessary.

The PersistentFile class is very straightforward, simply adding a text 
member representing the contents of the file. Notice that the class extends 
PersistentNode, and therefore inherits the state members declared by the base 
class.

4. We used nodeName instead of name because name is already used as an operation in the Node 
interface.
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Finally, the PersistentDirectory class defines the removeNode operation, 
and adds the nodes state member representing the immediate children of the 
directory node. Since a child node contains only a proxy for its PersistentDi-
rectory parent, and not a reference to an implementation class, there must be a 
Slice-defined operation that can be invoked when the child is destroyed.

If we had followed the advice at the beginning of Section 37.5, we would have 
defined Node, File, and Directory classes in a separate PersistentFilesystem 
module, but in this example we use the existing Filesystem module for the sake 
of simplicity.

37.6.2 Implementing the File System Server in C++

The Server main Program

The server’s main program is responsible for creating the evictor and initializing 
the root directory node. Many of the administrative duties, such as creating and 
destroying a communicator, are handled by the class Ice::Application as 
described in Section 8.3.1. Our server main program has now become the 
following:

#include <FilesystemI.h> 
#include <Freeze/Freeze.h> 
 
using namespace std; 
using namespace Filesystem; 
 
class FilesystemApp : virtual public Ice::Application { 
public: 
    FilesystemApp(const string& envName) : 
        _envName(envName) { } 
 
    virtual int run(int, char*[]) { 
        // Install object factories 
        // 
        Ice::ObjectFactoryPtr factory = new NodeFactory; 
        communicator()->addObjectFactory( 
            factory, 
            PersistentFile::ice_staticId()); 
        communicator()->addObjectFactory( 
            factory, 
            PersistentDirectory::ice_staticId()); 
 
        // Create an object adapter (stored in the NodeI::_adapter 
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        // static member) 
        // 
        NodeI::_adapter = 
            communicator()->createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
 
        // Create the Freeze evictor (stored in the 
        // NodeI::_evictor static member) 
        // 
        Freeze::ServantInitializerPtr init = new NodeInitializer; 
        NodeI::_evictor = 
            Freeze::createEvictor(NodeI::_adapter, _envName, 
                                  "evictorfs", init); 
         
        NodeI::_adapter->addServantLocator(NodeI::_evictor, ""); 
 
        // Create the root node if it doesn't exist 
        // 
        Ice::Identity rootId = communicator()->stringToIdentity("R
ootDir"); 
        if (!NodeI::_evictor->hasObject(rootId)) { 
            PersistentDirectoryPtr root = new DirectoryI(rootId); 
            root->nodeName = "/"; 
            NodeI::_evictor->add(root, rootId); 
        } 
 
        // Ready to accept requests now 
        // 
        NodeI::_adapter->activate(); 
 
        // Wait until we are done 
        // 
        communicator()->waitForShutdown(); 
        if (interrupted()) { 
            cerr << appName() 
                 << ": received signal, shutting down" << endl; 
        } 
 
        return 0; 
    } 
 
private: 
    string _envName; 
}; 
 
int 
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main(int argc, char* argv[]) 
{ 
    FilesystemApp app("db"); 
    return app.main(argc, argv); 
}

Let us examine the changes in detail. First, we are now including 
Freeze/Freeze.h instead of Ice/Ice.h. This Freeze header file includes 
all of the other Freeze (and Ice) header files this source file requires.

Next, we define the class FilesystemApp as a subclass of Ice::Appli-
cation, and provide a constructor taking a string argument:

    FilesystemApp(const string& envName) : 
        _envName(envName) { }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. A single instance of NodeFactory is installed for both types.

        Ice::ObjectFactoryPtr factory = new NodeFactory; 
        communicator()->addObjectFactory( 
            factory, 
            PersistentFile::ice_staticId()); 
        communicator()->addObjectFactory( 
            factory, 
            PersistentDirectory::ice_staticId());

After creating the object adapter, the program initializes a Freeze evictor by 
invoking createEvictor. The third argument to createEvictor is the 
name of the database file, which by default is created if it does not exist. The new 
evictor is then added to the object adapter as a servant locator for the default cate-
gory.

        Freeze::ServantInitializerPtr init = new NodeInitializer; 
        NodeI::_evictor = 
            Freeze::createEvictor(NodeI::_adapter, _envName, 
                                  "evictorfs", init); 
        NodeI::_adapter->addServantLocator(NodeI::_evictor, "");

Next, the program creates the root directory node if it is not already being 
managed by the evictor.
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        Ice::Identity rootId = communicator()->stringToIdentity("R
ootDir"); 
        if (!NodeI::_evictor->hasObject(rootId)) { 
            PersistentDirectoryPtr root = new DirectoryI(rootId); 
            root->nodeName = "/"; 
            NodeI::_evictor->add(root, rootId); 
        }

Finally, the main function instantiates the FilesystemApp, passing db as the 
name of the database environment.

int 
main(int argc, char* argv[]) 
{ 
    FilesystemApp app("db"); 
    return app.main(argc, argv); 
}

The Servant Class Definitions

The servant classes must also be changed to incorporate the Freeze evictor. We are 
maintaining the multiple-inheritance design from XREF, but we have changed the 
constructors and state members. In particular, each node implementation class has 
two constructors, one taking no parameters and one taking an Ice::Identity. 
The former is needed by the factory, and the latter is used when the node is first 
created. To comply with the evictor requirements, NodeI implements 
IceUtil::AbstractMutex by deriving from the template class 
IceUtil::AbstractMutexI. The only other change of interest is a new 
state member in NodeI named _evictor.

namespace Filesystem { 
    class NodeI : virtual public PersistentNode, 
                  public IceUtil::AbstractMutexI<IceUtil::Mutex> { 
    public: 
        virtual std::string name(const Ice::Current&) const; 
        virtual void destroy(const Ice::Current&); 
        static Ice::ObjectAdapterPtr _adapter; 
        static Freeze::EvictorPtr _evictor; 
    protected: 
        NodeI(); 
        NodeI(const Ice::Identity&); 
    public: 
        const Ice::Identity _ID; 
    }; 
 
    class FileI : virtual public PersistentFile, 
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                  virtual public NodeI { 
    public: 
        virtual Lines read(const Ice::Current&) const; 
        virtual void write(const Lines&, 
                           const Ice::Current&); 
        FileI(); 
        FileI(const Ice::Identity&); 
    }; 
 
    class DirectoryI : virtual public PersistentDirectory, 
                       virtual public NodeI { 
    public: 
        virtual NodeDict list(ListMode, 
                              const Ice::Current&) const; 
        virtual NodeDesc resolve(const std::string&, 
                                 const Ice::Current&) const; 
        virtual DirectoryPrx createDirectory(const std::string&, 
                                             const Ice::Current&); 
        virtual FilePrx createFile(const std::string&, 
                                   const Ice::Current&); 
        virtual void destroy(const Ice::Current&); 
        virtual void removeNode(const std::string&, 
                                const Ice::Current&); 
        DirectoryI(); 
        DirectoryI(const Ice::Identity&); 
    protected: 
        void listRecursive(const std::string&, 
                           const DirectoryPrx&, 
                           NodeDict&) const; 
    private: 
        void checkName(const std::string&) const; 
    }; 
}

In addition to the node implementation classes, we have also declared implemen-
tations of an object factory and a servant initializer:

namespace Filesystem { 
    class NodeFactory : virtual public Ice::ObjectFactory { 
    public: 
        virtual Ice::ObjectPtr create(const std::string&); 
        virtual void destroy(); 
    }; 
 
    class NodeInitializer : 
        virtual public Freeze::ServantInitializer { 
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    public: 
        virtual void initialize(const Ice::ObjectAdapterPtr&, 
                                const Ice::Identity&, 
                                const std::string&, 
                                const Ice::ObjectPtr&); 
    }; 
}

Implementing NodeI

Notice that the NodeI constructor no longer computes a value for the identity. 
This is necessary in order to make our servants truly persistent. Specifically, the 
identity for a node is computed once when that node is created, and must remain 
the same for the lifetime of the node. The NodeI constructor therefore must not 
compute a new identity, but rather remember the identity that is given to it.

string 
Filesystem::NodeI::name(const Ice::Current&) const 
{ 
    return nodeName; 
} 
 
void 
Filesystem::NodeI::destroy(const Ice::Current& current) 
{ 
    if (!parent) { 
        Filesystem::PermissionDenied e; 
        e.reason = "cannot remove root directory"; 
        throw e; 
    } 
 
    parent->removeNode(nodeName); 
    _evictor->remove(_ID); 
} 
 
Filesystem::NodeI::NodeI() 
{ 
} 
 
Filesystem::NodeI::NodeI(const Ice::Identity& id) 
    : _ID(id) 
{ 
}
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Implementing FileI

The FileI methods are still fairly trivial, because the Freeze evictor is handling 
persistence for us.

Filesystem::Lines 
Filesystem::FileI::read(const Ice::Current&) const 
{ 
    IceUtil::Mutex::Lock lock(*this); 
 
    return text; 
} 
 
void 
Filesystem::FileI::write(const Filesystem::Lines& text, 
                         const Ice::Current&) 
{ 
    IceUtil::Mutex::Lock lock(*this); 
 
    this->text = text; 
} 
 
Filesystem::FileI::FileI() 
{ 
} 
 
Filesystem::FileI::FileI(const Ice::Identity& id) 
    : NodeI(id) 
{ 
}

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

Filesystem::DirectoryPrx 
Filesystem::DirectoryI::createDirectory( 
    const string& name, 
    const Ice::Current& current) 
{ 
    IceUtil::Mutex::Lock lock(*this); 
 
    checkName(name); 
 
    Ice::Identity id = current.adapter->getCommunicator()-> 
                stringToIdentity(IceUtil::generateUUID()); 
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    PersistentDirectoryPtr dir = new DirectoryI(id); 
    dir->nodeName = name; 
    dir->parent = PersistentDirectoryPrx::uncheckedCast( 
        current.adapter->createProxy(current.id)); 
    DirectoryPrx proxy = _evictor->add(dir, id); 
 
    NodeDesc nd; 
    nd.name = name; 
    nd.type = DirType; 
    nd.proxy = proxy; 
    nodes[name] = nd; 
 
    return proxy; 
}

After validating the node name, the operation obtains a unique identity for the 
child directory, instantiates the servant, and registers it with the Freeze evictor. 
Finally, the operation creates a proxy for the child and adds the child to its node 
table.

The implementation of the createFile operation has the same structure as 
createDirectory.

Filesystem::FilePrx 
Filesystem::DirectoryI::createFile( 
    const string& name, 
    const Ice::Current& current) 
{ 
    IceUtil::Mutex::Lock lock(*this); 
 
    checkName(name); 
 
    Ice::Identity id = current.adapter->getCommunicator()-> 
                stringToIdentity(IceUtil::generateUUID()); 
    PersistentFilePtr file = new FileI(id); 
    file->nodeName = name; 
    file->parent = PersistentDirectoryPrx::uncheckedCast( 
        current.adapter->createProxy(current.id)); 
    FilePrx proxy = _evictor->add(file, id); 
 
    NodeDesc nd; 
    nd.name = name; 
    nd.type = FileType; 
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    nd.proxy = proxy; 
 
    return proxy; 
}

Implementing NodeFactory

We use a single factory implementation for creating two types of Ice objects: 
PersistentFile and PersistentDirectory. These are the only two types that 
the Freeze evictor will be restoring from its database.

Ice::ObjectPtr 
Filesystem::NodeFactory::create(const string& type) 
{ 
    if (type == "::Filesystem::PersistentFile") 
        return new FileI; 
    else if (type == "::Filesystem::PersistentDirectory") 
        return new DirectoryI; 
    else { 
        assert(false); 
        return 0; 
    } 
} 
 
void 
Filesystem::NodeFactory::destroy() 
{ 
}

Implementing NodeInitializer

NodeInitializer is a trivial implementation of the Freeze::ServantIni-
tializer interface whose only responsibility is setting the _ID member of the 
node implementation. The evictor invokes the initialize operation after the 
evictor has created a servant and restored its persistent state from the database, but 
before any operations are dispatched to it.

void 
Filesystem::NodeInitializer::initialize( 
    const Ice::ObjectAdapterPtr&, 
    const Ice::Identity& id, 
    const Ice::ObjectPtr& obj) 
{ 
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    NodeIPtr node = NodeIPtr::dynamicCast(obj); 
    assert(node); 
    const_cast<Ice::Identity&>(node->_ID) = id; 
}

37.6.3 Implementing the File System Server in Java

The Server main Program

The server’s main program is responsible for creating the evictor and initializing 
the root directory node. Many of the administrative duties, such as creating and 
destroying a communicator, are handled by the class Ice.Application as 
described in Section 12.3.1. Our server main program has now become the 
following:

import Filesystem.*; 
 
public class Server extends Ice.Application { 
    public 
    Server(String envName) 
    { 
        _envName = envName; 
    } 
 
    public int 
    run(String[] args) 
    { 
        // Install object factories 
        // 
        Ice.ObjectFactory factory = new NodeFactory(); 
        communicator().addObjectFactory( 
            factory, 
            PersistentFile.ice_staticId()); 
        communicator().addObjectFactory( 
            factory, 
            PersistentDirectory.ice_staticId()); 
 
        // Create an object adapter (stored in the _adapter 
        // static member) 
        // 
        Ice.ObjectAdapter adapter = 
            communicator().createObjectAdapterWithEndpoints( 
                "FreezeFilesystem", "default -p 10000"); 
        DirectoryI._adapter = adapter; 
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        FileI._adapter = adapter; 
 
        // Create the Freeze evictor (stored in the _evictor 
        // static member) 
        // 
        Freeze.ServantInitializer init = new NodeInitializer(); 
        Freeze.Evictor evictor = 
            Freeze.Util.createEvictor(adapter, _envName, 
                                      "evictorfs", init, null,  
                                      true); 
        DirectoryI._evictor = evictor; 
        FileI._evictor = evictor; 
 
        adapter.addServantLocator(evictor, ""); 
 
        // Create the root node if it doesn't exist 
        // 
        Ice.Identity rootId = 
            Ice.Util.stringToIdentity("RootDir"); 
        if(!evictor.hasObject(rootId)) 
        { 
            PersistentDirectory root = new DirectoryI(rootId); 
            root.nodeName = "/"; 
            root.nodes = new java.util.HashMap(); 
            evictor.add(root, rootId); 
        } 
 
        // Ready to accept requests now 
        // 
        adapter.activate(); 
 
        // Wait until we are done 
        // 
        communicator().waitForShutdown(); 
 
        return 0; 
    } 
 
    public static void 
    main(String[] args) 
    { 
        Server app = new Server("db"); 
        app.main("Server", args); 
        System.exit(0); 
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    } 
 
    private String _envName; 
}

Let us examine the changes in detail. First, we define the class Server as a 
subclass of Ice.Application, and provide a constructor taking a string argu-
ment:

    public 
    Server(String envName) 
    { 
        _envName = envName; 
    }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. A single instance of NodeFactory is installed for both types.

        Ice.ObjectFactory factory = new NodeFactory(); 
        communicator().addObjectFactory( 
            factory, 
            PersistentFile.ice_staticId()); 
        communicator().addObjectFactory( 
            factory, 
            PersistentDirectory.ice_staticId());

After creating the object adapter, the program initializes a Freeze evictor by 
invoking createEvictor. The third argument to createEvictor is the name 
of the database, the fourth is the servant initializer, then the null argument indi-
cates no indices are in use, and the true argument requests that the database be 
created if it does not exist. The evictor is then added to the object adapter as a 
servant locator for the default category.

        Freeze.ServantInitializer init = new NodeInitializer(); 
        Freeze.Evictor evictor = 
            Freeze.Util.createEvictor(adapter, _envName, 
                                      "evictorfs", init, null,  
                                      true); 
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        DirectoryI._evictor = evictor; 
        FileI._evictor = evictor; 
         
        adapter.addServantLocator(evictor, "");

Next, the program creates the root directory node if it is not already being 
managed by the evictor.

        Ice.Identity rootId = 
            Ice.Util.stringToIdentity("RootDir"); 
        if(!evictor.hasObject(rootId)) 
        { 
            PersistentDirectory root = new DirectoryI(rootId); 
            root.nodeName = "/"; 
            root.nodes = new java.util.HashMap(); 
            evictor.add(root, rootId); 
        }

Finally, the main function instantiates the Server class, passing db as the name 
of the database environment.

    public static void 
    main(String[] args) 
    { 
        Server app = new Server("db"); 
        app.main("Server", args); 
        System.exit(0); 
    }

The Servant Class Definitions

The servant classes must also be changed to incorporate the Freeze evictor. We are 
maintaining the design from XREF, but we have changed the constructors and 
state members. In particular, each node implementation class has two construc-
tors, one taking no parameters and one taking an Ice::Identity. The former 
is needed by the factory, and the latter is used when the node is first created. The 
only other change of interest is the new state member _evictor.

The FileI class has a new static member of type IdentityNodeMap, 
which avoids the need to duplicate this reference in each node. The class has a 
new instance member of type PersistentFile, representing the persistent 
state of this file. Finally, we have changed the constructor to accept an 
Ice.Identity and a PersistentFile.
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package Filesystem; 
 
public class FileI extends PersistentFile 
{ 
    public 
    FileI() 
    { 
        // ... 
    } 
 
    public 
    FileI(Ice.Identity id) 
    { 
        // ... 
    } 
 
    // ... Ice operations ... 
 
    public static Ice.ObjectAdapter _adapter; 
    public static Freeze.Evictor _evictor; 
    public Ice.Identity _ID; 
}

The DirectoryI class has undergone a similar transformation.

package Filesystem; 
 
public final class DirectoryI extends PersistentDirectory 
{ 
    public 
    DirectoryI() 
    { 
        // ... 
    } 
 
    public 
    DirectoryI(Ice.Identity id) 
    { 
        // ... 
    } 
 
    // ... Ice operations ... 
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    public static Ice.ObjectAdapter _adapter; 
    public static Freeze.Evictor _evictor; 
    public Ice.Identity _ID; 
}

Notice that the constructors no longer compute a value for the identity. This is 
necessary in order to make our servants truly persistent. Specifically, the identity 
for a node is computed once when that node is created, and must remain the same 
for the lifetime of the node. A constructor therefore must not compute a new iden-
tity, but rather remember the identity given to it.

Implementing FileI

The FileI methods are still fairly trivial, because the Freeze evictor is handling 
persistence for us.

    public 
    FileI() 
    { 
    } 
 
    public 
    FileI(Ice.Identity id) 
    { 
        _ID = id; 
    } 
 
    public String 
    name(Ice.Current current) 
    { 
        return nodeName; 
    } 
 
    public void 
    destroy(Ice.Current current) 
        throws PermissionDenied 
    { 
        parent.removeNode(nodeName); 
        _evictor.remove(current.id); 
    } 
 
    public synchronized String[] 
    read(Ice.Current current) 
    { 
        return text; 
    } 
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    public synchronized void 
    write(String[] text, Ice.Current current) 
        throws GenericError 
    { 
        this.text = text; 
    }

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

    public synchronized DirectoryPrx 
    createDirectory(String name, Ice.Current current) 
        throws NameInUse, IllegalName 
    { 
        checkName(name); 
 
        Ice.Identity id = 
            Ice.Util.stringToIdentity(Ice.Util.generateUUID()); 
        PersistentDirectory dir = new DirectoryI(id); 
        dir.nodeName = name; 
        dir.parent = PersistentDirectoryPrxHelper.uncheckedCast( 
            current.adapter.createProxy(current.id)); 
        dir.nodes = new java.util.HashMap(); 
        DirectoryPrx proxy = _evictor.add(dir, id); 
 
        NodeDesc nd = new NodeDesc(); 
        nd.name = name; 
        nd.type = NodeType.DirType; 
        nd.proxy = proxy; 
        nodes.put(name, nd); 
 
        return proxy; 
    }

After validating the node name, the operation obtains a unique identity for the 
child directory, instantiates the servant, and registers it with the Freeze evictor. 
Finally, the operation creates a proxy for the child and adds the child to its node 
table.

The implementation of the createFile operation has the same structure as 
createDirectory.
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    public synchronized FilePrx 
    createFile(String name, Ice.Current current) 
        throws NameInUse, IllegalName 
    { 
        checkName(name); 
 
        Ice.Identity id = 
            Ice.Util.stringToIdentity(Ice.Util.generateUUID()); 
        PersistentFile file = new FileI(id); 
        file.nodeName = name; 
        file.parent = PersistentDirectoryPrxHelper.uncheckedCast( 
            current.adapter.createProxy(current.id)); 
        FilePrx proxy = _evictor.add(file, id); 
 
        NodeDesc nd = new NodeDesc(); 
        nd.name = name; 
        nd.type = NodeType.FileType; 
        nd.proxy = proxy; 
        nodes.put(name, nd); 
 
        return proxy; 
    }

Implementing NodeFactory

We use a single factory implementation for creating two types of Ice objects: 
PersistentFile and PersistentDirectory. These are the only two types that 
the Freeze evictor will be restoring from its database.

package Filesystem; 
 
public class NodeFactory extends Ice.LocalObjectImpl 
    implements Ice.ObjectFactory 
{ 
    public Ice.Object 
    create(String type) 
    { 
        if (type.equals("::Filesystem::PersistentFile")) 
            return new FileI(); 
        else if (type.equals("::Filesystem::PersistentDirectory")) 
            return new DirectoryI(); 
        else { 
            assert(false); 
            return null; 
        } 
    } 
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    public void 
    destroy() 
    { 
    } 
}

Implementing NodeInitializer

NodeInitializer is a trivial implementation of the Freeze::ServantIni-
tializer interface whose only responsibility is setting the _ID member of the 
node implementation. The evictor invokes the initialize operation after the 
evictor has created a servant and restored its persistent state from the database, but 
before any operations are dispatched to it.

package Filesystem; 
 
public class NodeInitializer extends Ice.LocalObjectImpl 
    implements Freeze.ServantInitializer { 
    public void 
    initialize(Ice.ObjectAdapter adapter, Ice.Identity id, 
               String facet, Ice.Object obj) 
    { 
        if (obj instanceof FileI) 
            ((FileI)obj)._ID = id; 
        else 
            ((DirectoryI)obj)._ID = id; 
    } 
}

37.7 Summary

Freeze is a collection of services that simplify the use of persistence in Ice appli-
cations. The Freeze map is an associative container mapping any Slice key and 
value types, providing a convenient and familiar interface to a persistent map. The 
Freeze evictor is an especially powerful facility for supporting persistent Ice 
objects in a highly-scalable implementation.
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Chapter 38
FreezeScript

38.1 Chapter Overview

This chapter describes the FreezeScript tools for migrating and inspecting the 
databases created by Freeze maps and evictors. The discussion of database migra-
tion begins in Section 38.3 and continues through Section 38.5. Database inspec-
tion is presented in Section 38.6 and Section 38.7. Finally, Section 38.8 describes 
the expression language supported by the FreezeScript tools.

38.2 Introduction

As described in Chapter 37, Freeze supplies a valuable set of services for simpli-
fying the use of persistence in Ice applications. However, while Freeze makes it 
easy for an application to manage its persistent state, there are additional adminis-
trative responsibilities that must also be addressed:

• Migration

As an application evolves, it is not unusual for the types describing its persis-
tent state to evolve as well. When these changes occur, a great deal of time can 
be saved if existing databases can be migrated to the new format while 
preserving as much information as possible.
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• Inspection

The ability to examine a database can be helpful during every stage of the 
application’s lifecycle, from development to deployment.

FreezeScript provides tools for performing both of these activities on Freeze map 
and evictor databases. These databases have a well-defined structure because the 
key and value of each record consist of the marshaled bytes of their respective 
Slice types. This design allows the FreezeScript tools to operate on any Freeze 
database using only the Slice definitions for the database types.

38.3 Database Migration

The FreezeScript tool transformdb migrates a database created by a Freeze 
map or evictor. It accomplishes this by comparing the “old” Slice definitions (i.e., 
the ones that describe the current contents of the database) with the “new” Slice 
definitions, and making whatever modifications are necessary to ensure that the 
transformed database is compatible with the new definitions.

This would be difficult to achieve by writing a custom transformation program 
because that program would require static knowledge of the old and new types, 
which frequently define many of the same symbols and would therefore prevent 
the program from being loaded. The transformdb tool avoids this issue using 
an interpretive approach: the Slice definitions are parsed and used to drive the 
extraction of the database records.

The tool supports two modes of operation:

1. automatic migration, in which the database is migrated in a single step using 
only the default set of transformations, and

2. custom migration, in which you supply a script to augment or override the 
default transformations.

38.3.1 Default Transformations
The default transformations performed by transformdb preserve as much 
information as possible. However, there are practical limits to the tool’s capabili-
ties, since the only information it has is obtained by performing a comparison of 
the Slice definitions.

For example, suppose our old definition for a structure is the following:
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struct AStruct { 
    int i; 
};

We want to migrate instances of this struct to the following revised definition:

struct AStruct { 
    int j; 
};

As the developers, we know that the int member has been renamed from i to j, 
but to transformdb it appears that member i was removed and member j was 
added. The default transformation results in exactly that behavior: the value of i is 
lost, and j is initialized to a default value. If we need to preserve the value of i 
and transfer it to j, then we need to use custom migration (see Section 38.3.5).

The changes that occur as a type system evolves can be grouped into three 
categories:

• Data members

The data members of class and structure types are added, removed, or 
renamed. As discussed above, the default transformations initialize new and 
renamed data members to default values (see Section 38.3.3).

• Type names

Types are added, removed, or renamed. New types do not pose a problem for 
database migration when used to define a new data member; the member is 
initialized with default values as usual. On the other hand, if the new type 
replaces the type of an existing data member, then type compatibility becomes 
a factor (see the following item).

Removed types generally do not cause problems either, because any uses of 
that type must have been removed from the new Slice definitions (e.g., by 
removing data members of that type). There is one case, however, where 
removed types become an issue, and that is for polymorphic classes (see 
Section 38.5.5).

Renamed types are a concern, just like renamed data members, because of the 
potential for losing information during migration. This is another situation for 
which custom migration is recommended.

• Type content

Examples of changes of type content include the key type of a dictionary, the 
element type of a sequence, or the type of a data member. If the old and new 
types are not compatible (as defined in Section 38.3.2), then the default trans-
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formation emits a warning, discards the current value, and reinitializes the 
value as described in Section 38.3.3.

38.3.2 Type Compatibility
Changes in the type of a value are restricted to certain sets of compatible changes. 
This section describes the type changes supported by the default transformations. 
All incompatible type changes result in a warning indicating that the current value 
is being discarded and a default value for the new type assigned in its place. Addi-
tional flexibility is provided by custom migration, as described in Section 38.3.5.

Boolean

A value of type bool can be transformed to and from string. The legal string 
values for a bool value are "true" and "false".

Integer

The integer types byte, short, int, and long can be transformed into each other, 
but only if the current value is within range of the new type. These integer types 
can also be transformed into string.

Floating Point

The floating-point types float and double can be transformed into each other, as 
well as to string. No attempt is made to detect a loss of precision during transfor-
mation.

String

A string value can be transformed into any of the primitive types, as well as into 
enumeration and proxy types, but only if the value is a legal string representation 
of the new type. For example, the string value "Pear" can be transformed into 
the enumeration Fruit, but only if Pear is an enumerator of Fruit.

Enum

An enumeration can be transformed into an enumeration with the same type id, or 
into a string. Transformation between enumerations is performed symbolically. 
For example, consider our old type below:

enum Fruit { Apple, Orange, Pear };

Suppose the enumerator Pear is being transformed into the following new type:
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enum Fruit { Apple, Pear };

The transformed value in the new enumeration is also Pear, despite the fact that 
Pear has changed positions in the new type. However, if the old value had been 
Orange, then the default transformation emits a warning because that enumerator 
no longer exists, and initializes the new value to Apple (the default value).

If an enumerator has been renamed, then custom migration is required to 
convert enumerators from the old name to the new one.

Sequence

A sequence can be transformed into another sequence type, even if the new 
sequence type does not have the same type id as the old type, but only if the 
element types are compatible. For example, sequence<short> can be transformed 
into sequence<int>, regardless of the names given to the sequence types.

Dictionary

A dictionary can be transformed into another dictionary type, even if the new 
dictionary type does not have the same type id as the old type, but only if the key 
and value types are compatible. For example, dictionary<int, string> can be 
transformed into dictionary<long, string>, regardless of the names given to 
the dictionary types.

Caution is required when changing the key type of a dictionary, because the 
default transformation of keys could result in duplication. For example, if the key 
type changes from int to short, any int value outside the range of short results 
in the key being initialized to a default value (namely zero). If zero is already used 
as a key in the dictionary, or another out-of-range key is encountered, then a dupli-
cation occurs. The transformation handles key duplication by removing the dupli-
cate element from the transformed dictionary. (Custom migration can be useful in 
these situations if the default behavior is not acceptable.)

Structure

A struct type can only be transformed into another struct type with the same 
type id. Data members are transformed as appropriate for their types.

Proxy

A proxy value can be transformed into another proxy type, or into string. Trans-
formation into another proxy type is done with the same semantics as in a 
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language mapping: if the new type does not match the old type, then the new type 
must be a base type of the old type (that is, the proxy is widened).

Class

A class type can only be transformed into another class type with the same type 
id. A data member of a class type is allowed to be widened to a base type. Data 
members are transformed as appropriate for their types. See Section 38.5.5 for 
more information on transforming classes.

38.3.3 Default Values
Data types are initialized with default values, as shown in Table 38.1.

38.3.4 Running an Automatic Transformation
In order to use automatic transformation, we need to supply the following infor-
mation to transformdb:

• The old and new Slice definitions

• The old and new types for the database key and value

• The database environment directory, the database filename, and the name of a 
new database environment directory to hold the transformed database

Here is an example of a transformdb command:

Table 38.1. Default values for Slice types.

Type Default Value

Boolean false

Numeric Zero (0)

String Empty string

Enumeration The first enumerator

Sequence Empty sequence

Dictionary Empty dictionary

Struct Data members are initialized recursively

Proxy Nil

Class Nil
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$ transformdb --old old/MyApp.ice --new new/MyApp.ice \ 
    --key int,string --value ::Employee db emp.db newdb

Briefly, the --old and --new options specify the old and new Slice definitions, 
respectively. These options can be specified as many times as necessary in order to 
load all of the relevant definitions. The --key option indicates that the database 
key is evolving from int to string. The --value option specifies that 
::Employee is used as the database value type in both old and new type defini-
tions, and therefore only needs to be specified once. Finally, we provide the path-
name of the database environment directory (db), the filename of the database 
(emp.db), and the pathname of the database environment directory for the trans-
formed database (newdb).

See Section 38.5 for more information on using transformdb.

38.3.5 Custom Migration
Custom migration is useful when your types have changed in ways that make 
automatic migration difficult or impossible. It is also convenient to use custom 
migration when you have complex initialization requirements for new types or 
new data members, because custom migration enables you to perform many of the 
same tasks that would otherwise require you to write a throwaway program.

Custom migration operates in conjunction with automatic migration, allowing 
you to inject your own transformation rules at well-defined intercept points in the 
automatic migration process. These rules are called transformation descriptors, 
and are written in XML.

A Simple Example

We can use a simple example to demonstrate the utility of custom migration. 
Suppose our application uses a Freeze map whose type is string and whose value 
is an enumeration, defined as follows:

enum BigThree { Ford, Chrysler, GeneralMotors };

We now wish to rename the enumerator Chrysler, as shown in our new defini-
tion:

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

As explained in Section 38.3.2, the default transformation results in all occur-
rences of the Chrysler enumerator being transformed into Ford, because 
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Chrysler no longer exists in the new definition and therefore the default value 
Ford is used instead.

To remedy this situation, we use the following transformation descriptors:

<transformdb> 
    <database key="string" value="::BigThree"> 
        <record> 
            <if test="oldvalue == ::Old::Chrysler”> 
                <set target="newvalue" 
                     value="::New::DaimlerChrysler"/> 
            </if> 
        </record> 
    </database> 
</transformdb>

When executed, these descriptors convert occurrences of Chrysler in the old type 
system into DaimlerChrysler in the transformed database’s new type system. 
Transformation descriptors are described in detail in Section 38.4.

38.4 Transformation Descriptors

This section describes the XML elements comprising the FreezeScript transfor-
mation descriptors.

38.4.1 Overview
A transformation descriptor file has a well-defined structure. The top-level 
descriptor in the file is <transformdb>. A <database> descriptor must be 
present within <transformdb> to define the key and value types used by the 
database. Inside <database>, the <record> descriptor triggers the transfor-
mation process. See Section 38.3.5 for an example that demonstrates the structure 
of a minimal descriptor file.

During transformation, type-specific actions are supported by the <trans-
form> and <init> descriptors, both of which are children of <trans-
formdb>. One <transform> descriptor and one <init> descriptor may be 
defined for each type in the new Slice definitions. Each time transformdb 
creates a new instance of a type, it executes the <init> descriptor for that type, 
if one is defined. Similarly, each time transformdb transforms an instance of 
an old type into a new type, the <transform> descriptor for the new type is 
executed.
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The <database>, <record>, <transform>, and <init> descriptors 
may contain general-purpose action descriptors such as <if>, <set>, and 
<echo>. These actions resemble statements in programming languages like C++ 
and Java, in that they are executed in the order of definition and their effects are 
cumulative. Actions make use of the expression language described in 
Section 38.8.

38.4.2 Flow of Execution
The transformation descriptors are executed as described below.

• <database> is executed first. Each child descriptor of <database> is 
executed in the order of definition. If a <record> descriptor is present, data-
base transformation occurs at that point. Any child descriptors of <data-
base> that follow <record> are not executed until transformation 
completes.

• During transformation of each record, transformdb creates instances of 
the new key and value types, which includes the execution of the <init> 
descriptors for those types. Next, the old key and value are transformed into 
the new key and value, in the following manner:

1.Locate the <transform> descriptor for the type.

2. If no descriptor is found, or the descriptor exists and it does not preclude 
default transformation, then transform the data as described in 
Section 38.3.1.

3. If the <transform> descriptor exists, execute it.

4.Finally, execute the child descriptors of <record>.

See Section 38.4.4 for detailed information on the transformation descriptors.

38.4.3 Scopes
The <database> descriptor creates a global scope, allowing child descriptors of 
<database> to define symbols that are accessible in any descriptor1. Further-
more, certain other descriptors create local scopes that exist only for the duration 
of the descriptor’s execution. For example, the <transform> descriptor creates 

1. In order for a global symbol to be available to a <transform> or <init> descriptor, the 
symbol must be defined before the <record> descriptor is executed.
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a local scope and defines the symbols old and new to represent a value in its old 
and new forms. Child descriptors of <transform> can also define new symbols 
in the local scope, as long as those symbols do not clash with an existing symbol 
in that scope. It is legal to add a new symbol with the same name as a symbol in an 
outer scope, but the outer symbol will not be accessible during the descriptor’s 
execution.

The global scope is useful in many situations. For example, suppose you want 
to track the number of times a certain value was encountered during transforma-
tion. This can be accomplished as shown below:

<transformdb> 
    <database key="string" value="::Ice::Identity"> 
        <define name="categoryCount" type="int" value="0"/> 
        <record/> 
        <echo message="categoryCount = " value="categoryCount"/> 
    </database> 
    <transform type="::Ice::Identity"> 
        <if test="new.category == ‘Accounting’"> 
            <set target="categoryCount" value="categoryCount + 1"/> 
        </if> 
    </transform> 
</transformdb>

In this example, the <define> descriptor introduces the symbol category-
Count into the global scope, defining it as type int with an initial value of zero. 
Next, the <record> descriptor causes transformation to proceed. Each occur-
rence of the type Ice::Identity causes its <transform> descriptor to be 
executed, which examines the category member and increases category-
Count if necessary. Finally, after transformation completes, the <echo> 
descriptor displays the final value of categoryCount.

To reinforce the relationships between descriptors and scopes, consider the 
diagram in Figure 38.1. Several descriptors are shown, including the symbols they 
define in their local scopes. In this example, the <iterate> descriptor has a 
dictionary target and therefore the default symbol for the element value, value, 
hides the symbol of the same name in the parent <init> descriptor’s scope2. In 

2. This situation can be avoided by assigning a different symbol name to the element value.
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addition to symbols in the <iterate> scope, child descriptors of <iterate> 
can also refer to symbols from the <init> and <database> scopes.

Figure 38.1. Relationship between descriptors and scopes.

38.4.4 Descriptor Reference

<transformdb>

The top-level descriptor in a descriptor file. It requires one child descriptor, 
<database>, and supports any number of <transform> and <init> 
descriptors. This descriptor has no attributes.

<database>

The attributes of this descriptor define the old and new key and value types for the 
database to be transformed. It supports any number of child descriptors, but at 
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most one <record> descriptor. The <database> descriptor also creates a 
global scope for user-defined symbols (see Section 38.4.3).

The attributes supported by the <database> descriptor are described in 
Table 38.2.

As an example, consider the following <database> descriptor. In this case, the 
Freeze map to be transformed currently has key type int and value type 
::Employee, and is migrating to a key type of string:

<database key="int,string" value="::Employee">

<record>

Commences the transformation. Child descriptors are executed for each record in 
the database, providing the user with an opportunity to examine the record's old 
key and value, and optionally modify the new key and value. Default transforma-
tions, as well as <transform> and <init> descriptors, are executed before 
the child descriptors. The <record> descriptor introduces the following 
symbols into a local scope: oldkey, newkey, oldvalue, newvalue, 
facet. These symbols are accessible to child descriptors, but not to <trans-
form> or <init> descriptors. The oldkey and oldvalue symbols are read-
only. The facet symbol is a string indicating the facet name of the object in the 
current record, and is only relevant for Freeze evictor databases.

Use caution when modifying database keys to ensure that duplicate keys do 
not occur. If a duplicate database key is encountered, transformation fails immedi-
ately.

Note that database transformation only occurs if a <record> descriptor is 
present.

Table 38.2. Attributes for <database> descriptor.

Name Description

key Specifies the Slice types of the old and new keys. If the types 
are the same, only one needs to be specified. Otherwise, the 
types are separated by a comma.

value Specifies the Slice types of the old and new values. If the types 
are the same, only one needs to be specified. Otherwise, the 
types are separated by a comma.
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<transform>

Customizes the transformation for all instances of a type in the new Slice defini-
tions. The children of this descriptor are executed after the optional default trans-
formation has been performed, as described in Section 38.3.1. Only one 
<transform> descriptor can be specified for a type, but a <transform> 
descriptor is not required for every type. The symbols old and new are intro-
duced into a local scope and represent the old and new values, respectively. The 
old symbol is read-only. The attributes supported by this descriptor are described 
in Table 38.3.

Below is an example of a <transform> descriptor that initializes a new data 
member:

<transform type="::Product"> 
    <set target="new.salePrice" 
         value="old.listPrice * old.discount"/> 
</transform>

For class types, transformdb first attempts to locate a <transform> 
descriptor for the object’s most-derived type. If no descriptor is found, trans-

Table 38.3. Attributes for <transform> descriptor.

Name Description

type Specifies the type id in the new Slice definitions.

default If false, no default transformation is performed on values of 
this type. If not specified, the default value is true.

base This attribute determines whether <transform> descriptors 
of base class types are executed. If true, the <transform> 
descriptor of the immediate base class is invoked. If no 
descriptor is found for the immediate base class, the class hier-
archy is searched until a descriptor is found. The execution of 
any base class descriptors occurs after execution of this 
descriptor’s children. If not specified, the default value is 
true.

rename Indicates that a type in the old Slice definitions has been 
renamed to the new type identified by the type attribute. The 
value of this attribute is the type id of the old Slice definition. 
Specifying this attribute relaxes the strict compatibility rules 
defined in Section 38.3.2 for enum, struct and class types.
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formdb proceeds up the class hierarchy in an attempt to find a descriptor. The 
base object type, Object, is the root of every class hierarchy and is included in the 
search for descriptors. It is therefore possible to define a <transform> 
descriptor for type Object, which will be invoked for every class instance.

Note that <transform> descriptors are executed recursively. For example, 
consider the following Slice definitions:

struct Inner { 
    int sum; 
}; 
struct Outer { 
    Inner i; 
};

When transformdb is performing the default transformation on a value of type 
Outer, it recursively performs the default transformation on the Inner member, 
then executes the <transform> descriptor for Inner, and finally executes the 
<transform> descriptor for Outer. However, if default transformation is 
disabled for Outer, then no transformation is performed on the Inner member and 
therefore the <transform> descriptor for Inner is not executed.

<init>

Defines custom initialization rules for all instances of a type in the new Slice defi-
nitions. Child descriptors are executed each time the type is instantiated. The 
typical use case for this descriptor is for types that have been introduced in the 
new Slice definitions and whose instances require default values different than 
what transformdb supplies. The symbol value is introduced into a local 
scope to represent the instance. The attributes supported by this descriptor are 
described in Table 38.4.

Here is a simple example of an <init> descriptor:

Table 38.4. Attributes for <init> descriptor.

Name Description

type Specifies the type id of the new Slice definition.
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<init type="::Player"> 
    <set target="value.currency" value="100"/> 
</init>

Note that, like <transform>, <init> descriptors are executed recursively. For 
example, if an <init> descriptor is defined for a struct type, the <init> 
descriptors of the struct’s members are executed before the struct’s descriptor.

<iterate>

Iterates over a dictionary or sequence, executing child descriptors for each 
element. The symbol names selected to represent the element information may 
conflict with existing symbols in the enclosing scope, in which case those outer 
symbols are not accessible to child descriptors. The attributes supported by this 
descriptor are described in Table 38.5.

Shown below is an example of an <iterate> descriptor that sets the new data 
member reviewSalary to true if the employee’s salary is greater than 
$3000.

<iterate target="new.employeeMap" key="id" value="emp"> 
    <if test="emp.salary > 3000"> 
        <set target="emp.reviewSalary" value="true"/> 
    </if> 
</iterate>

Table 38.5. Attributes for <iterate> descriptor.

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not speci-
fied, the default symbol is i.

element The symbol name used for the sequence element. If not speci-
fied, the default symbol is elem.

key The symbol name used for the dictionary key. If not specified, 
the default symbol is key.

value The symbol name used for the dictionary value. If not speci-
fied, the default symbol is value.
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<if>

Conditionally executes child descriptors. The attributes supported by this 
descriptor are described in Table 38.6.

See Section 38.8 for more information on the descriptor expression language.

<set>

Modifies a value. The value and type attributes are mutually exclusive. If 
target denotes a dictionary element, that element must already exist (i.e., 
<set> cannot be used to add an element to a dictionary). The attributes supported 
by this descriptor are described in Table 38.7.

Table 38.6. Attributes for <if> descriptor.

Name Description

test A boolean expression.

Table 38.7. Attributes for <set> descriptor.

Name Description

target An expression that must select a modifiable value.

value An expression that must evaluate to a value compatible with 
the target’s type.

type If specified, set the target to be an instance of the given Slice 
class. The value is a type id from the new Slice definitions. 
The class must be compatible with the target’s type.

length An integer expression representing the desired new length of a 
sequence. If the new length is less than the current size of the 
sequence, elements are removed from the end of the sequence. 
If the new length is greater than the current size, new elements 
are added to the end of the sequence. If value or type is 
also specified, it is used to initialize each new element.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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The <set> descriptor below modifies a member of a dictionary element:

<set target="new.parts[‘P105J3’].cost" 
      value="new.parts[‘P105J3’].cost * 1.05"/>

This <set> descriptor adds an element to a sequence and initializes its value:

<set target="new.partsList" length="new.partsList.length + 1" 
     value="‘P105J3’"/>

As another example, the following <set> descriptor changes the value of an 
enumeration. Notice that the value refers to a symbol in the new Slice definitions 
(see Section 38.8.3 for more information).

<set target="new.ingredient" value="::New::Apple"/>

<add>

Adds a new element to a sequence or dictionary. It is legal to add an element while 
traversing the sequence or dictionary using <iterate>, however the traversal 
order after the addition is undefined. The key and index attributes are mutually 
exclusive, as are the value and type attributes. If neither value nor type is 
specified, the new element is initialized with a default value. The attributes 
supported by this descriptor are described in Table 38.8.

Table 38.8. Attributes for <add> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the target dictionary’s key type.

index An expression that must evaluate to an integer value represent-
ing the insertion position. The new element is inserted before 
index. The value must not exceed the length of the target 
sequence.

value An expression that must evaluate to a value compatible with 
the target dictionary’s value type, or the target sequence’s ele-
ment type.

type If specified, set the target value or element to be an instance of 
the given Slice class. The value is a type id from the new Slice 
definitions. The class must be compatible with the target dic-
tionary’s value type, or the target sequence’s element type.
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Below is an example of an <add> descriptor that adds a new dictionary element 
and then initializes its member:

<add target="new.parts" key="‘P105J4’"/> 
<set target="new.parts[‘P105J4’].cost" value="3.15"/>

<define>

Defines a new symbol in the current scope. The attributes supported by this 
descriptor are described in Table 38.9.

Below are two examples of the <define> descriptor. The first example defines 
the symbol identity to have type Ice::Identity, and proceeds to initialize its 
members using <set>:

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.

Table 38.9. Attributes for <define> descriptor.

Name Description

name The name of the new symbol. An error occurs if the name 
matches an existing symbol in the current scope.

type The name of the symbol’s formal Slice type. For user-defined 
types, the name should be prefixed with ::Old or ::New to 
indicate the source of the type. The prefix can be omitted for 
primitive types.

value An expression that must evaluate to a value compatible with 
the symbol’s type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Execution fails immediately if a range error occurs. If not 
specified, the default value is false.

Table 38.8. Attributes for <add> descriptor.

Name Description
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<define name="identity" type="::New::Ice::Identity"/> 
<set target="identity.name" value="steve"/> 
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in Section 38.3.5 to define 
the symbol manufacturer and assign it a default value:

<define name="manufacturer" type="::New::BigThree" 
        value="::New::DaimlerChrysler"/>

<remove>

Removes an element from a sequence or dictionary. It is legal to remove an 
element while traversing a sequence or dictionary using <iterate>, however 
the traversal order after removal is undefined. The attributes supported by this 
descriptor are described in Table 38.10.

<fail>

Causes transformation to fail immediately. If test is specified, transformation 
fails only if the expression evaluates to true. The attributes supported by this 
descriptor are described in Table 38.11.

Table 38.10. Attributes for <remove> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the key type of the target dictionary.

index An expression that must evaluate to an integer value represent-
ing the index of the sequence element to be removed.

Table 38.11. Attributes for <fail> descriptor.

Name Description

message A message to display upon transformation failure.

test A boolean expression.
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The following <fail> descriptor terminates the transformation if a range error is 
detected:

<fail message="range error occurred in ticket count!" 
      test="old.ticketCount > 32767"/>

<delete>

Causes transformation of the current database record to cease, and removes the 
record from the transformed database. This descriptor has no attributes.

<echo>

Displays values and informational messages. If no attributes are specified, only a 
newline is printed. The attributes supported by this descriptor are described in 
Table 38.12.

Shown below is an <echo> descriptor that uses both message and value 
attributes:

<if test="old.ticketCount > 32767"> 
    <echo message="deleting record with invalid ticket count: " 
          value="old.ticketCount"/> 
    <delete/> 
</if>

38.4.5 Descriptor Guidelines
There are three points at which you can intercept the transformation process: 
when transforming a record (<record>), when transforming an instance of a 
type (<transform>), and when creating an instance of a type (<init>).

In general, <record> is used when your modifications require access to both 
the key and value of the record. For example, if the database key is needed as a 
factor in an equation, or to identify an element in a dictionary, then <record> is 

Table 38.12. Attributes for <echo> descriptor.

Name Description

message A message to display.

value An expression. The value of the expression is displayed in a 
structured format.
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the only descriptor in which this type of modification is possible. The <record> 
descriptor is also convenient to use when the number of changes to be made is 
small, and does not warrant the effort of writing separate <transform> or 
<init> descriptors.

The <transform> descriptor has a more limited scope than <record>. It is 
used when changes must potentially be made to all instances of a type (regardless 
of the context in which that type is used) and access to the old value is necessary. 
The <transform> descriptor does not have access to the database key and 
value, therefore decisions can only be made based on the old and new instances of 
the type in question.

Finally, the <init> descriptor is useful when access to the old instance is not 
required in order to properly initialize a type. In most cases, this activity could 
also be performed by a <transform> descriptor that simply ignored the old 
instance, so <init> may seem redundant. However, there is one situation where 
<init> is required: when it is necessary to initialize an instance of a type that is 
introduced by the new Slice definitions. Since there are no instances of this type in 
the current database, a <transform> descriptor for that type would never be 
executed.

38.5 Using transformdb

This section describes the invocation of the transformdb tool, and provides 
advice on how best to use it. The tool supports the standard command-line options 
common to all Slice processors listed in Section 4.19, with the exception of the 
include directory (-I) option. The options specific to transformdb are 
described in the subsections below.

38.5.1 General Options
The following options are used in both automatic and custom migration:

• --old SLICE 
--new SLICE

Loads the old or new Slice definitions contained in the file SLICE. These 
options may be specified multiple times if several files must be loaded. 
However, it is the user’s responsibility to ensure that duplicate definitions do 
not occur (which is possible when two files are loaded that share a common 
include file). One strategy for avoiding duplicate definitions is to load a single 
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Slice containing only #include statements for each of the Slice files to be 
loaded. No duplication is possible in this case if the included files use include 
guards correctly.

• --include-old DIR 
--include-new DIR

Adds the directory DIR to the set of include paths for the old or new Slice 
definitions.

• --key TYPE[,TYPE] 
--value TYPE[,TYPE]

Specifies the Slice type(s) of the database key and value. If the type does not 
change, then the type only needs to be specified once. Otherwise, the old type 
is specified first, followed by a comma and the new type. For example, the 
option --key int,string indicates that the database key is migrating 
from int to string. On the other hand, the option --key int,int indi-
cates that the key type does not change, and could be given simply as 
--key int. Type changes are restricted to those allowed by the compati-
bility rules defined in Section 38.3.2, but custom migration provides addi-
tional flexibility.

• -e

Indicates that a Freeze evictor database is being migrated. This option is 
required whenever transformdb operates on a Freeze evictor database. As 
a convenience, this option automatically sets the database key and value types 
to those appropriate for the Freeze evictor, and therefore the 
--key and --value options are not necessary. Specifically, the key type of 
a Freeze evictor database is Ice::Identity, and the value type is 
Freeze::ObjectRecord. The latter is defined in the Slice file 
Freeze/EvictorStorage.ice; however, this file does not need to be 
loaded into your old and new Slice definitions.

• -i

Requests that transformdb ignore type changes that violate the compati-
bility rules defined in Section 38.3.2. If this option is not specified, transfor-
mation fails immediately if such a violation occurs. With this option, a 
warning is displayed but transformation continues.

• -p

Requests that transformdb purge object instances whose type is no longer 
found in the new Slice definitions. See Section 38.5.5 for more information.
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• -c

Use catastrophic recovery on the old BerkeleyDB database environment.

• -w

Suppress duplicate warnings during transformation.

38.5.2 Database Arguments
If transformdb is invoked to transform a database, it requires three arguments:

• dbenv

The pathname of the database environment directory.

• db

The name of the existing database file. transformdb never modifies this 
database.

• newdbenv

The pathname of the database environment directory to contain the trans-
formed database. This directory must exist, and must not contain an existing 
database whose name matches the db argument.

Upon successful transformation, a database of the same name is created in the new 
environment directory.

38.5.3 Automatic Migration
No additional arguments are necessary to use automatic migration. The standard 
options from Section 4.19, the general options described in Section 38.5.1, and 
the database arguments from Section 38.5.2 are all you need. For example, 
consider the following command, which uses automatic migration to transform a 
database with a key type of int and value type of string into a database with the 
same key type and a value type of long:

$ transformdb --key int --value string,long dbhome data.db newdbhome

Note that we did not need to specify the --old or --new options because our 
key and value types are primitives. Upon successful completion, the file newdb-
home/data.db contains our transformed database.
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38.5.4 Custom Migration

Analysis

Custom migration is a two-step process: your first write the transformation 
descriptors, and then execute them to transform a database. To assist you in the 
process of creating a descriptor file, transformdb can generate a default set of 
transformation descriptors by comparing your old and new Slice definitions. This 
feature is called analysis, and is enabled by specifying the following option:

• -o FILE

Specifies the descriptor file FILE to be created during analysis.

No database arguments are required, because transformation does not occur when 
the -o option is specified. The generated file contains a <transform> 
descriptor for each type that appears in both old and new Slice definitions, and an 
<init> descriptor for types that appear only in the new Slice definitions. In most 
cases, these descriptors are empty. However, they may contain XML comments 
describing changes detected by transformdb that may require action on your 
part.

For example, let us revisit the enumeration we defined in Section 38.3.5:

enum BigThree { Ford, Chrysler, GeneralMotors };

This enumeration has evolved into the one shown below. In particular, the 
Chrysler enumerator has been renamed to reflect a corporate merger:

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

Next we run transformdb in analysis mode:

$ transformdb --old old/BigThree.ice --new new/BigThree.ice \ 
    --key string --value ::BigThree -o transform.xml

The generated file transform.xml contains the following descriptor for the 
enumeration BigThree:

<transform type="::BigThree"> 
    <!-- NOTICE: enumerator `Chrysler' has been removed --> 
</transform>

The comment indicates that enumerator Chrysler is no longer present in the new 
definition, reminding us that we need to add logic in this <transform> 
descriptor to change all occurrences of Chrysler to DaimlerChrysler.
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The descriptor file generated by transformdb is well-formed and does not 
require any manual intervention prior to being executed. However, executing an 
unmodified descriptor file is simply the equivalent of automatic migration.

Transformation

After preparing a descriptor file, either by writing one completely yourself, or 
modifying one generated by the analysis phase, you are ready to transform a data-
base. One additional option is provided for transformation:

• -f FILE

Specifies the descriptor file FILE to be executed during transformation.

It is not necessary to provide the --key or --value options during transforma-
tion, because the key and value types are already specified in the file’s <data-
base> descriptor.

Continuing our enumeration example from the analysis discussion above, 
assume we have modified transform.xml to convert the Chrysler enumer-
ator, and are now ready to execute the transformation:

$ transformdb --old old/BigThree.ice --new new/BigThree.ice \ 
    -f transform.xml dbhome bigthree.db newbigthree.db

Strategies

If it becomes necessary for you to transform a Freeze database, we generally 
recommend that you attempt to use automatic migration first, unless you already 
know that custom migration is necessary. Since transformation is a non-destruc-
tive process, there is no harm in attempting an automatic migration, and it is a 
good way to perform a sanity check on your transformdb arguments (for 
example, to ensure that all the necessary Slice files are being loaded), as well as 
on the database itself. If transformdb detects any incompatible type changes, 
it displays an error message for each incompatible change and terminates without 
doing any transformation. In this case, you may want to run transformdb 
again with the -i option, which ignores incompatible changes and causes trans-
formation to proceed.

Pay careful attention to any warnings that transformdb emits, as these may 
indicate the need for using custom migration. For example, if we had attempted to 
transform the database containing the BigThree enumeration from previous 
sections using automatic migration, any occurrences of the Chrysler enumerator 
would display the following warning:

warning: unable to convert ‘Chrysler’ to ::BigThree
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If custom migration appears to be necessary, use analysis to generate a default 
descriptor file, then review it for NOTICE comments and edit as necessary. 
Liberal use of the <echo> descriptor can be beneficial when testing your 
descriptor file, especially from within the <record> descriptor where you can 
display old and new keys and values.

38.5.5 Transforming Objects
The polymorphic nature of Slice classes can cause problems for database migra-
tion. As an example, the Slice parser can ensure that a set of Slice definitions 
loaded into transformdb is complete for all types but classes (and exceptions, 
but we ignore those because they are not persistent). transformdb cannot 
know that a database may contain instances of a subclass derived from one of the 
loaded classes, but itself is not loaded. Alternatively, the type of a class instance 
may have been renamed and cannot be found in the new Slice definitions.

By default, these situations result in immediate transformation failure. 
However, the -p option is a (potentially drastic) way to handle these situations: if 
a class instance has no equivalent in the new Slice definitions and this option is 
specified, transformdb removes the instance any way it can. If the instance 
appears in a sequence or dictionary element, that element is removed. Otherwise, 
the database record containing the instance is deleted.

Now, the case of a class type being renamed is handled easily enough using 
custom migration and the rename attribute of the <transform> descriptor. 
However, there are legitimate cases where the destructive nature of the -p option 
can be useful. For example, if a class type has been removed and it is simply easier 
to start with a database that is guaranteed not to contain any instances of that type, 
then the -p option may simplify the broader migration effort.

This is another situation in which running an automatic migration first can 
help point out the trouble spots in a potential migration. Using the -p option, 
transformdb emits a warning about the missing class type and continues, 
rather than halting at the first occurrence, enabling you to discover whether you 
have forgotten to load some Slice definitions, or need to rename a type.

38.6 Database Inspection

The FreezeScript tool dumpdb is used to examine a Freeze database. Its simplest 
invocation displays every record of the database, but the tool also supports more 
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selective activities. In fact, dumpdb supports a scripted mode that shares many of 
the same XML descriptors as transformdb (see Section 38.4), enabling 
sophisticated filtering and reporting.

38.6.1 Descriptor Overview
A dumpdb descriptor file has a well-defined structure. The top-level descriptor in 
the file is <dumpdb>. A <database> descriptor must be present within 
<dumpdb> to define the key and value types used by the database. Inside 
<database>, the <record> descriptor triggers database traversal. Shown 
below is an example that demonstrates the structure of a minimal descriptor file:

<dumpdb> 
    <database key="string" value="::Employee"> 
        <record> 
            <echo message="Key: " value="key"/> 
            <echo message="Value: " value="value"/> 
        </record> 
    </database> 
</dumpdb>

During traversal, type-specific actions are supported by the <dump> descriptor, 
which is a child of <dumpdb>. One <dump> descriptor may be defined for each 
type in the new Slice definitions. Each time dumpdb encounters an instance of a 
type, the <dump> descriptor for the type is executed.

The <database>, <record>, and <dump> descriptors may contain 
general-purpose action descriptors such as <if> and <echo>. These actions 
resemble statements in programming languages like C++ and Java, in that they are 
executed in the order of definition and their effects are cumulative. Actions make 
use of the expression language described in Section 38.8.

Although dumpdb descriptors are not allowed to modify the database, they 
can still define local symbols for scripting purposes. Once a symbol is defined by 
the <define> descriptor, other descriptors such as <set>, <add>, and 
<remove> can be used to manipulate the symbol’s value.

38.6.2 Flow of Execution
The descriptors are executed as described below.

• <database> is executed first. Each child descriptor of <database> is 
executed in the order of definition. If a <record> descriptor is present, data-
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base traversal occurs at that point. Any child descriptors of <database> 
that follow <record> are not executed until traversal completes.

• For each record, dumpdb interprets the key and value, invoking <dump> 
descriptors for each type it encounters. For example, if the value type of the 
database is a struct, then dumpdb first attempts to invoke a <dump> 
descriptor for the struct type, and then recursively interprets the structure’s 
members in the same fashion.

See Section 38.6.4 for detailed information on the dumpdb descriptors.

38.6.3 Scopes
The <database> descriptor creates a global scope, allowing child descriptors of 
<database> to define symbols that are accessible in any descriptor3. Further-
more, certain other descriptors create local scopes that exist only for the duration 
of the descriptor’s execution. For example, the <dump> descriptor creates a local 
scope and defines the symbol value to represent a value of the specified type. 
Child descriptors of <dump> can also define new symbols in the local scope, as 
long as those symbols do not clash with an existing symbol in that scope. It is 
legal to add a new symbol with the same name as a symbol in an outer scope, but 
the outer symbol will not be accessible during the descriptor’s execution.

The global scope is useful in many situations. For example, suppose you want 
to track the number of times a certain value was encountered during database 
traversal. This can be accomplished as shown below:

<dumpdb> 
    <database key="string" value="::Ice::Identity"> 
        <define name="categoryCount" type="int" value="0"/> 
        <record/> 
        <echo message="categoryCount = " value="categoryCount"/> 
    </database> 
    <dump type="::Ice::Identity"> 
        <if test="new.category == ‘Accounting’"> 
            <set target="categoryCount" value="categoryCount + 1"/> 
        </if> 
    </dump> 
</dumpdb>

3. In order for a global symbol to be available to a <dump> descriptor, the symbol must be defined 
before the <record> descriptor is executed.
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In this example, the <define> descriptor introduces the symbol category-
Count into the global scope, defining it as type int with an initial value of zero. 
Next, the <record> descriptor causes traversal to proceed. Each occurrence of 
the type Ice::Identity causes its <dump> descriptor to be executed, which 
examines the category member and increases categoryCount if necessary. 
Finally, after traversal completes, the <echo> descriptor displays the final value 
of categoryCount.

To reinforce the relationships between descriptors and scopes, consider the 
diagram in Figure 38.2. Several descriptors are shown, including the symbols they 
define in their local scopes. In this example, the <iterate> descriptor has a 
dictionary target and therefore the default symbol for the element value, value, 
hides the symbol of the same name in the parent <dump> descriptor’s scope4. In 
addition to symbols in the <iterate> scope, child descriptors of <iterate> 
can also refer to symbols from the <dump> and <database> scopes.

Figure 38.2. Relationship between descriptors and scopes.

4. This situation can be avoided by assigning a different symbol name to the element value.

<database>

No default symbols

<record>

key 
value 
facet

<dump>

value

<iterate>

key 
value
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38.6.4 Descriptor Reference

<dumpdb>

The top-level descriptor in a descriptor file. It requires one child descriptor, 
<database>, and supports any number of <dump> descriptors. This descriptor 
has no attributes.

<database>

The attributes of this descriptor define the key and value types of the database. It 
supports any number of child descriptors, but at most one <record> descriptor. 
The <database> descriptor also creates a global scope for user-defined 
symbols (see Section 38.6.3).

The attributes supported by the <database> descriptor are described in 
Table 38.13.

As an example, consider the following <database> descriptor. In this case, the 
Freeze map to be examined has key type int and value type ::Employee:

<database key="int" value="::Employee">

<record>

Commences the database traversal. Child descriptors are executed for each record 
in the database, but after any <dump> descriptors are executed. The <record> 
descriptor introduces the read-only symbols key, value and facet into a local 
scope. These symbols are accessible to child descriptors, but not to <dump> 
descriptors. The facet symbol is a string indicating the facet name of the object 
in the current record, and is only relevant for Freeze evictor databases.

Note that database traversal only occurs if a <record> descriptor is present.

Table 38.13. Attributes for <database> descriptor.

Name Description

key Specifies the Slice type of the database key.

value Specifies the Slice type of the database value.
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<dump>

Executed for all instances of a Slice type. Only one <dump> descriptor can be 
specified for a type, but a <dump> descriptor is not required for every type. The 
read-only symbol value is introduced into a local scope. The attributes 
supported by this descriptor are described in Table 38.14.

Below is an example of a <dump> descriptor that searches for certain products:

<dump type="::Product"> 
    <if test="value.description.find(‘scanner’) != -1"> 
        <echo message="Scanner SKU: " value="value.SKU"/> 
    </if> 
</dump>

For class types, dumpdb first attempts to locate a <dump> descriptor for the 
object’s most-derived type. If no descriptor is found, dumpdb proceeds up the 
class hierarchy in an attempt to find a descriptor. The base object type, Object, is 
the root of every class hierarchy and is included in the search for descriptors. It is 
therefore possible to define a <dump> descriptor for type Object, which will be 
invoked for every class instance.

Note that <dump> descriptors are executed recursively. For example, consider 
the following Slice definitions:

Table 38.14. Attributes for <dump> descriptor.

Name Description

type Specifies the Slice type id.

base If type denotes a Slice class, this attribute determines 
whether the <dump> descriptor of the base class is invoked. If 
true, the base class descriptor is invoked after executing the 
child descriptors. If not specified, the default value is true.

contents For class and struct types, this attribute determines 
whether descriptors are executed for members of the value. 
For sequence and dictionary types, this attribute deter-
mines whether descriptors are executed for elements. If not 
specified, the default value is true.
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struct Inner { 
    int sum; 
}; 
struct Outer { 
    Inner i; 
};

When dumpdb is interpreting a value of type Outer, it executes the <dump> 
descriptor for Outer, then recursively executes the <dump> descriptor for the 
Inner member, but only if the contents attribute of the Outer descriptor has 
the value true.

<iterate>

Iterates over a dictionary or sequence, executing child descriptors for each 
element. The symbol names selected to represent the element information may 
conflict with existing symbols in the enclosing scope, in which case those outer 
symbols are not accessible to child descriptors. The attributes supported by this 
descriptor are described in Table 38.15.

Shown below is an example of an <iterate> descriptor that displays the name 
of an employee if the employee’s salary is greater than $3000.

<iterate target="value.employeeMap" key="id" value="emp"> 
    <if test="emp.salary > 3000"> 
        <echo message="Employee: " value="emp.name"/> 
    </if> 
</iterate>

Table 38.15. Attributes for <iterate> descriptor.

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not speci-
fied, the default symbol is i.

element The symbol name used for the sequence element. If not speci-
fied, the default symbol is elem.

key The symbol name used for the dictionary key. If not specified, 
the default symbol is key.

value The symbol name used for the dictionary value. If not speci-
fied, the default symbol is value.
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<if>

Conditionally executes child descriptors. The attributes supported by this 
descriptor are described in Table 38.16.

See Section 38.8 for more information on the descriptor expression language.

<set>

Modifies a value. The value and type attributes are mutually exclusive. If 
target denotes a dictionary element, that element must already exist (i.e., 
<set> cannot be used to add an element to a dictionary). The attributes supported 
by this descriptor are described in Table 38.17.

Table 38.16. Attributes for <if> descriptor.

Name Description

test A boolean expression.

Table 38.17. Attributes for <set> descriptor.

Name Description

target An expression that must select a modifiable value.

value An expression that must evaluate to a value compatible with 
the target’s type.

type The Slice type id of a class to be instantiated. The class must 
be compatible with the target’s type.

length An integer expression representing the desired new length of a 
sequence. If the new length is less than the current size of the 
sequence, elements are removed from the end of the sequence. 
If the new length is greater than the current size, new elements 
are added to the end of the sequence. If value or type is 
also specified, it is used to initialize each new element.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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The <set> descriptor below modifies a member of a dictionary element:

<set target="new.parts[‘P105J3’].cost" 
      value="new.parts[‘P105J3’].cost * 1.05"/>

This <set> descriptor adds an element to a sequence and initializes its value:

<set target="new.partsList" length="new.partsList.length + 1" 
     value="‘P105J3’"/>

<add>

Adds a new element to a sequence or dictionary. It is legal to add an element while 
traversing the sequence or dictionary using <iterate>, however the traversal 
order after the addition is undefined. The key and index attributes are mutually 
exclusive, as are the value and type attributes. If neither value nor type is 
specified, the new element is initialized with a default value. The attributes 
supported by this descriptor are described in Table 38.18.

Table 38.18. Attributes for <add> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the target dictionary’s key type.

index An expression that must evaluate to an integer value represent-
ing the insertion position. The new element is inserted before 
index. The value must not exceed the length of the target 
sequence.

value An expression that must evaluate to a value compatible with 
the target dictionary’s value type, or the target sequence’s ele-
ment type.

type The Slice type id of a class to be instantiated. The class must 
be compatible with the target dictionary’s value type, or the 
target sequence’s element type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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Below is an example of an <add> descriptor that adds a new dictionary element 
and then initializes its member:

<add target="new.parts" key="‘P105J4’"/> 
<set target="new.parts[‘P105J4’].cost" value="3.15"/>

<define>

Defines a new symbol in the current scope. The attributes supported by this 
descriptor are described in Table 38.19.

Below are two examples of the <define> descriptor. The first example defines 
the symbol identity to have type Ice::Identity, and proceeds to initialize its 
members using <set>:

<define name="identity" type="::Ice::Identity"/> 
<set target="identity.name" value="steve"/> 
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in Section 38.3.5 to define 
the symbol manufacturer and assign it a default value:

<define name="manufacturer" type="::BigThree" 
    value="::DaimlerChrysler"/>

<remove>

Removes an element from a sequence or dictionary. It is legal to remove an 
element while traversing a sequence or dictionary using <iterate>, however 

Table 38.19. Attributes for <define> descriptor.

Name Description

name The name of the new symbol. An error occurs if the name 
matches an existing symbol in the current scope.

type The name of the symbol’s formal Slice type.

value An expression that must evaluate to a value compatible with 
the symbol’s type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Execution fails immediately if a range error occurs. If not 
specified, the default value is false.
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the traversal order after removal is undefined. The attributes supported by this 
descriptor are described in Table 38.20.

<fail>

Causes transformation to fail immediately. If test is specified, transformation 
fails only if the expression evaluates to true. The attributes supported by this 
descriptor are described in Table 38.21.

The following <fail> descriptor terminates the transformation if a range error is 
detected:

<fail message="range error occurred in ticket count!" 
      test="value.ticketCount > 32767"/>

Table 38.20. Attributes for <remove> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the key type of the target dictionary.

index An expression that must evaluate to an integer value represent-
ing the index of the sequence element to be removed.

Table 38.21. Attributes for <fail> descriptor.

Name Description

message A message to display upon transformation failure.

test A boolean expression.



38.7 Using dumpdb 1279

<echo>

Displays values and informational messages. If no attributes are specified, only a 
newline is printed. The attributes supported by this descriptor are described in 
Table 38.22.

Shown below is an <echo> descriptor that uses both message and value 
attributes:

<if test="value.ticketCount > 32767"> 
    <echo message="range error occurred in ticket count: " 
          value="value.ticketCount"/> 
</if>

38.7 Using dumpdb

This section describes the invocation of dumpdb and provides advice on how to 
best use it.

38.7.1 Options
The tool supports the standard command-line options common to all Slice proces-
sors listed in Section 4.19. The options specific to dumpdb are described below:

• --load SLICE

Loads the Slice definitions contained in the file SLICE. This option may be 
specified multiple times if several files must be loaded. However, it is the 
user’s responsibility to ensure that duplicate definitions do not occur (which is 
possible when two files are loaded that share a common include file). One 
strategy for avoiding duplicate definitions is to load a single Slice containing 

Table 38.22. Attributes for <echo> descriptor.

Name Description

message A message to display.

value An expression. The value of the expression is displayed in a 
structured format.
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only #include statements for each of the Slice files to be loaded. No duplica-
tion is possible in this case if the included files use include guards correctly.

• --key TYPE 
--value TYPE

Specifies the Slice type of the database key and value.

• -e

Indicates that a Freeze evictor database is being examined. This option is 
required whenever dumpdb operates on a Freeze evictor database. As a 
convenience, this option automatically sets the database key and value types 
to those appropriate for the Freeze evictor, and therefore the --key and 
--value options are not necessary. Specifically, the key type of a Freeze 
evictor database is Ice::Identity, and the value type is Freeze::Objec-
tRecord. The latter is defined in the Slice file Freeze/Evic-
torStorage.ice, however this file does not need to be explicitly loaded.

• -o FILE

Create a file named FILE containing sample descriptors for the loaded Slice 
definitions. The key and value types must be specified using the --key 
and--value options, or using the -e option. If the --select option is 
used, its expression is included in the sample descriptors. The database argu-
ments are not necessary because database traversal is not performed when the 
-o option is used.

• -f FILE

Execute the descriptors in the file named FILE. The file’s <database> 
descriptor specifies the key and value types, therefore the --key, --value 
and -e options are not necessary when -f is used.

• --select EXPR

Only display those records for which the expression EXPR is true. The expres-
sion can refer to the symbols key and value.

38.7.2 Database Arguments
If dumpdb is invoked to examine a database, it requires two arguments:

• dbenv

The pathname of the database environment directory.
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• db

The name of the database file. dumpdb opens this database as read-only, and 
traversal occurs within a transaction.

38.7.3 Use Cases
The command line options described in Section 38.7.1 support several modes of 
operation:

• Dump an entire database.

• Dump selected records of a database.

• Emit a sample descriptor file.

• Execute a descriptor file.

These use cases are described in the following sections.

Dump an Entire Database

The simplest way to examine a database with dumpdb is to dump its entire 
contents. You must specify the database key and value types, load the necessary 
Slice definitions, and supply the names of the database environment directory and 
database file. For example, this command dumps a Freeze map database whose 
key type is string and value type is Employee:

$ dumpdb --key string --value ::Employee --load Employee.ice \ 
  db emp.db

Dump Selected Records

If only certain records are of interest to you, the --select option provides a 
convenient way to filter the output of dumpdb. In the following example, we 
select employees from the accounting department:

$ dumpdb --key string --value ::Employee --load Employee.ice \ 
  --select "value.dept == ‘Accounting’" db emp.db

In cases where the database records contain polymorphic class instances, you 
must be careful to specify an expression that can be successfully evaluated against 
all records. For example, dumpdb fails immediately if, while evaluating the 
expression, a data member is encountered that does not exist in the class instance. 
The safest way to write an expression in this case is to check the type of the class 
instance before referring to any of its data members.
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In the example below, we assume that a Freeze evictor database contains 
instances of various classes in a class hierarchy, and we are only interested in 
instances of Manager whose employee count is greater than 10:

$ dumpdb -e --load Employee.ice \ 
  --select "value.servant.ice_id == '::Manager' and \ 
  value.servant.group.length > 10" db emp.db

Alternatively, if Manager has derived classes, then the expression can be written in 
a different way so that instances of Manager and any of its derived classes are 
considered:

$ dumpdb -e --load Employee.ice \ 
  --select "value.servant.ice_isA('::Manager') and \ 
  value.servant.group.length > 10" db emp.db

Creating a Sample Descriptor File

If you require more sophisticated filtering or scripting capabilities, then you must 
use a descriptor file. The easiest way to get started with a descriptor file is to 
generate a template using dumpdb:

$ dumpdb --key string --value ::Employee --load Employee.ice \ 
  -o dump.xml

The output file dump.xml is complete and can be executed immediately if 
desired, but typically the file is used as a starting point for further customization.

If the --select option is specified, its expression is included in the gener-
ated <record> descriptor as the value of the test attribute in an <if> 
descriptor.

Notice that database arguments are not required when -o is specified, because 
dumpdb terminates immediately after generating the sample file.

Executing a Descriptor File

Use the -f option when you are ready to execute a descriptor file. For example, 
we can execute the descriptor we generated in the previous section using this 
command:

$ dumpdb -f dump.xml --load Employee.ice db emp.db

38.8 Descriptor Expression Language

An expression language is provided for use in FreezeScript descriptors.
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38.8.1 Operators
The language supports the usual complement of operators: and, or, not, +, -, /, 
*, %, <, >, ==, !=, <=, >=, (, ). Note that the < character must be escaped as 
&lt; in order to comply with XML syntax restrictions.

38.8.2 Literals
Literal values can be specified for integer, floating point, boolean, and string. The 
expression language supports the same syntax for literal values as that of Slice 
(see Section 4.9.5), with one exception: string literals must be enclosed in single 
quotes.

38.8.3 Symbols
Certain descriptors introduce symbols that can be used in expressions. These 
symbols must comply with the naming rules for Slice identifiers (i.e., a leading 
letter followed by zero or more alphanumeric characters). Data members are 
accessed using dotted notation, such as value.memberA.memberB.

Expressions can refer to Slice constants and enumerators using scoped names. 
In a transformdb descriptor, there are two sets of Slice definitions, therefore 
the expression must indicate which set of definitions it is accessing by prefixing 
the scoped name with ::Old or ::New. For example, the expression 
old.fruitMember == ::Old::Pear evaluates to true if the data 
member fruitMember has the enumerated value Pear. In dumpdb, only one 
set of Slice definitions is present and therefore the constant or enumerator can be 
identified without any special prefix.

38.8.4 Nil
The keyword nil represents a nil value of type Object. This keyword can be 
used in expressions to test for a nil object value, and can also be used to set an 
object value to nil.

38.8.5 Elements
Dictionary and sequence elements are accessed using array notation, such as 
userMap['marc'] or stringSeq[5]. An error occurs if an expression 
attempts to access a dictionary or sequence element that does not exist. For dictio-
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naries, the recommended practice is to check for the presence of a key before 
accessing it:

<if test="userMap.containsKey('marc') and userMap['marc'].active">

See Section 38.8.8 for more information on the containsKey function.
Similarly, expressions involving sequences should check the length of the 

sequence:

<if test="stringSeq.length > 5 and stringSeq[5] == 'fruit'">

See Section 38.8.7 for details on the length member.

38.8.6 Reserved Keywords
The following keywords are reserved: and, or, not, true, false, nil.

38.8.7 Implicit Members
Certain Slice types support implicit data members:

• Dictionary and sequence instances have a member length representing the 
number of elements.

• Object instances have a member ice_id denoting the actual type of the 
object.

38.8.8 Functions
The expression language supports two forms of function invocation: member 
functions and global functions. A member function is invoked on a particular data 
value, whereas global functions are not bound to a data value. For instance, here is 
an expression that invokes the find member function of a string value:

old.stringValue.find('theSubstring') != -1

And here is an example that invokes the global function stringToIdentity:

stringToIdentity(old.stringValue)

If a function takes multiple arguments, the arguments must be separated with 
commas.

String Member Functions

The string data type supports the following member functions:
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• int find(string match[, int start])

Returns the index of the substring, or -1 if not found. A starting position can 
optionally be supplied.

• string replace(int start, int len, string str)

Replaces a given portion of the string with a new substring, and returns the modified 
string.

• string substr(int start[, int len])

Returns a substring beginning at the given start position. If the optional length 
argument is supplied, the substring contains at most len characters, otherwise 
the substring contains the remainder of the string.

Dictionary Member Functions

The dictionary data type supports the following member function:
• bool containsKey(key)

Returns true if the dictionary contains an element with the given key, or 
false otherwise. The key argument must have a value that is compatible 
with the dictionary’s key type.

Object Member Functions

Object instances support the following member function:
• bool ice_isA(string id)

Returns true if the object implements the given interface type, or false 
otherwise. This function cannot be invoked on a nil object.

Global Functions

The following global functions are provided:
• string generateUUID()

Returns a new UUID.
• string identityToString(Ice::Identity id)

Converts an identity into its string representation.
• string lowercase(string str)

Returns a new string converted to lowercase.
• string proxyToString(Ice::ObjectPrx prx)

Returns the string representation of the given proxy.



1286 FreezeScript

• Ice::Identity stringToIdentity(string str)

Converts a string into an Ice::Identity.
• Ice::ObjectPrx stringToProxy(string str)

Converts a string into a proxy.
• string typeOf(val)

Returns the formal Slice type of the argument.

38.9 Summary

FreezeScript provides tools that ease the maintenance of Freeze databases. The 
transformdb tool simplifies the task of migrating a database when its persis-
tent types have changed, offering an automatic mode requiring no manual inter-
vention, and a custom mode in which scripted changes are possible. Database 
inspection and reporting is accomplished using the dumpdb tool, which supports 
a number of operational modes including a scripting capability.
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Chapter 39
IceSSL

39.1 Chapter Overview

In this chapter we present IceSSL, an optional security component for Ice applica-
tions. Section 39.2 provides an overview of the SSL protocol and the infrastruc-
ture required to support it. Section 39.3 discusses the installation requirements for 
each supported language mapping, while Section 39.4 describes typical configura-
tion scenarios. For programs that need to interact directly with IceSSL, the appli-
cation programming interface is covered in Section 39.5 and Section 39.6. To set 
up your own certificate authority, you can use the utilities described in 
Section 39.7.

39.2 Introduction

Security is an important consideration for many distributed applications, both 
within corporate intranets as well as over untrusted networks, such as the Internet. 
The ability to protect sensitive information, ensure its integrity, and verify the 
identities of the communicating parties is essential for developing secure applica-
tions. With those goals in mind, Ice includes the IceSSL plug-in that provides 
these capabilities using the Secure Socket Layer (SSL) protocol.1
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39.2.1 SSL Overview
SSL is the protocol that enables Web browsers to conduct secure transactions and 
therefore is one of the most commonly used protocols for secure network commu-
nication. You do not need to know the technical details of the SSL protocol in 
order to use IceSSL successfully (and those details are outside the scope of this 
text). However, it would be helpful to have a high-level understanding of how the 
protocol works and the infrastructure required to support it. (For more information 
on the SSL protocol, see [24].)

SSL provides a secure environment for communication (without sacrificing 
too much performance) by combining a number of cryptographic techniques:

• public key encryption

• symmetric (shared key) encryption

• message authentication codes

• digital certificates

When a client establishes an SSL connection to a server, a handshake is 
performed. During a typical handshake, digital certificates that identify the 
communicating parties are validated, and symmetric keys are exchanged for 
encrypting the session traffic. Public key encryption, which is too slow to be used 
for the bulk of a session’s data transfer, is used heavily during the handshaking 
phase. Once the handshake is complete, SSL uses message authentication codes to 
ensure data integrity, allowing the client and server to communicate at will with 
reasonable assurance that their messages are secure.

39.2.2 Public Key Infrastructure
Security requires trust, and public key cryptography by itself does nothing to 
establish trust. SSL addresses the issue of trust using Public Key Infrastructure 
(PKI), which binds public keys to identities using certificates. A certificate issuer 
creates a certificate for an entity, called the subject. The subject is often a person, 
but it may also be a computer or a specific application. The subject’s identity is 
represented by a distinguished name, which includes information such as the 
subject’s name, organization and location. A certificate alone is not sufficient to 

1. IceSSL is available for C++, Java and .NET 2.0 applications. Python and PHP applications can 
use IceSSL for C++ via configuration.
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establish the subject’s identity, however, as anyone can create a certificate for a 
particular distinguished name.

In order to authenticate a certificate, we need a third-party to guarantee that 
the certificate belongs to the subject described by the distinguished name. This 
third party, called a Certificate Authority (CA), expresses this guarantee by using 
its own private key to sign the subject’s certificate. Combining the CA’s certificate 
with the subject’s certificate forms a certificate chain that provides SSL with most 
of the information it needs to authenticate the remote peer. In many cases, the 
chain contains only the aforementioned two certificates, but it is also possible for 
the chain to be longer when the root CA issues a certificate that the subject may 
use to sign other certificates. Regardless of the length of the chain, this scheme 
can only work if we trust that the root CA has sufficiently verified the identity of 
the subject before issuing the certificate.

An implementation of the SSL protocol also needs to know which root CAs 
we trust. An application supplies that information as a list of certificates repre-
senting the trusted root CAs. With that list in hand, the SSL implementation 
authenticates a peer by obtaining the peer’s certificate chain and examining it 
carefully for validity. If we view the chain as a hierarchy with the root CA certifi-
cate at the top and the peer’s certificate at the bottom, we can describe SSL’s vali-
dation activities as follows:

• The root CA certificate must be self-signed and be present among the 
application’s trusted CA certificates.

• All other certificates in the chain must be signed by the one immediately 
preceding it.

• The certificates must not be expired or revoked.

These tests certify that the chain is valid, but applications often require the chain 
to undergo more intensive scrutiny (see Section 39.4.5).

Commercial CAs exist to supply organizations with a reliable source of certif-
icates, but in many cases a private CA is completely sufficient. You can create and 
manage your CA using freely-available tools, and in fact Ice includes a collection 
of utilities that simplify this process (see Section 39.7).

Depending on your implementation language, it may also possible to avoid the 
use of certificates altogether; encryption is still used to obscure the session traffic, 
but the benefits of authentication are sacrificed in favor of reduced complexity and 
administration.

For more information on PKI, see [5].
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39.2.3 Requirements
Integrating IceSSL into your application often requires no changes to your source 
code, but does involve the following administrative tasks:

• creating a public key infrastructure (if necessary)

• configuring the IceSSL plug-in

• modifying your application’s configuration to install the IceSSL plug-in and 
use secure connections

The remainder of this chapter discusses plug-in configuration and programming.

39.3 Using IceSSL

Incorporating IceSSL into your application requires installing the plug-in, config-
uring it according to your security requirements, and creating SSL endpoints.

39.3.1 Installing IceSSL
Ice supports a generic plug-in facility that allows extensions (such as IceSSL) to 
be installed dynamically without changing the application source code. The 
Ice.Plugin property (see Appendix C) provides language-specific information 
that enables the Ice run time to install a plug-in.

C++ Applications

The executable code for the IceSSL C++ plug-in resides in a shared library on 
Unix and a dynamic link library (DLL) on Windows. The format for the 
Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=IceSSL:createIceSSL

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value IceSSL:createIceSSL is sufficient 
to allow the Ice run time to locate the IceSSL library (on both Unix and Windows) 
and initialize the plug-in. The only requirement is that the library reside in a direc-
tory that appears in the shared library path (LD_LIBRARY_PATH on most Unix 
platforms, PATH on Windows).

Additional configuration properties are usually necessary as well; see 
Section 39.4 for more information.
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Java Applications

The format for the Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=IceSSL.PluginFactory

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value IceSSL.PluginFactory is the 
name of a class that allows the Ice run time to initialize the plug-in. The IceSSL 
classes are included in Ice.jar, therefore no additional changes to your 
CLASSPATH are necessary.

Due to technical limitations in Java2’s SSL implementation, it is not possible 
to use IceSSL in conjunction with the “thread pool” threading model that the Ice 
run time uses by default. To use IceSSL in a Java2 application, you must select an 
alternate threading model called “thread per connection” by defining the 
following configuration property:

Ice.ThreadPerConnection=1

This property must be defined for each communicator in which the IceSSL plug-
in is installed. When using a Java5 version of the Ice run time, you may use either 
threading model. Refer to Section 30.9 for details on the Ice threading models.

Additional configuration properties are usually necessary as well; see 
Section 39.4 for more information.

.NET 2.0 Applications

The format for the Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=C:/Ice/bin/icesslcs.dll:IceSSL.PluginFactory

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value contains the filename of the IceSSL 
assembly as well as the name of a class, IceSSL.PluginFactory, that allows 
the Ice run time to initialize the plug-in. As described in Appendix C, you may 
also specify the full assembly name instead of the filename in an Ice.Plugin 
property.

Due to technical limitations in the .NET 2.0 SSL implementation, it is not 
possible to use IceSSL in conjunction with the “thread pool” threading model that 
the Ice run time uses by default. To use IceSSL in a .NET 2.0 application, you 
must select an alternate threading model called “thread per connection” by 
defining the following configuration property:
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Ice.ThreadPerConnection=1

This property must be defined for each communicator in which the IceSSL plug-
in is installed. Refer to Section 30.9 for details on the Ice threading models.

Additional configuration properties are usually necessary as well; see 
Section 39.4.3 for more information.

39.3.2 Creating SSL Endpoints
Installing the IceSSL plug-in enables you to use a new protocol, ssl, in your 
endpoints. For example, the following endpoint list creates a TCP endpoint, an 
SSL endpoint, and a UDP endpoint:

MyAdapter.Endpoints=tcp -p 8000:ssl -p 8001:udp -p 8000

As this example demonstrates, it is possible for a UDP endpoint to use the same 
port number as a TCP or SSL endpoint, because UDP is a different protocol and 
therefore has its own set of ports. It is not possible for a TCP endpoint and an SSL 
endpoint to use the same port number, because SSL is essentially a layer over 
TCP.

Using SSL in stringified proxies is equally straightforward:

MyProxy=MyObject:tcp -p 8000:ssl -p 8001:udp -p 8000

For more information on proxies and endpoints, see Appendix D.

39.3.3 Security Considerations
Defining an object adapter’s endpoints to use multiple protocols, as shown in the 
example in Section 39.3.2, has obvious security implications. If your intent is to 
use SSL to protect session traffic and/or restrict access to the server, then you 
should only define SSL endpoints.
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There can be situations, however, in which insecure endpoint protocols are 
advantageous. Figure 39.1 illustrates an environment in which TCP endpoints are 
allowed behind the firewall, but external clients are required to use SSL.

Figure 39.1. An application of multiple protocol endpoints.

The firewall in Figure 39.1 is configured to block external access to TCP port 
8000 and to forward connections to port 8001 to the server machine.

One reason for using TCP behind the firewall is that it is more efficient than 
SSL and requires less administrative work to use. Of course, this scenario assumes 
that internal clients can be trusted, which is not true in many environments.

For more information on using SSL in complex network architectures, see 
Chapter 40.

39.4 Configuring IceSSL

After installing IceSSL as described in Section 39.3.1, an application typically 
needs to define a handful of additional properties to configure settings such as the 
location of certificate and key files. This section provides an introduction to 
configuring the plug-in for each of the supported language mappings. For a 
complete listing of the IceSSL configuration properties, see Appendix C.

39.4.1 C++
Our first example shows the properties that are sufficient in many situations:

Client

Server Firewall Client

tcp -p 8000
ssl -p 8001

tcp -p 8000
ssl -p 8001
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Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.DefaultDir=/opt/certs 
IceSSL.CertFile=pubkey.pem 
IceSSL.KeyFile=privkey.pem 
IceSSL.CertAuthFile=ca.pem 
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the default 
location of your certificate and key files. The three properties that follow it define 
the files containing the program’s certificate, private key, and trusted CA certifi-
cate, respectively. This example assumes the files contain RSA keys, and IceSSL 
requires the files to use the Privacy Enhanced Mail (PEM) encoding. Finally, the 
IceSSL.Password property specifies the password of the private key.

Note that it is a security risk to define a password in a plain text file, such as an 
Ice configuration file, because anyone who can gain read access to your configura-
tion file can obtain your password. See Section 39.6.1 for alternate ways to supply 
IceSSL with a password.

DSA Example

If you used DSA to generate your keys, one additional property is necessary:

Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.DefaultDir=/opt/certs 
IceSSL.CertFile=pubkey_dsa.pem 
IceSSL.KeyFile=privkey_dsa.pem 
IceSSL.CertAuthFile=ca.pem 
IceSSL.Password=password 
IceSSL.Ciphers=DEFAULT:DSS

The IceSSL.Ciphers property adds support for DSS authentication to the 
plug-in’s default set of ciphersuites. See Appendix C for more information on this 
property.

ADH Example

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH 
is not a good choice in most cases because, as its name implies, there is no authen-
tication of the communicating parties, and it is vulnerable to man-in-the-middle 
attacks. However, it still provides encryption of the session traffic and requires 
very little administration and therefore may be useful in certain situations. The 
configuration properties shown below demonstrate how to use ADH:
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Ice.Plugin.IceSSL=IceSSL:createIceSSL 
IceSSL.Ciphers=ADH 
IceSSL.VerifyPeer=0

The IceSSL.Ciphers property enables support for ADH, which is disabled by 
default.

The IceSSL.VerifyPeer property changes the plug-in’s default behavior 
with respect to certificate verification. Without this setting, IceSSL rejects a 
connection if the peer does not supply a certificate (as is the case with ADH).

See Appendix C for more information on these properties.

39.4.2 Java
IceSSL uses Java’s native format for storing keys and certificates: the keystore.
A keystore is represented as a file containing key pairs and associated certificates, 
and is usually administered using the keytool utility supplied with the Java run 
time. Keystores serve two roles in Java’s SSL architecture:

1. A keystore containing a key pair identifies the peer and is usually closely 
guarded.

2. A keystore containing public certificates represents the identities of trusted 
peers and can be freely shared. These keystores are also referred to as “trust-
stores.”

Java supports a pluggable architecture for keystore implementations in which a 
system property selects a particular implementation as the default keystore type. 
IceSSL uses the default keystore type unless otherwise specified.

A password is assigned to each key pair in a keystore, as well as to the 
keystore itself. IceSSL must be provided with the password for the key pair, but 
the keystore password is optional. If a keystore password is specified, it is used 
only to verify the keystore’s integrity. IceSSL requires that all of the key pairs in a 
keystore have the same password.

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL.PluginFactory 
IceSSL.DefaultDir=/opt/certs 
IceSSL.Keystore=keys.jks 
IceSSL.Truststore=ca.jks 
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the default 
location of your keystore and truststore files. The IceSSL.Password property 
specifies the password of the key pair.
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Note that it is a security risk to define a password in a plain text file, such as an 
Ice configuration file, because anyone who can gain read access to your configura-
tion file can obtain your password. Section 39.6.1 describes a more secure way to 
configure the plug-in.

DSA Example

Java supports both RSA and DSA keys. No additional properties are necessary to 
use DSA:

Ice.Plugin.IceSSL=IceSSL.PluginFactory 
IceSSL.DefaultDir=/opt/certs 
IceSSL.Keystore=dsakeys.jks 
IceSSL.Truststore=ca.jks 
IceSSL.Password=password

ADH Example

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH 
is not a good choice in most cases because, as its name implies, there is no authen-
tication of the communicating parties, and it is vulnerable to man-in-the-middle 
attacks. However, it still provides encryption of the session traffic and requires 
very little administration and therefore may be useful in certain situations. The 
configuration properties shown below demonstrate how to use ADH:

Ice.Plugin.IceSSL=IceSSL.PluginFactory 
IceSSL.DefaultDir=/opt/certs 
IceSSL.Ciphers=NONE (DH_anon) 
IceSSL.VerifyPeer=0

The IceSSL.Ciphers property enables support for ADH, which is disabled by 
default.

The IceSSL.VerifyPeer property changes the plug-in’s default behavior 
with respect to certificate verification. Without this setting, IceSSL rejects a 
connection if the peer does not supply a certificate (as is the case with ADH).

See Appendix C for more information on these properties.

39.4.3 .NET 2.0
The Common Language Runtime (CLR) in .NET 2.0 uses certificate stores as the 
persistent repositories of certificates and keys. Furthermore, the CLR maintains 
two distinct sets of certificate stores, one for the current user and another for the 
local machine. Although it is possible to load a certificate and its corresponding 
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private key from a regular file, the CLR requires trusted CA certificates to reside 
in an appropriate certificate store.

Managing Certificates with the Microsoft Management Console

On Windows, you can use the Microsoft Management Console (MMC) to browse 
the contents of the various certificate stores. To start the console, run MMC.EXE 
from a command window, or choose Run from the Start menu and enter 
MMC.EXE.

Once the console is running, you need to install the Certificates “snap-in” by 
choosing Add/Remove Snap-in from the File menu. Click the Add button, choose 
Certificates in the popup window and click Add. If you wish to manage certifi-
cates for the current user, select My Current Account and click Finish. To manage 
certificates for the local computer, select Computer Account and click Next, then 
select Local Computer and click Finish.

When you have finished adding snap-ins, close the Add Standalone Snap-in 
window and click OK on the Add/Remove Snap-in window. Your Console Root 
window now contains a tree structure that you can expand to view the available 
certificate stores. If you have a certificate in a file that you want to add to a store, 
click on the desired store, then open the Action menu and select All Tasks/Import.

Using Certificate Files

Our first example demonstrates how to configure IceSSL with a file that contains 
the program’s certificate and key:

Ice.Plugin.IceSSL=icesslcs.dll:IceSSL.PluginFactory 
IceSSL.DefaultDir=/opt/certs 
IceSSL.CertFile=cert.pfx 
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the default 
location of your certificate file. This file must use the Personal Information 
Exchange (PFX, also known as PKCS#12) format and contain both a certificate 
and its corresponding private key. The IceSSL.Password property specifies 
the password used to secure the file.

Note that it is a security risk to define a password in a plain text file, such as an 
Ice configuration file, because anyone who can gain read access to your configura-
tion file can obtain your password. More secure methods of configuring the plug-
in are described in the next section and in Section 39.6.1.

This configuration assumes that any trusted CA certificates necessary to 
authenticate the program’s peers are already installed in an appropriate certificate 
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store. You may also use a configuration property to automatically import a certifi-
cate from a file, as described in a subsequent section below.

Using Certificate Stores

If the program’s certificate and private key are already installed in a certificate 
store, you can select it using the IceSSL.FindCert configuration property as 
shown in the following example:

Ice.Plugin.IceSSL=icesslcs.dll:IceSSL.PluginFactory 
IceSSL.FindCert.LocalMachine.My=subject:"Quote Server"

An IceSSL.FindCert property executes a query in a particular certificate 
store and selects all of the certificates that match the given criteria. In the example 
above, the location of the certificate store is LocalMachine, and the store’s 
name is My. When using MMC to browse the certificate stores, this specification 
is equivalent to the store “Personal” in the location “Certificates (Local 
Computer).”

The other legal value for the location component of the property name is 
CurrentUser. Table 39.1 shows the valid values for the store name component 
and their equivalents in MMC.

Table 39.1. Certificate store names.

Property Name MMC Name

AddressBook Other People

AuthRoot Third-Party Root Certification Authorities

CertificateAuthority Intermediate Certification Authorities

Disallowed Untrusted Certificates

My Personal

Root Trusted Root Certification Authorities

TrustedPeople Trusted People

TrustedPublisher Trusted Publishers
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The search criteria consists of name:value pairs that perform case-insensitive 
comparisons against the fields of each certificate in the specified store, and the 
special property value * selects every certificate in the store. Typically, however, 
the criteria should select a single certificate. In a server, IceSSL must supply the 
CLR with the certificate that represents the server’s identity; if a configuration 
matches several certificates, IceSSL chooses one (in an undefined manner) and 
logs a warning to notify you of the situation.

Selecting a certificate from a store is more secure than using a certificate file 
via the IceSSL.CertFile property because it is not necessary to specify a 
plain-text password. MMC prompts you for the password when initially importing 
a certificate into a store, so the password is not required when an application uses 
that certificate to identify itself.

For complete details about the syntax of the IceSSL.FindCert property, 
see its description in Appendix C.

Importing Certificates

IceSSL can be configured to import a certificate into a particular store. The Ice 
demos and test suites use this capability to ensure that the CA certificate is 
present, which avoids the need for a user to manually import the certificate using 
MMC before she could use the Ice sample programs and tests.

The IceSSL.ImportCert property uses the same format for its name as 
the IceSSL.FindCert property described above, in that the certificate store’s 
location and name are part of the property name:

IceSSL.ImportCert.LocalMachine.AuthRoot=cacert.pem

The property’s value is the name of a certificate file and an optional password. If a 
file is protected with a password, append the password to the property value using 
a semicolon as the separator. IceSSL uses the value of IceSSL.DefaultDir 
to complete the filename if necessary. The CLR accepts a number of encoding 
formats for the certificate, including PEM, DER and PFX.

The store name should be chosen with care. When installing a trusted CA 
certificate, you must install it into the AuthRoot or Root certificate stores for 
authentication to succeed. If you specify a store name other than those listed in 
Table 39.1, IceSSL creates a new store with the given name and adds the certifi-
cate to it. Once installed in the specified store, the application (or the user) is 
responsible for removing the certificate when it is no longer necessary.
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39.4.4 Ciphersuites
A ciphersuite represents a particular combination of encryption, authentication 
and hashing algorithms. The IceSSL plug-ins for C++ and Java allow you to 
configure the ciphersuites that their underlying SSL engines are allowed to nego-
tiate during handshaking with a peer. By default, IceSSL uses the underlying 
engine’s default ciphersuites, but you can define a property to customize the list as 
we demonstrated earlier in this section with the ADH examples. Normally the 
default configuration is chosen to eliminate relatively insecure ciphersuites such 
as ADH, which is the reason it must be explicitly enabled.

Configuring Ciphersuites in C++

The value of the IceSSL.Ciphers property is given directly to the low-level 
OpenSSL library, on which IceSSL is based. Therefore, OpenSSL determines the 
allowable ciphersuites, which in turn depend on how the OpenSSL distribution 
was compiled. You can obtain a complete list of the supported ciphersuites using 
the openssl command:

$ openssl ciphers

This command will likely generate a long list. To simplify the selection process, 
OpenSSL supports several classes of ciphers, as shown in Table 39.2.

Classes and ciphers can be excluded by prefixing them with an exclamation point. 
The special keyword @STRENGTH sorts the cipher list in order of their strength, 
so that SSL gives preference to the more secure ciphers when negotiating a cipher 
suite. The @STRENGTH keyword must be the last element in the list.

For example, here is a good value for the cipherlist attribute:

ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

Table 39.2. Cipher classes.

Class Description

ALL All possible combinations.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.
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This value excludes the ciphers with low bit strength and known problems, and 
orders the remaining ciphers according to their strength.

Note that no warning is given if an unrecognized cipher is specified.

Configuring Ciphersuites in Java

IceSSL for Java interprets the value of IceSSL.Ciphers as a sequence of 
expressions that filter the selected ciphersuites using name and pattern matching. 
If the property is not defined, the Java security provider’s default ciphersuites are 
used. Table 39.3 defines the valid expressions that may appear in the property 
value.

To determine the set of enabled ciphersuites, the plug-in begins with a list of 
ciphersuite names containing the default set as determined by the security 
provider. The expressions in the property value add and remove ciphersuites from 
this list and are evaluated in the order of appearance. For example, consider the 
following property definition:

IceSSL.Ciphers=NONE (RSA.*AES) !(EXPORT)

The expressions in this property have the following effects:

• NONE clears the list of enabled ciphersuites.

Table 39.3. Ciphersuite filter expressions.

Expression Description

NONE Disables all ciphersuites. If specified, it must appear first.

ALL Enables all supported ciphersuites. If specified, it must appear 
first. This expression should be used with caution, as it may 
enable low-security ciphersuites

NAME Enables the ciphersuite matching the given name.

!NAME Disables the ciphersuite matching the given name.

(EXP) Enables ciphersuites whose names contain the regular expression 
EXP.

!(EXP) Disables ciphersuites whose names contain the regular expres-
sion EXP.
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• (RSA.*AES) is a regular expression that enables ciphersuites whose names 
contain the string “RSA” followed by “AES”, meaning ciphersuites using 
RSA authentication and AES encryption.

• !(EXPORT) is a regular expression that disables any of the selected cipher-
suites whose names contain the string “EXPORT”, meaning ciphersuites 
having export-quality strength.

As another example, this property adds anonymous Diffie-Hellman to the default 
set of ciphersuites and disables export ciphersuites:

IceSSL.Client.Ciphers=(DH_anon) !(EXPORT)

Finally, this example selects only one ciphersuite:

IceSSL.Client.Ciphers=NONE SSL_RSA_WITH_RC4_128_SHA

39.4.5 Trust
As described in Section 39.2.2, declaring that you trust a certificate authority 
implies that you trust any peer whose certificate was signed directly or indirectly 
by that certificate authority. It is necessary to use this broad definition of trust in 
some applications, such as a public Web server. In more controlled environments, 
it is a good idea to restrict access as much as possible, and IceSSL provides a 
number of ways for you to do that.

Trusted Peers

After the low-level SSL engine has completed its authentication process, IceSSL 
can be configured to take additional steps to verify that a peer should be trusted. 
The IceSSL.TrustOnly family of properties defines a collection of filters that 
IceSSL applies to the distinguished name of a peer’s certificate in order to deter-
mine whether to allow the connection to proceed. IceSSL permits the connection 
if the peer’s distinguished name matches any of the filters, otherwise the connec-
tion is rejected.

A distinguished name uniquely identifies a person or entity and is generally 
represented in the following textual form:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.", 
OU=Servers, CN=Quote Server

Suppose we are configuring a client to communicate with the server whose distin-
guished name is shown above. If we know that the client is allowed to communi-
cate only with this server, we can enforce this rule using the following property:
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IceSSL.TrustOnly=O="ZeroC, Inc.", OU=Servers, CN=Quote Server

With this property in place, IceSSL allows a connection to proceed only if the 
distinguished name in the server’s certificate matches this filter. The property may 
contain multiple filters, separate by semicolons, if the client needs to communi-
cate with more than one server. Additional variations of the property are also 
supported, as described in Appendix C.

If the IceSSL.TrustOnly properties do not provide the selectivity you 
require, the next step is to install a custom certificate verifier (see Section 39.5).

Verification Depth

In order to authenticate a peer, SSL obtains the peer’s certificate chain, which 
includes the peer’s certificate as well as that of the root CA. SSL verifies that each 
certificate in the chain is valid, but there still remains a subtle security risk. 
Suppose that we have identified a trusted root CA (via its certificate), and a peer 
has supplied a valid certificate chain signed by our trusted root CA. It is possible 
for an attacker to obtain a special signing certificate that is signed by our root CA 
and therefore trusted implicitly. The attacker can use this certificate to sign fraud-
ulent certificates with the goal of masquerading as a trusted peer, presumably for 
some nefarious purpose.

We could use the IceSSL.TrustOnly properties described above in an 
attempt to defend against such an attack. However, the attacker could easily manu-
facture a certificate containing a distinguished name that satisfies the trust proper-
ties.

If you know that all trusted peers present certificate chains of a certain length, 
set the property IceSSL.VerifyDepthMax so that IceSSL automatically 
rejects longer chains. The default value of this property is two, therefore you may 
need to set it to a larger value if you expect peers to present longer chains.

In situations where you cannot make assumptions about the length of a peer’s 
certificate chain, yet you still want to examine the chain before allowing the 
connection, you should install a custom certificate verifier (see Section 39.5).

39.4.6 Diagnostics
You can use two configuration properties to obtain more information about the 
plug-in’s activities. Setting IceSSL.Trace.Security=1 enables the plug-
in’s diagnostic output, which includes a variety of messages regarding events such 
as ciphersuite selection, peer verification and trust evaluation. The other property, 
Ice.Trace.Network, determines how much information is logged about 
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network events such as connections and packets. Note that the output generated by 
Ice.Trace.Network also includes other transports such as TCP and UDP.

System Logging in Java

In Java, you can use a system property that displays a great deal of information 
about SSL certificates and connections, including the ciphersuite that is selected 
for use by each connection. For example, the following command sets the system 
property that activates the diagnostics:

$ java -Djavax.net.debug=ssl MyProgram

System Logging in .NET

Enabling additional tracing output in .NET requires the creation of an XML file 
such as the one shown below:

<?xml version="1.0" encoding="UTF-8" ?> 
<configuration> 
    <system.diagnostics> 
        <trace autoflush="true"/> 
        <sources> 
            <source name="System.Net"> 
                <listeners> 
                    <add name="System.Net"/> 
                </listeners> 
            </source> 
            <source name="System.Net.Sockets"> 
                <listeners> 
                    <add name="System.Net"/> 
                </listeners> 
            </source> 
            <source name="System.Net.Cache"> 
                <listeners> 
                    <add name="System.Net"/> 
                </listeners> 
            </source> 
        </sources> 
        <sharedListeners> 
            <add 
            name="System.Net" 
            type="System.Diagnostics.TextWriterTraceListener" 
            initializeData="trace.txt" 
            /> 
        </sharedListeners> 
        <switches> 



39.5 Programming with IceSSL 1305

            <add name="System.Net" value="Verbose"/> 
            <add name="System.Net.Sockets" value="Verbose"/> 
          
            <add name="System.Net.Cache" value="Verbose"/> 
        </switches> 
    </system.diagnostics> 
</configuration>

In this example, the output is stored in the file trace.txt. To activate tracing, 
give the XML file the same name as your executable with a .config extension 
as in server.exe.config, and place it in the same directory as the execut-
able.

39.5 Programming with IceSSL

The configuration properties described in Section 39.4 are flexible enough to 
satisfy the requirements of many applications, and IceSSL supports a public API 
that offers even more functionality for those applications that need it.

39.5.1 C++
This section describes the C++ API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native C++ 
class IceSSL::Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:

Ice::CommunicatorPtr communicator = // ... 
Ice::PluginManagerPtr pluginMgr = 
    communicator->getPluginManager(); 
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL"); 
IceSSL::PluginPtr sslPlugin = 
    IceSSL::PluginPtr::dynamicCast(plugin);

The Plugin class supports the following methods:

namespace IceSSL 
{ 
class Plugin : public Ice::Plugin 
{ 
public: 
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    virtual void setContext(SSL_CTX*) = 0; 
    virtual SSL_CTX* getContext() = 0; 
 
    virtual void setCertificateVerifier( 
        const CertificateVerifierPtr&) = 0; 
 
    virtual void setPasswordPrompt( 
        const PasswordPromptPtr&) = 0; 
}; 
typedef IceUtil::Handle<Plugin> PluginPtr; 
}

The setContext and getContext methods are rarely used in practice; see 
Section 39.6 for more information. The setCertificateVerifier method 
installs a custom certificate verifier object that the plugin invokes for each new 
connection. The setPasswordPrompt method provides an alternate way to 
supply IceSSL with passwords, as discussed in Section 39.6.

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 39.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 39.4.5). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

namespace IceSSL 
{ 
class CertificateVerifier : public IceUtil::Shared 
{ 
public: 
 
    virtual bool verify(const ConnectionInfo&) = 0; 
}; 
typedef IceUtil::Handle<CertificateVerifier> 
    CertificateVerifierPtr; 
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a ConnectionInfo 
object that describes the connection’s attributes:
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namespace IceSSL 
{ 
struct ConnectionInfo 
{ 
    std::vector<CertificatePtr> certs; 
    std::string cipher; 
    struct sockaddr_in localAddr; 
    struct sockaddr_in remoteAddr; 
    bool incoming; 
    std::string adapterName; 
}; 
}

The certs member is a vector of certificates representing the peer’s certificate 
chain. The vector is structured so that the first element is the peer’s certificate, 
followed by its signing certificates in the order they appear in the chain, with the 
root CA certificate as the last element. The vector is empty if the peer did not 
present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated 
for this connection. The local and remote address information is provided in 
localAddr and remoteAddr, respectively. The incoming member indi-
cates whether the connection is inbound (a server connection) or outbound (a 
client connection). Finally, if incoming is true, the adapterName member 
supplies the name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

class Verifier : public IceSSL::CertificateVerifier 
{ 
public: 
 
    bool verify(const IceSSL::ConnectionInfo& info) 
    { 
        if(!info.certs.empty()) 
        { 
            string dn = info.certs[0].getIssuerDN(); 
            transform(dn.begin(), dn.end(), dn.begin(), 
                      ::tolower); 
            if(dn.find("zeroc") != string::npos) 
            { 
                return true; 
            } 
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        } 
        return false; 
    } 
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plugin interface:

IceSSL::PluginPtr sslPlugin = // ... 
sslPlugin->setCertificateVerifier(new Verifier);

You should install the verifier before any SSL connections are established.
See Section 39.6.2 for more information on installing a certificate verifier.

Obtaining Connection Information

You can obtain information about any SSL connection using the getConnec-
tionInfo function:

namespace IceSSL 
{ 
ConnectionInfo getConnectionInfo(const Ice::ConnectionPtr&); 
}

The function throws IceSSL::ConnectionInvalidException if its 
argument does not represent an SSL connection.

For more information on connections, see Chapter 34.

Certificates

The ConnectionInfo class contains a vector of Certificate objects 
representing the peer’s certificate chain. Certificate is a reference-counted 
convenience class that hides the complexity of the underlying OpenSSL API. Its 
methods are inspired by the Java class X509Certificate:

namespace IceSSL 
{ 
class Certificate : public IceUtil::Shared 
{ 
public: 
 
    Certificate(X509*); 
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    static CertificatePtr load(const string&); 
    static CertificatePtr decode(const string&); 
 
    bool operator==(const Certificate&) const; 
    bool operator!=(const Certificate&) const; 
 
    PublicKeyPtr getPublicKey() const; 
 
    bool verify(const PublicKeyPtr&) const; 
 
    string encode() const; 
 
    bool checkValidity() const; 
    bool checkValidity(const IceUtil::Time&) const; 
 
    IceUtil::Time getNotAfter() const; 
    IceUtil::Time getNotBefore() const; 
 
    string getSerialNumber() const; 
 
    DistinguishedName getIssuerDN() const; 
    vector<pair<int, string> > getIssuerAlternativeNames(); 
 
    DistinguishedName getSubjectDN() const; 
    vector<pair<int, string> > getSubjectAlternativeNames(); 
 
    int getVersion() const; 
 
    string toString() const; 
 
    X509* getCert() const; 
}; 
typedef IceUtil::Handle<Certificate> CertificatePtr; 
}

The more commonly-used methods are described below; refer to the documenta-
tion in IceSSL/Plugin.h for information on the methods that are not covered.

The static method load creates a certificate from the contents of a PEM-
encoded file. If an error occurs, the function raises IceSSL::Certifica-
teReadException; the reason member provides a description of the problem.

Use decode to obtain a certificate from a PEM-encoded string representing a 
certificate. The caller must be prepared to catch IceSSL::CertificateEn-
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codingException if decode fails; the reason member provides a description 
of the problem.

The encode method creates a PEM-encoded string that represents the certifi-
cate. The return value can later be passed to decode to recreate the certificate.

The checkValidity methods determine whether the certificate is valid. 
The overloading with no arguments returns true if the certificate is valid at the 
current time; the other overloading accepts an IceUtil::Time object and 
returns true if the certificate is valid at the given time. See Section 29.7 for more 
information on IceUtil::Time.

The getNotAfter and getNotBefore methods return instances of 
IceUtil::Time that define the certificate’s valid period.

The methods getIssuerDN and getSubjectDN supply the distinguished 
names of the certificate’s issuer (i.e., the CA that signed the certificate) and 
subject (i.e., the person or entity to which the certificate was issued). The methods 
return instances of the class IceSSL::DistinguishedName, another conve-
nience class that is described in the next section.

Finally, the toString method returns a human-readable string describing 
the certificate.

Distinguished Names

X.509 certificates use a distinguished name to identify a person or entity. The 
name is an ordered sequence of relative distinguished names that supply values 
for fields such as common name, organization, state, and country. Distinguished 
names are commonly displayed in stringified form according to the rules specified 
by RFC 2253, as shown in the following example:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.", 
OU=Servers, CN=Quote Server

DistinguishedName is a convenience class provided by IceSSL to simplify 
the tasks of parsing, formatting and comparing distinguished names.

namespace IceSSL 
{ 
class DistinguishedName 
{ 
public: 
 
    DistinguishedName(const std::string&); 
    DistinguishedName( 
        const std::list<std::pair<std::string, std::string> >&); 
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    bool operator==(const DistinguishedName&) const; 
    bool operator!=(const DistinguishedName&) const; 
    bool operator<(const DistinguishedName&) const; 
 
    bool match(const DistinguishedName&) const; 
 
    operator std::string() const; 
}; 
}

The first overloaded constructor accepts a string argument representing a distin-
guished name encoded using the rules set forth in RFC 2253. The new Distin-
guishedName instance preserves the order of the relative distinguished names 
in the string. The caller must be prepared to catch IceSSL::ParseExcep-
tion if an error occurs during parsing.

The second overloaded constructor requires a list of type-value pairs repre-
senting the relative distinguished names. The new DistinguishedName 
instance preserves the order of the relative distinguished names in the list.

The overloaded operator functions operator==, operator!=, and 
operator< perform an exact match of distinguished names in which the order 
of the relative distinguished names is important. For two distinguished names to 
be equal, they must have the same relative distinguished names in the same order.

The match function performs a partial comparison that does not consider the 
order of relative distinguished names. If N1 and N2 are instances of Distin-
guishedName, N1.match(N2) returns true if all of the relative distinguished 
names in N2 are present in N1.

Finally, the string conversion operator encodes the distinguished name in the 
format described by RFC 2253.

39.5.2 Java
This section describes the Java API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native Java 
interface IceSSL.Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:
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Ice.Communicator comm = // ... 
Ice.PluginManager pluginMgr = comm.getPluginManager(); 
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL"); 
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The Plugin interface supports the following methods:

package IceSSL; 
 
public interface Plugin extends Ice.Plugin 
{ 
    void setContext(javax.net.ssl.SSLContext context); 
    javax.net.ssl.SSLContext getContext(); 
 
    void setCertificateVerifier(CertificateVerifier verifier); 
}

The setContext and getContext methods are rarely used in practice; see 
Section 39.6 for more information. The setCertificateVerifier method 
installs a custom certificate verifier object that the plugin invokes for each new 
connection.

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 39.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 39.4.5). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

package IceSSL; 
 
public interface CertificateVerifier 
{ 
    boolean verify(ConnectionInfo info); 
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a ConnectionInfo 
object that describes the connection’s attributes:
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package IceSSL; 
 
public class ConnectionInfo 
{ 
    public java.security.cert.Certificate[] certs; 
    public String cipher; 
    public java.net.InetSocketAddress localAddr; 
    public java.net.InetSocketAddress remoteAddr; 
    boolean incoming; 
    String adapterName; 
}

The certs member is an array of certificates representing the peer’s certificate 
chain. The array is structured so that the first element is the peer’s certificate, 
followed by its signing certificates in the order they appear in the chain, with the 
root CA certificate as the last element. This member is null if the peer did not 
present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated 
for this connection. The local and remote address information is provided in 
localAddr and remoteAddr, respectively. The incoming member indi-
cates whether the connection is inbound (a server connection) or outbound (a 
client connection). Finally, if incoming is true, the adapterName member 
supplies the name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

import java.security.cert.X509Certificate; 
import javax.security.auth.x500.X500Principal; 
 
class Verifier implements IceSSL.CertificateVerifier 
{ 
    public boolean 
    verify(IceSSL.ConnectionInfo info) 
    { 
        if(info.certs != null) 
        { 
            X509Certificate cert = (X509Certificate)info.certs[0]; 
            X500Principal p = cert.getIssuerX500Principal(); 
            if(p.getName().toLowerCase().indexOf("zeroc") != -1) 
            { 
                return true; 
            } 
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        } 
        return false; 
    } 
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plugin interface:

IceSSL.Plugin sslPlugin = // ... 
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established.
See Section 39.6.2 for more information on installing a certificate verifier.

Obtaining Connection Information

You can obtain information about any SSL connection using the getConnec-
tionInfo function:

package IceSSL; 
 
public final class Util 
{ 
    public static ConnectionInfo 
    getConnectionInfo(Ice.Connection connection); 
 
    // ... 
}

The function throws IceSSL.ConnectionInvalidException if its argu-
ment does not represent an SSL connection.

For more information on connections, see Chapter 34.

Converting Certificates

Java does not provide a simple way to create a certificate object from a PEM-
encoded string, therefore IceSSL offers the following convenience method:

package IceSSL; 
 
public final class Util 
{ 
    // ... 
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    public static java.security.cert.X509Certificate 
    createCertificate(String certPEM) 
        throws java.security.cert.CertificateException; 
}

Given a string in the PEM format, createCertificate returns the equivalent 
X509Certificate object.

39.5.3 C#
This section describes the C# API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native C# 
interface IceSSL.Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:

Ice.Communicator comm = // ... 
Ice.PluginManager pluginMgr = comm.getPluginManager(); 
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL"); 
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The Plugin interface supports the following methods:

namespace IceSSL 
{ 
    using System.Security.Cryptography.X509Certificates; 
 
    abstract public class Plugin : Ice.LocalObjectImpl, Ice.Plugin 
    { 
        abstract public void 
        setCertificates(X509Certificate2Collection certs); 
 
        abstract public void 
        setCertificateVerifier(CertificateVerifier verifier); 
    } 
}

The setCertificates method is rarely used in practice; see Section 39.6 for 
more information. The setCertificateVerifier method installs a custom 
certificate verifier object that the plugin invokes for each new connection.



1316 IceSSL

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 39.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 39.4.5). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

namespace IceSSL 
{ 
    public interface CertificateVerifier 
    { 
        bool verify(ConnectionInfo info); 
    } 
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a ConnectionInfo 
object that describes the connection’s attributes:

namespace IceSSL 
{ 
    using System.Security.Cryptography.X509Certificates; 
 
    public sealed class ConnectionInfo 
    { 
        public X509Certificate2[] certs; 
        public string cipher; 
        public System.Net.IPEndPoint localAddr; 
        public System.Net.IPEndPoint remoteAddr; 
        public bool incoming; 
        public string adapterName; 
    } 
}

The certs member is an array of certificates representing the peer’s certificate 
chain. The array is structured so that the first element is the peer’s certificate, 
followed by its signing certificates in the order they appear in the chain, with the 
root CA certificate as the last element. This member is null if the peer did not 
present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated 
for this connection. The local and remote address information is provided in 
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localAddr and remoteAddr, respectively. The incoming member indi-
cates whether the connection is inbound (a server connection) or outbound (a 
client connection). Finally, if incoming is true, the adapterName member 
supplies the name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

using System.Security.Cryptography.X509Certificates; 
 
class Verifier : IceSSL.CertificateVerifier 
{ 
    public boolean 
    verify(IceSSL.ConnectionInfo info) 
    { 
        if(info.certs != null) 
        { 
            X500DistinguishedName dn = info.certs[0].IssuerName; 
            if(dn.Name.ToLower().Contains("zeroc")) 
            { 
                return true; 
            } 
        } 
        return false; 
    } 
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plugin interface:

IceSSL.Plugin sslPlugin = // ... 
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established.
See Section 39.6.2 for more information on installing a certificate verifier.

Obtaining Connection Information

You can obtain information about any SSL connection using the getConnec-
tionInfo function:
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namespace IceSSL 
{ 
    public sealed class Util 
    { 
        // ... 
 
        public static ConnectionInfo 
        getConnectionInfo(Ice.Connection connection); 
    } 
}

The function throws IceSSL.ConnectionInvalidException if its argu-
ment does not represent an SSL connection.

For more information on connections, see Chapter 34.

Converting Certificates

IceSSL offers the following convenience method to create a certificate object from 
a PEM-encoded string:

namespace IceSSL 
{ 
    using System.Security.Cryptography.X509Certificates; 
 
    public sealed class Util 
    { 
        // ... 
 
        public static X509Certificate2 
        createCertificate(string certPEM); 
    } 
}

Given a string in the PEM format, createCertificate returns the equivalent 
X509Certificate2 object.

39.5.4 Visual Basic
This section describes the Visual Basic API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native Visual 
Basic interface IceSSL.Plugin. A reference to a Plugin object must be 
obtained from the communicator in which the plug-in is installed:
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Dim comm As Ice.Communicator = // ... 
Dim pluginMgr As Ice.PluginManager = comm.getPluginManager() 
Dim plugin As Ice.Plugin = pluginMgr.getPlugin("IceSSL") 
Dim sslPlugin As IceSSL.Plugin = (IceSSL.Plugin)plugin

The Plugin interface supports the following methods:

Namespace IceSSL 
 
Imports System.Security.Cryptography.X509Certificates 
 
Public Interface Plugin Inherits Ice.Plugin 
 
        Public MustOverride Sub 
        setCertificates(ByVal certs As X509Certificate2Collection) 
 
        Public MustOverride Sub 
        setCertificateVerifier( 
            ByVal verifier As CertificateVerifier) 
 
End Class 
 
End Namespace

The setCertificates method is rarely used in practice; see Section 39.6 for 
more information. The setCertificateVerifier method installs a custom 
certificate verifier object that the plugin invokes for each new connection.

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
required by the protocol specification, which includes checking the validity of the 
peer’s certificate chain. If this step completes successfully, IceSSL performs addi-
tional verification as directed by its configuration properties (see Section 39.4.5). 
Finally, if a certificate verifier is installed, IceSSL invokes it to provide the appli-
cation with an opportunity to decide whether to allow the connection to proceed.

The CertificateVerifier interface has only one method:

Namespace IceSSL 
 
Public Interface CertificateVerifier 
 
    Function verify(ByVal info As ConnectionInfo) As Boolean 
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End Interface 
 
End Namespace

IceSSL rejects the connection if verify returns False, and allows it to proceed 
if the method returns True. The verify method receives a ConnectionInfo 
object that describes the connection’s attributes:

Namespace IceSSL 
 
Imports System.Security.Cryptography.X509Certificates 
 
Public NotInheritable Class ConnectionInfo 
    Public certs As X509Certificate2() 
    Public cipher As String 
    Public localAddr As System.Net.IPEndPoint 
    Public remoteAddr As System.Net.IPEndPoint 
    Public incoming As Boolean 
    Public adapterName As String 
End Class 
 
End Namespace

The certs member is an array of certificates representing the peer’s certificate 
chain. This member is Nothing if the peer did not present a certificate chain, 
otherwise the first element of the array is the peer’s certificate.

The cipher member is a description of the ciphersuite that SSL negotiated 
for this connection. The local and remote address information is provided in 
localAddr and remoteAddr, respectively. The incoming member indi-
cates whether the connection is inbound (a server connection) or outbound (a 
client connection). Finally, if incoming is True, the adapterName member 
supplies the name of the object adapter that received the connection.

The following class is a simple implementation of a certificate verifier:

Imports System.Security.Cryptography.X509Certificates 
 
Class Verifier Implements IceSSL.CertificateVerifier 
 
    Public Function 
    verify(ByVal info As IceSSL.ConnectionInfo) As Boolean 
        Implements IceSSL.CertificateVerifier.verify 
 
        If info.certs <> Nothing 
            Dim dn As X500DistinguishedName = 
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                info.certs(0).IssuerName 
            If dn.Name.ToLower().Contains("zeroc")) 
                Return True 
            End If 
        End If 
        Return False 
 
    End Function 
 
End Class

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plugin interface:

Dim sslPlugin As IceSSL.Plugin = // ... 
sslPlugin.setCertificateVerifier(New Verifier())

You should install the verifier before any SSL connections are established.
See Section 39.6.2 for more information on installing a certificate verifier.

Obtaining Connection Information

You can obtain information about any SSL connection using the getConnec-
tionInfo function:

Namespace IceSSL 
 
Public NotInheritable Class Util 
 
    Public Shared Function 
    getConnectionInfo(connection As Ice.Connection) 
        As ConnectionInfo 
 
End Class 
 
End Namespace

The function throws IceSSL.ConnectionInvalidException if its argu-
ment does not represent an SSL connection.

For more information on connections, see Chapter 34.
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 Converting Certificates

IceSSL offers the following convenience method to create a certificate object from 
a PEM-encoded string:

Namespace IceSSL 
 
Imports System.Security.Cryptography.X509Certificates 
 
Public NotInheritable Class Util 
 
    Public Shared Function 
    createCertificate(certPEM As String) 
        As X509Certificate2 
 
End Class 
 
End Namespace

Given a string in the PEM format, createCertificate returns the equivalent 
X509Certificate2 object.

39.6 Advanced Topics

This section discusses some additional capabilities of the IceSSL plug-in.

39.6.1 Passwords
IceSSL may need to obtain a password if it loads a file that contains secure data, 
such as an encrypted private key. Section 39.4 showed how an application can 
supply a plain-text password in a configuration property and mentioned that doing 
so is a potential security risk. For example, if you define the property on the 
application’s command-line, it may be possible for other users on the same host to 
see the password simply by obtaining a list of active processes. If you define the 
property in a configuration file, the password is only as secure as the file in which 
it is defined.

In highly secure environments where access to a host is tightly restricted, a 
password can safely be supplied as a plain-text configuration property, or the need 
for the password can be eliminated altogether by using unsecured key files.

In situations where password security is a concern, the application generally 
needs to take additional action.
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Dynamic Properties

A common technique is to prompt the user for a password and transfer the user’s 
input to a configuration property that the application defines dynamically, as 
shown below:

// C++ 
string password = // ... 
Ice::InitializationData initData; 
initData.properties = Ice::createProperties(argc, argv); 
initData.properties->setProperty("IceSSL.Password", password); 
Ice::CommunicatorPtr comm = Ice::initialize(initData);

The password must be present in the property set before the communicator is 
initialized, since IceSSL needs the password during its initialization, and the 
communicator initializes plug-ins automatically by default.

Password Prompts in C++

If a password is required but the application has not configured one, IceSSL 
prompts the user at the terminal during the plug-in’s initialization. This behavior is 
not suitable for some types of applications, such as a program that runs automati-
cally at system startup as a Unix daemon or Windows service (see Section 8.3.2).

A terminal prompt is equally undesirable for graphical applications, which 
would generally prefer to prompt the user in an application window. The dynamic 
property technique described in the previous section is usually appropriate in this 
situation.

If your application must supply a password, and you do not want to use a 
configuration property or a terminal prompt, your remaining option is to install a 
PasswordPrompt object in the plug-in using the setPasswordPrompt 
method shown in Section 39.5.1. The PasswordPrompt class has the following 
definition:

namespace IceSSL 
{ 
class PasswordPrompt : public IceUtil::Shared 
{ 
public: 
 
    virtual std::string getPassword() = 0; 
}; 
typedef IceUtil::Handle<PasswordPrompt> PasswordPromptPtr; 
}



1324 IceSSL

IceSSL invokes getPassword on the object when a password is required. If the 
object returns an incorrect password, IceSSL tries again, up to the limit defined by 
the IceSSL.PasswordRetryMax property (see Appendix C).

Note that you must delay the initialization of the IceSSL plug-in until after the 
PasswordPrompt object is installed. To illustrate this point, consider the 
following example:

Ice::CommunicatorPtr communicator = // ... 
Ice::PluginManagerPtr pluginMgr = 
    communicator->getPluginManager(); 
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL"); 
IceSSL::PluginPtr sslPlugin = 
    IceSSL::PluginPtr::dynamicCast(plugin); 
sslPlugin->setPasswordPrompt(new Prompt); // OOPS!

This code is incorrect because the PasswordPrompt object is installed too late: 
the communicator is already initialized, which means IceSSL has already 
attempted to load the file that required a password.

The correct approach is to define the following configuration property:

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured 
plug-ins. The application becomes responsible for initializing the plug-ins, as 
shown below:

Ice::CommunicatorPtr communicator = // ... 
Ice::PluginManagerPtr pluginMgr = 
    communicator->getPluginManager(); 
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL"); 
IceSSL::PluginPtr sslPlugin = 
    IceSSL::PluginPtr::dynamicCast(plugin); 
sslPlugin->setPasswordPrompt(new Prompt); 
pluginMgr->initializePlugins();

We assume the communicator was initialized with Ice.InitPlugins=0. 
After installing the PasswordPrompt object, the application invokes initial-
izePlugins on the plugin manager to complete the plug-in initialization process.

Manual Configuration

The Plugin interface described in Section 39.5 supports a method in each of the 
supported language mappings that provides an application with more control over 
the plug-in’s configuration.
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In C++ and Java, an application can call the setContext method to supply 
a pre-configured “context” object used by the underlying SSL engines. In .NET 
2.0, the setCertificates method accepts a collection of certificates that the 
plug-in should use. In all cases, using one of these methods causes IceSSL to 
ignore (at a minimum) the configuration properties related to certificates and keys. 
The application is responsible for accumulating its certificates and keys, and must 
also deal with any password requirements.

Describing the use of these plug-in methods in detail is outside the scope of 
this book, however it is important to understand their prerequisites. In particular, 
the application needs to have the communicator load the plug-in but not actually 
initialize it until after the application has had a chance to interact directly with it. 
(The previous section showed one example of this technique.) The application 
must define the following configuration property:

Ice.InitPlugins=0

With this setting, the application becomes responsible for completing the plug-in 
initialization process by invoking initializePlugins on the PluginManager. 
The C# example below demonstrates the proper steps:

// C# 
Ice.Communicator comm = // ... 
Ice.PluginManager pluginMgr = comm.getPluginManager(); 
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL"); 
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin; 
X509Certificate2Collection certs = // ... 
sslPlugin.setCertificates(certs); 
pluginMgr.initializePlugins();

39.6.2 Custom Plug-ins
The Ice plug-in facility is not restricted to protocol implementations. Ice only 
requires that a plug-in implement the Ice::Plugin interface and support the 
language-specific mechanism for dynamic loading.

The customization options of the IceSSL plug-in make it possible for you to 
install an application-specific implementation of a certificate verifier in an 
existing program. For example, you could install a custom certificate verifier in a 
Glacier2 router without the need to modify Glacier2’s source code or rebuild the 
executable. You would have to write a C++ plug-in to accomplish this, since 
Glacier2 is written in C++. In short, your plug-in must interact with the IceSSL 
plug-in and install a certificate verifier.
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For this technique to work, it is important that the plug-ins be loaded in a 
particular order. Specifically, the IceSSL plug-in must be loaded first, followed by 
the certificate verifier plug-in. By default, Ice loads plug-ins in an undefined order, 
but you can use the property Ice.PluginLoadOrder to specify a particular 
order.

As an example, let’s write a plug-in that installs the simple certificate verifier 
from Section 39.5.1. Here is the definition of our plug-in class:

class VerifierPlugin : public Ice::Plugin 
{ 
public: 
    VerifierPlugin(const Ice::CommunicatorPtr & comm) : 
        _comm(comm) 
    { 
    } 
 
    virtual void initialize() 
    { 
        Ice::PluginManagerPtr pluginMgr = 
            _comm->getPluginManager(); 
        Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL"); 
        IceSSL::PluginPtr sslPlugin = 
            IceSSL::PluginPtr::dynamicCast(plugin); 
        sslPlugin->setCertificateVerifier(new Verifier); 
    } 
 
    virtual void destroy() 
    { 
    } 
 
private: 
    Ice::CommunicatorPtr _comm; 
};

The class implements the two operations in the Plugin interface, initialize and 
destroy. The code in initialize installs the certificate verifier object, while 
nothing needs to be done in destroy.

The next step is to write the plug-in’s registration function, which the commu-
nicator invokes to obtain an instance of the plug-in:

extern "C" 
{ 
 
Ice::Plugin* 
createVerifierPlugin( 
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    const Ice::CommunicatorPtr & communicator, 
    const string & name, 
    const Ice::StringSeq & args) 
{ 
    return new VerifierPlugin(communicator); 
} 
 
}

We can give the function any name; in this example, we chose createVerifi-
erPlugin.

Finally, to install the plug-in we need to define the following properties:

Ice.PluginLoadOrder=IceSSL,Verifier 
Ice.Plugin.IceSSL=IceSSL:createIceSSL 
Ice.Plugin.Verifier=Verifier:createVerifierPlugin

The value of Ice.PluginLoadOrder guarantees that IceSSL is loaded first. 
The plug-in specification Verifier:createVerifierPlugin identifies 
the name of the shared library or DLL and the name of the registration function; 
see the description of the Ice.Plugin property in Appendix C for more infor-
mation.

There are a few more details you must attend to, such as ensuring that the 
registration function is exported properly and building the shared library or DLL 
that contains the new plug-in. You can use IceSSL as an example if the correct 
approach is not clear.

39.7 Setting up a Certificate Authority

During development, it is convenient to have a simple way of creating new certifi-
cates. OpenSSL includes all of the necessary infrastructure for setting up your 
own certificate authority (CA), but it requires getting more familiar with OpenSSL 
than is really necessary. To simplify the process, Ice includes a collection of 
Python scripts, located in the config/ca subdirectory of your Ice installation, 
that hide the complexity of OpenSSL and allow you to quickly perform the essen-
tial tasks:

• initializing a new root CA

• generating new certificate requests

• signing certificate requests to create a valid certificate chain

• converting certificates to match platform-specific requirements.
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You are not obligated to use these scripts; IceSSL accepts certificates from any 
source as long as they are provided in the appropriate formats. However, you may 
find these tools sufficient for your development needs, and possibly even for your 
deployed application as well.

Some of the scripts use a filesystem directory that contains configuration files 
and a database of issued certificates. The scripts select a default location for this 
directory that depends on your platform, or you can specify the parent directory 
explicitly by defining the ICE_CA_HOME environment variable and the scripts 
will use $ICE_CA_HOME/ca for their files.

39.7.1 Initializing a Certificate Authority
The script initca.py initializes a new CA by preparing a database directory 
and generating the root CA certificate and private key. It accepts the following 
command-line arguments:

$ python initca.py [--no-password] [--overwrite]

Upon execution, the script first checks the database directory to determine 
whether it has already been initialized. If so, the script terminates immediately 
with a warning unless you specify the --overwrite option, in which case the 
script overwrites the previous contents of the directory.

Next, the script displays the database directory it is using and begins to prompt 
you for the information it needs to generate the root CA certificate and private key. 
It offers a default choice for the CA’s distinguished name and allows you to 
change it:

The subject name for your CA will be 
CN=Grid-CA ,  O=GridCA-server 
Do you want to keep this as the CA subject name? (y/n) [y]

To specify an alternate value for the distinguished name, enter n and type the new 
information, otherwise hit Enter to proceed.

Enter the email address of the CA: ca-admin@company.com

The address you provide in response to this prompt is shown to users that create 
certificate requests. Enter the address to which such requests should be sent.

The script shows its progress as it generates the certificate and private key, 
then prompts you for a pass phrase. If you prefer not to secure your CA’s private 
key with a pass phrase, use the --no-password option.

Upon completion, the script emits the following instructions:
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The CA is initialized. 
 
You need to distribute the following files to all machines that 
can request certificates: 
 
C:\iceca\req.cnf 
C:\iceca\ca_cert.pem 
 
These files should be placed in the user's home directory in 
~/.iceca. On Windows, place these files in <ice-install>/config.

In this example, the ICE_CA_HOME environment variable was set to C:\iceca. 
As the script states, the files req.cnf and ca_cert.pem must be present on 
each host that can generate a certificate request. The script suggests a location for 
these files, which is the default directory used by the scripts if ICE_CA_HOME is 
not defined.

The ca_cert.pem file contains the root CA’s certificate. Your IceSSL 
configurations must identify this certificate (in its proper form for each platform) 
as a trusted certificate. For example, you can use this file directly in the configura-
tion of the C++ plug-in:

IceSSL.CertAuthFile=C:\iceca\ca_cert.pem

For .NET 2.0 applications, you should import the certificate file into the proper 
store, as described in Section 39.4.3.

In Java, you need to add the certificate to your truststore:

$ keytool -import -trustcacerts -file ca_cert.pem -keystore ca.jks 
Enter keystore password:

The keytool program requires you to enter a password, which you could use as the 
value of the property IceSSL.TruststorePassword (see Appendix C).

Now that your certificate authority is initialized, you can begin generating 
certificate requests.

39.7.2 Generating Certificate Requests
The script req.py uses the files you created in Section 39.7.1 to generate a 
request for a new certificate. It accepts the following command-line arguments:

$ python req.py [--overwrite] [--no-password] 
[--node|--registry|--server|--user]
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The script looks for the files req.cnf and ca_cert.pem in the directory 
defined by the ICE_CA_HOME environment variable. If that variable is not 
defined, the script uses a default directory that depends on your platform.

The purpose of the script is to gather information about the entity that needs a 
certificate and then generate two files: a private key and a file containing the 
certificate request. The request file must be transmitted to the certificate authority 
for signing, which produces a valid certificate chain.

The options --node, --registry, --server and --user indicate the 
type of entity requesting the certificate, where --node and --registry corre-
spond to an IceGrid node and registry, respectively, --server means an Ice 
server and --user is a person. In reality, these options only influence the 
common name component of the new certificate’s distinguished name as well as 
the names of the output files. If the output files already exist, you must specify --
overwrite to force the script to overwrite them.

Once you have entered the requested information, the script displays its 
progress as it generates the necessary files. It will prompt you for a pass phrase 
unless you used the --no-password option, and finish by showing the names 
of the files it created as well as instructions on how to proceed. The example 
below shows the output from generating a request for a node:

Created key: node_key.pem 
Created certificate request: node_req.pem 
 
The certificate request must be signed by the CA. Send the 
certificate request file to the CA at the following email 
address: 
ca-admin@company.com

The file node_key.pem is the new private key for the node; this file must be 
kept secure. The file node_req.pem must be given to the certificate authority. 
As a convenience, the script displays the CA’s email address that you entered in 
Section 39.7.1.

39.7.3 Signing Certificate Requests
As a certificate authority, you are responsible for certifying the validity of certifi-
cate requests by signing them with your private key. The product of signing a 
request is a valid certificate chain that a person or application can use as an iden-
tity. The sign.py script performs this task for you and accepts the following 
command-line arguments:
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$ sign.py --in <req> --out <cert>

The input file req is the certificate request, and the output file cert is the certif-
icate chain. The script does not overwrite the file cert unless you also specify -
-overwrite.

Continuing the example from Section 39.7.2, we can sign the node’s request 
with the following command:

$ python sign.py --in node_req.pem --out node_cert.pem

If the CA’s private key is protected by a pass phrase, we must enter that first. Next, 
the script displays the relevant information from the certificate request and asks 
you to confirm that you wish to sign the certificate:

The Subject's Distinguished Name is as follows 
organizationName      :PRINTABLE:'Company.com' 
commonName            :PRINTABLE:'IceGrid Node TestNode' 
Certificate is to be certified until Jun 15 18:32:36 2011 GMT 
Sign the certificate? [y/n]:

After reviewing the request, enter y to sign the certificate, and y again to finish the 
process. Upon completion, the script stores the certificate chain in the file 
node_cert.pem in your current working directory. This file, together with the 
node’s private key we created in Section 39.7.2, establishes a secure identity for 
the node.

39.7.4 Converting Certificates
For Java and .NET users, the private key and certificate chain must be converted 
into a suitable format for your platform. The script import.py simplifies this 
process and accepts the following command-line arguments:

$ python import.py [--overwrite] 
[--java alias cert key keystore] 
[--cs cert key out-file]

The script does not overwrite an existing file unless you specify --overwrite. 
To complete our node example from prior sections, the command below imports 
the private key and certificate chain into a Java keystore:

$ python import.py --java mycert node_cert.pem 
node_key.pem cert.jks



The value mycert represents the alias associated with this entry in the keystore, 
and cert.jks is the name of the new keystore file. In an IceSSL configuration, 
the property IceSSL.Keystore refers to this file.

The equivalent command for .NET is shown below:

$ python import.py --cs node_cert.pem node_key.pem 
cert.pfx

The file cert.pfx uses the PKCS#12 encoding and contains the certificate 
chain and private key. You can import this certificate into a store, or refer directly 
to the file using the configuration property IceSSL.CertFile.

39.8 Summary

The Secure Socket Layer (SSL) protocol is the de facto standard for secure 
network communication. Its support for authentication, non-repudiation, data 
integrity, and strong encryption makes it the logical choice for securing Ice appli-
cations.

Although security is an optional component of Ice, it is not an afterthought. 
The IceSSL plug-in integrates easily into existing Ice applications, in most cases 
requiring nothing more than configuration changes. Naturally, some additional 
effort is required to create the necessary security infrastructure for an application, 
but in many enterprises this work will have already been done.
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Chapter 40
Glacier2

40.1 Chapter Overview

In this chapter we present the Glacier2 service, a lightweight firewall solution for 
Ice applications. The basic requirements for using Glacier2 are discussed in 
Section 40.3. Glacier2 supports callbacks from servers to clients and Section 40.4 
provides details about the configuration and application requirements necessary to 
use callbacks. Section 40.5 covers security issues, while Section 40.6 presents an 
overview of Glacier2 session management. Dynamic filtering is covered in 
Section 40.7. Section 40.8 describes Glacier2’s buffering semantics, and 
Section 40.9 describes the handling of request contexts. The use of a network fire-
wall in conjunction with Glacier2 is the topic of Section 40.10. Finally, clients 
with special requirements are addressed by Section 40.11, and IceGrid integration 
is the subject of Section 40.12.

40.2 Introduction

We have presented many examples of client/server applications in this book, all of 
which assume the client and server programs are running either on the same host, 
or on multiple hosts with no network restrictions. We can justify this assumption 
because this is an instructional text, but a real-world network environment is 
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usually much more complicated: client and server hosts with access to public 
networks often reside behind protective router-firewalls that not only restrict 
incoming connections, but also allow the protected networks to run in a private 
address space using Network Address Translation (NAT). These features, which 
are practically mandatory in today’s hostile network environments, also disrupt 
the ideal world in which our examples are running.

40.2.1 Common Scenarios
Let us assume that a client and server need to communicate over an untrusted 
network, and that the client and server hosts reside in private networks behind fire-
walls, as shown in Figure 40.1.

Figure 40.1. Client request in a typical network scenario.

Although the diagram looks fairly straightforward, there are several troublesome 
issues:

• A dedicated port on the server’s firewall must be opened and configured to 
forward messages to the server.

• If the server uses multiple endpoints (e.g., to support both TCP and SSL), then 
a firewall port must be dedicated to each endpoint.

• The client’s proxy must be configured to use the server’s “public” endpoint, 
which is the hostname and dedicated port of the firewall.

• If the server returns a proxy as the result of a request, the proxy must not 
contain the server’s private endpoint because that endpoint is inaccessible to 
the client.

Client Firewall Firewall Server
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To complicate the scenario even further, Figure 40.2 adds a callback from the 
server to the client. Callbacks imply that the client is also a server, therefore all of 
the issues associated with Figure 40.1 now apply to the client as well.

Figure 40.2. Callbacks in a typical network scenario.

As if this was not complicated enough already, Figure 40.3 adds multiple clients 
and servers. Each additional server (including clients requiring callbacks) adds 
more work for the firewall administrator as more ports are dedicated to forwarding 
requests.

Figure 40.3. Multiple clients and servers with callbacks in a typical network scenario.

Clearly, these scenarios do not scale well, and are unnecessarily complex. Fortu-
nately, Ice provides a solution.

40.2.2 What is Glacier2?
Glacier2, the router-firewall for Ice applications, addresses the issues raised in 
Section 40.2.1 with minimal impact on clients or servers (or firewall administra-
tors). In Figure 40.4, Glacier2 becomes the server firewall for Ice applications. 

Client Firewall Firewall Server

Client A

Firewall Firewall

Server

Client B

Server A

Server B



1336 Glacier2

What is not obvious in the diagram, however, is how Glacier2 eliminates much of 
the complexity of the previous scenarios.

Figure 40.4. Multiple clients and servers with callbacks using Glacier.

In particular, Glacier2 provides the following advantages:

• Clients often require only minimal changes to use Glacier2.

• Only one front end port is necessary to support any number of servers, 
allowing a Glacier2 router to easily receive connections from a port-
forwarding firewall.

• The number of connections to back end servers is reduced. Glacier2 effec-
tively acts as a connection concentrator, establishing a single connection to 
each back end server to forward requests from any number of clients. Simi-
larly, connections from back end servers to Glacier2 for the purposes of 
sending callbacks are also concentrated.

• Servers are unaware of Glacier2’s presence, and require no modifications 
whatsoever to use Glacier2. From a server’s perspective, Glacier2 is just 
another local client, therefore servers are no longer required to advertise 
“public” endpoints in the proxies they create. Furthermore, back-end services 
such as IceGrid (see Chapter 36) can continue to be used transparently via a 
Glacier2 router.

• Callbacks are supported without requiring new connections from servers to 
clients (see Section 40.4). In other words, a callback from a server to a client is 
sent over an existing connection from the client to the server, thereby elimi-
nating the administrative requirements associated with supporting callbacks in 
the client firewall.

• Glacier2 requires no knowledge of the application’s Slice definitions and 
therefore is very efficient: it routes request and reply messages without unmar-
shalling the message contents.

Client A

Firewall Glacier2

Server

Client B

Server A

Server B
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• In addition to its primary responsibility of forwarding Ice requests, Glacier2 
offers support for user-defined session management and authentication, inac-
tivity timeouts, and request buffering and batching.

40.2.3 How it works
The Ice core supports a generic router facility, represented by the Ice::Router 
interface, that allows a third-party service to “intercept” requests on a properly-
configured proxy and deliver them to the intended server. Glacier2 is an imple-
mentation of this service, although other implementations are certainly possible.

Glacier2 normally runs on a host in the private network behind a port-
forwarding firewall (see Section 40.10), but it can also operate on a host with 
access to both public and private networks. In this configuration it follows that 
Glacier2 must have endpoints on each network, as shown in Figure 40.5.

Figure 40.5. Glacier2’s client and server endpoints.

In the client, proxies must be configured to use Glacier2 as a router. This configu-
ration can be done statically for all proxies created by a communicator, or 
programmatically for a particular proxy. A proxy configured to use a router is 
called a routed proxy.

When a client invokes an operation on a routed proxy, the client connects to 
one of Glacier2’s client endpoints and sends the request as if Glacier2 were the 
server. Glacier2 then establishes a client connection to the intended server, 
forwards the request, and returns the reply (if any). Glacier2 is essentially acting 
as a local client on behalf of the remote client.

If a server returns a proxy as the result of an operation, that proxy contains the 
server’s endpoints in the private network, as usual. (Remember, the server is 
unaware of Glacier2’s presence, and therefore assumes that the proxy is usable by 
the client that requested it.) Of course, those endpoints are not accessible to the 
client and, in the absence of a router, the client would receive an exception if it 
were to use the proxy. When that proxy is configured with a router, however, the 
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client ignores the server’s endpoints and only sends requests to the router’s client 
endpoints.

Glacier2’s server endpoints, which reside in the private network, are only used 
when a server makes a callback to a client. See Section 40.4 for more information 
on callbacks.

40.2.4 Limitations
Glacier2 has the following limitations:

• Datagram protocols, such as UDP, are not supported.

• Callback objects in a client must use a Glacier2-supplied category in their 
identities (see Section 40.4).

40.3 Using Glacier2

Getting started with Glacier2 in a minimal configuration involves the following 
tasks:

1. Write a configuration file for the router.

2. Write a password file for the router. (Section 40.5 discusses alternative ways 
to authenticate users.)

3. Decide whether to use the router’s internal session manager, or supply your 
own (see Section 40.6).

4. Start the router on a host with access to the public and private networks.

5. Modify the client configuration to use the router.

6. Modify the client to create a router session.

For the sake of example, let us assume that the router’s public address is 
5.6.7.8 and its private address is 10.0.0.1.

40.3.1 Configuring the Router
The following router configuration properties establish the necessary endpoint and 
define when a session expires due to inactivity:

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 8000 
Glacier2.SessionTimeout=60
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The endpoint defined by Glacier2.Client.Endpoints is used by the Ice 
run time in a client to interact directly with the router. It is also the endpoint where 
requests from routed proxies are sent. This endpoint is defined on the public 
network interface because it must be accessible to clients.1 Furthermore, the 
endpoint uses a fixed port because clients may be statically configured with a 
proxy for this endpoint.

A client’s session is destroyed when explicitly requested, or when the session 
is inactive for a configurable number of seconds. For this example, we have speci-
fied a timeout of 60 seconds. It is not mandatory to define a timeout, but it is 
recommended, otherwise session state might accumulate in the router. See 
Section 40.6 for more information on sessions.

Note that this configuration enables the router to forward requests from clients 
to servers, but not from servers to clients (that is, it cannot forward callbacks). We 
discuss callbacks in Section 40.4.

You must also decide which authentication scheme (or schemes) to use. 
Section 40.3.2 describes a file-based mechanism, and Section 40.5 covers the 
router’s more sophisticated facilities.

If clients access a location service via the router, additional router configura-
tion is typically necessary (see Section 36.13).

40.3.2 Writing a Password File
The router’s simplest authentication mechanism uses an access control list in a file 
consisting of user name–password pairs. The password is a 13-character string 
encoded using the crypt algorithm, similar to a passwd file on a typical Unix 
system. The property Glacier2.CryptPasswords specifies the name of the 
password file:

Glacier2.CryptPasswords=passwords

The format of the password file is very simple. Each user name-password pair 
must reside on a separate line, with whitespace separating the user name from the 
password. For example, the following password file contains an entry for the user 
name test:

test xxMqsnnDcK8tw

1. This sample configuration uses TCP as the endpoint protocol, although in most cases SSL is pref-
erable (see Section 40.5).
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You can use the openssl utility (included in the OpenSSL toolkit) to generate 
crypt passwords:

$ openssl 
OpenSSL> passwd 
Password: 
Verifying - Password: 
xxMqsnnDcK8tw

At the prompt, issue the passwd command. You are asked for a password, and 
then asked to confirm the password, at which point the utility displays the crypt-
encoded version of your password that you can paste into the router’s password 
file.

40.3.3 Starting the Router
Assuming the configuration properties shown in Section 40.3.1 and Section 40.3.2 
are stored in a file named config, you can start the router with the following 
command:

$ glacier2router --Ice.Config=config

Additional command line options are supported, including those that allow the 
router to run as a Windows service or Unix daemon. See Section 8.3.2 for more 
information.

40.3.4 Configuring the Client
The following properties configure a client to use a Glacier2 router:

Ice.Default.Router=Glacier2/router:tcp -h 5.6.7.8 -p 8000 
Ice.ACM.Client=0 
Ice.MonitorConnections=60 
Ice.RetryIntervals=-1

The value of the Ice.Default.Router property is a proxy whose endpoints 
must match those in Glacier2.Client.Endpoints.

The property Ice.ACM.Client governs the behavior of active connection 
management (ACM, see Section 34.4), which conserves resources by periodically 
closing idle outgoing connections. This feature must be disabled in a client that 
uses a Glacier2 router, otherwise ACM might transparently close a client’s 
connection to a router and thereby terminate the router session prematurely. ACM 
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is enabled by default, and therefore must be disabled by setting this property to 
zero.

For clients that use AMI, we set Ice.MonitorConnections so that AMI 
timeouts operate correctly. This property, if not defined, uses the value of 
Ice.ACM.Client by default. Since we are disabling ACM by setting 
Ice.ACM.Client to zero, we must specify an explicit value for Ice.Moni-
torConnections. In this example, we use a value of 60 seconds.

Finally, setting Ice.RetryIntervals to -1 disables automatic retries, 
which are not useful for proxies configured to use a Glacier2 router.

40.3.5 Object Identities
A Glacier2 router hosts two well-known objects. The default identities of these 
objects are Glacier2/router and Glacier2/admin, corresponding to the 
Glacier2::Router and Glacier2::Admin interfaces, respectively. If an applica-
tion requires the use of multiple routers, it is a good idea to assign unique identi-
ties to these objects by configuring the routers with different values of the 
Glacier2.InstanceName property, as shown in the following example:

Glacier2.InstanceName=PublicRouter

This property changes the category of the object identities, which become 
PublicRouter/router and PublicRouter/admin. The client’s config-
uration must also be changed to reflect the new identity:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 8000

40.3.6 Creating a Session
Session management is provided by the Glacier2::Router interface:2

module Glacier2 { 
    exception PermissionDeniedException { 
        string reason; 
    }; 
 
    interface Router extends Ice::Router { 
        Session* createSession(string userId, string password) 
            throws PermissionDeniedException, 

2. The getCategoryForClient operation is used for bidirectional connections (see page 1346).



1342 Glacier2

                   CannotCreateSessionException; 
 
        Session* createSessionFromSecureConnection() 
            throws PermissionDeniedException, 
                   CannotCreateSessionException; 
 
        nonmutating string getCategoryForClient(); 
 
        nonmutating long getSessionTimeout(); 
 
        void destroySession() 
            throws SessionNotExistException; 
    }; 
};

The interface defines two operations for creating sessions: createSession and 
createSessionFromSecureConnection. The router requires each client to create 
a session using one of these operations; only after the session is created will the 
router forward requests on behalf of the client.

The createSession operation expects a user name and password, and returns 
a Session proxy or nil, depending on the router’s configuration (see 
Section 40.6). When using the default authentication scheme, the given user name 
and password must match an entry in the router’s password file in order to 
successfully create a session.

The createSessionFromSecureConnection operation does not require a user 
name and password because it uses the credentials supplied by an SSL connection 
to authenticate the client (see Section 40.5).

To create a session, the client typically obtains the router proxy from the 
communicator, downcasts the proxy to the Glacier2::Router interface, and 
invokes one of the operations. The sample code below demonstrates how to do it 
in C++; the code will look very similar in the other language mappings.

Ice::RouterPrx defaultRouter = 
    communicator->getDefaultRouter(); 
Glacier2::RouterPrx router = 
    Glacier2::RouterPrx::checkedCast(defaultRouter); 
string username = ...; 
string password = ...; 
Glacier2::SessionPrx session; 
try 
{ 
    session = router->createSession(username, password); 
} 
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catch(const Glacier2::PermissionDeniedException& ex) 
{ 
    cout << "permission denied:\n" << ex.reason << endl; 
} 
catch(const Glacier2::CannotCreateSessionException& ex) 
{ 
    cout << "cannot create session:\n" << ex.reason << endl; 
}

If the router is configured with a session manager, the createSession and crea-
teSessionFromSecureConnection operations may return a proxy for an object 
implementing the Glacier2::Session interface (or an application-specific 
derived interface). The client receives a null proxy if no session manager is 
configured.

In order to successfully use a session proxy, it must be configured with the 
router that created it; that is, the session object is only accessible via the router. If 
the router is configured as the client’s default router at the time createSession or 
createSessionFromSecureConnection is invoked, as is the case in the example 
above, then the session proxy is already properly configured and nothing else is 
required. Otherwise, the client must explicitly configure the session proxy with a 
router using the ice_router proxy method (see Section 30.10.1).

If the client wishes to destroy the session explicitly, it must invoke destroy-
Session on the router proxy. If a client does not destroy its session, the router 
destroys it automatically when it expires due to inactivity. A client can obtain the 
inactivity timeout value by calling getSessionTimeout (see Section 40.6.2).

Note that a router client must be prepared for the destroySession operation 
to raise ConnectionLostException, as shown in the following C++ example:

try { 
    router->destroySession(); 
} catch (const Ice::ConnectionLostException&) { 
    // Expected 
}

The exception occurs because the router forcefully closes the client’s connection 
to indicate that the session is no longer valid.

An example of a Glacier2 client is provided in the directory 
demo/Glacier2/callback.
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40.4 Callbacks

Callbacks from servers to clients are commonly used in distributed applications, 
often for notification purposes (such as the completion of a long-running calcula-
tion or a change to a database record). Unfortunately, supporting callbacks in a 
complicated network environment presents its own set of problems, as described 
in Section 40.2.1. Ice overcomes these obstacles using a Glacier2 router and bidi-
rectional connections.

40.4.1 Bidirectional Connections
While a regular unrouted connection allows requests to flow in only one direction 
(from client to server), a bidirectional connection enables requests to flow in both 
directions. This capability is necessary to circumvent the network restrictions 
discussed in Section 40.2.1, namely, client-side firewalls that prevent a server 
from establishing an independent connection directly to the client. By sending 
callback requests over the existing connection from the client to the server (more 
accurately, from the client to the router), we have created a virtual connection 
back to the client. Figure 40.6 illustrates the steps involved in making a callback 
using Glacier2.

Figure 40.6. A callback via Glacier2.

1. The client has a routed proxy for the server and makes an invocation. A 
connection is established to the router’s client endpoint and the request is sent 
to the router.

2. The router, using information from the client’s proxy, establishes a connection 
to the server and forwards the request. In this example, one of the arguments in 
the request is a proxy for a callback object in the client.

3. The server makes a callback to the client. For this to succeed, the proxy for the 
callback object must contain endpoints that are accessible to the server. The 
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only path back to the client is through the router, therefore the proxy contains 
the router’s server endpoints (see Section 40.4.3). The server connects to the 
router and sends the request.

4. The router forwards the callback request to the client using the bidirectional 
connection established in step 1.

The arrows in Figure 40.6 indicate the flow of requests; notice that two connec-
tions are used between the router and the server. Since the server is unaware of the 
router, it does not use routed proxies, and therefore does not use bidirectional 
connections.

It is also possible for applications to manually configure bidirectional connec-
tions without the use of a router, as described in Section 34.7.

40.4.2 Lifetime of a Bidirectional Connection
When a client terminates, it closes its connection to the router. If a server later 
attempts to make a callback to the client, the attempt fails because the router has 
no connection to the client over which to forward the request. This situation is no 
worse than if the server attempted to contact the client directly, which would be 
prevented by the client firewall. However, this illustrates the inherent limitation of 
bidirectional connections: the lifetime of a client’s callback proxy is bounded by 
the lifetime of the client’s router session.

40.4.3 Configuring the Router
In order for the router to support callbacks from servers, it needs to have endpoints 
in the private network. The configuration file shown below adds the property 
Glacier2.Server.Endpoints:

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 8000 
Glacier2.Server.Endpoints=tcp -h 10.0.0.1

As the example shows, the server endpoint does not require a fixed port.

40.4.4 Configuring the Client’s Object Adapter
A client that receives callbacks is also a server, and therefore must have an object 
adapter. Typically, an object adapter has endpoints in the local network, but those 
endpoints are of no use to a server in our restricted network environment. We 
really want the client’s callback proxy to contain the router’s server endpoints, and 
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we accomplish that by configuring the client’s object adapter with a proxy for the 
router3. We supply the router’s proxy by creating the object adapter with 
createObjectAdapterWithRouter, or by defining an object adapter property as 
shown below:

CallbackAdapter.Router=Glacier2/router:tcp -h 5.6.7.8 -p 8000

For each object adapter, the Ice run time maintains a list of endpoints that are 
embedded in proxies created by that adapter (see Section 30.4.6). Normally, this 
list simply contains the local endpoints defined for the object adapter but, when 
the adapter is configured with a router, the list only contains the router’s server 
endpoints. When using a router, this object adapter allows the client to service 
callback requests via the router. Because the adapter only contains the router’s 
server endpoints, this means that, if the client also wants to service requests via 
local (non-routed) endpoints, the client must create a separate adapter for these 
requests.

40.4.5 Callback Object Identities
Glacier2 assigns a unique category to each client for use in the identities of the 
client’s callback objects. The client creates proxies that contain this identity cate-
gory for back-end servers to use when making callback requests to the client. This 
category serves two purposes:

1. Upon receipt of a callback request from a back-end server, the router uses the 
request’s category to identify the intended client.

2. The category is sufficiently random that, without knowing the category in 
advance, it is practically impossible for a misbehaving or malicious back-end 
server to send callback requests to an arbitrary client.

A client can obtain its assigned category by calling getCategoryForClient on 
the Router interface as shown in the C++ example below:

Glacier2::RouterPrx router = // ... 
string category = router->getCategoryForClient();

3. Note that multiple object adapters created by the same communicator cannot use the same router.
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40.4.6 Example
The demo/Glacier2/callback example illustrates the use of callbacks with 
Glacier2. The README file in the directory provides instructions on running the 
example, and comments in the configuration file describe the properties in detail.

40.5 Router Security

As a firewall, a Glacier2 router represents a doorway into a private network, and in 
most cases that doorway should have a good lock. The obvious first step is to use 
SSL for the router’s client endpoints. This allows you to secure the message traffic 
and restrict access to clients having the proper credentials (see Chapter 39). 
However, the router takes security even further by providing access control and 
filtering capabilities.

40.5.1 Access Control
The authentication capabilities of SSL may not be sufficient for all applications: 
the certificate validation phase of the SSL handshake verifies that the user is who 
he says he is, but how do we know that he should be allowed to use the router? 
Glacier2 addresses this issue through the use of an access control facility that 
supports two forms of authentication: passwords and certificates. You can 
configure the router to use whichever authentication method is most appropriate 
for your application, or you can configure both methods in the same router.

Password Authentication

The router verifies the user name and password arguments to its createSession 
operation before it forwards any requests on behalf of the client. Given that the 
password is sent “in the clear,” it is important to protect these values by using an 
SSL connection with the router. Section 40.3.6 demonstrates how to use the crea-
teSession operation.

There are two ways for the router to verify a user name and password. By 
default, the router uses a file-based access control list, but you can override this 
behavior by installing a proxy for an application-defined verifier object. Configu-
ration properties define the password filename or the verifier proxy; if you install 
a verifier proxy, the password file is ignored. Since we have already discussed the 
password file in Section 40.3.2, we will focus on the custom verifier interface in 
the remainder of this section.
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An application that has special requirements can implement the interface 
Glacier2::PermissionsVerifier to gain programmatic control over access to a 
router. This can be especially useful in situations where a repository of account 
information already exists (such as an LDAP directory), in which case duplicating 
that information in another file would be tedious and error-prone.

The Slice definition for the interface contains just one operation:

module Glacier2 { 
    interface PermissionsVerifier { 
        nonmutating 
        bool checkPermissions(string userId, string password, 
                              out string reason); 
    }; 
};

The router invokes checkPermissions on the verifier object, passing it the user 
name and password arguments that were given to createSession. The operation 
must return true if the arguments are valid, and false otherwise. If the operation 
returns false, a reason can be provided in the output parameter.

To configure a router with a custom verifier, set the configuration property 
Glacier2.PermissionsVerifier with the proxy for the object. 

A sample implementation of the PermissionsVerifier interface is provided 
in the demo/Glacier2/callback directory.

Certificate Authentication

As shown in Section 40.3.6, the createSessionFromSecureConnection opera-
tion does not require a user name or password because the client’s SSL connection 
to the router already supplies the credentials necessary to sufficiently identify the 
client, in the form of X.509 certificates. (See Chapter 39 for details on IceSSL 
configuration.)

It is up to you to decide what constitutes sufficient identification. For example, 
a single certificate could be shared by all clients if there is no need to distinguish 
between them, or you could generate a unique certificate for each client or a group 
of clients. Glacier2 does not enforce any particular policy, but simply delegates 
the decision of whether to accept the client’s credentials to an application-defined 
object that implements the Glacier2::SSLPermissionsVerifier interface:
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module Glacier2 { 
    interface SSLPermissionsVerifier { 
        nonmutating bool authorize(SSLInfo info, 
                                   out string reason); 
    }; 
};

Router clients may only use createSessionFromSecureConnection if the router 
is configured with a proxy for an SSLPermissionsVerifier object. The imple-
mentation of authorize must return true to allow the client to establish a session. 
To reject the session, authorize must return false and may optionally provide a 
value for reason, which is returned to the client as a member of PermissionDe-
niedException.

The verifier examines the members of SSLInfo to authenticate a client:

module Glacier2 { 
    struct SSLInfo { 
        string remoteHost; 
        int remotePort; 
        string localHost; 
        int localPort; 
        string cipher; 
        Ice::StringSeq certs; 
    }; 
};

The structure includes address information about the remote and local hosts, and a 
string that describes the ciphersuite negotiated for the SSL connection between 
the client and the router. These values are generally of interest for logging 
purposes, whereas the certs member supplies the information the verifier needs 
to make its decision. The client’s certificate chain is represented as a sequence of 
strings that use the Privacy Enhanced Mail (PEM) encoding. The first element of 
the sequence corresponds to the client’s certificate, followed by its signing certifi-
cates. The certificate of the root Certificate Authority (CA) is the last element of 
the sequence. An empty sequence indicates that the client did not supply a certifi-
cate chain.

Although the certificate chain has already been validated by the SSL imple-
mentation, a verifier implementation typically needs to examine it in detail before 
making its decision. As a result, the verifier will need to convert the contents of 
certs into a more usable form. Some Ice platforms, such as Java and .NET 2, 
already provide certificate abstractions, and IceSSL supplies its own for C++ 
users. IceSSL for Java and .NET 2 defines the method 
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IceSSL.Util.createCertificate, which accepts a PEM-encoded string 
and returns an instance of the platform’s certificate class. In C++, the class 
IceSSL::Certificate has a constructor that accepts a PEM-encoded string. 
Chapter 39 provides the relevant details.

In addition to examining certificate attributes such as the distinguished name 
of the subject and issuer, it is also important that a verifier consider the length of 
the certificate chain. Refer to Section 39.4.5 for a discussion of this issue.

To install your verifier, set the Glacier2.SSLPermissionsVerifier 
property with the proxy of your verifier object.

40.5.2 Filtering
The Glacier2 router is capable of filtering requests based on a variety of criteria, 
which helps to ensure that clients do not gain access to unintended objects.

Address Filters

To prevent a client from accessing arbitrary back-end hosts or ports, you can 
configure a Glacier2 router to validate the address information in each proxy the 
client attempts to use. Two properties determine the router’s filtering behavior:

• Glacier2.Filter.Address.Accept

An address is accepted if it matches an entry in this property and does not 
match an entry in Glacier2.Filter.Address.Reject.

• Glacier2.Filter.Address.Reject

An address is rejected if it matches an entry in this property.

The value of each property is a list of address:port pairs separated by spaces, as 
shown in the example below:

Glacier2.Filter.Address.Accept=192.168.1.5:10000 192.168.1.6:10000

This configuration allows clients to use only two hosts in the back-end network, 
and only one port on each host. A client that attempts to use a proxy containing 
any other host or port receives an ObjectNotExistException on its initial 
request.

You can also use ranges, groups and wildcards when defining your address 
filters. For example, the following property value shows how to use an address 
range:

Glacier2.Filter.Address.Accept=192.168.1.[5-6]:10000
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This property is equivalent to the first example, but the range notation allows us to 
define the filter more concisely. Similarly, we can restate the property using the 
group notation by separating values with a comma:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:10000

The wildcard notation uses the * character to substitute for a value:

Glacier2.Filter.Address.Accept=10.0.*.1:10000

The range, group, and wildcard notation is also supported when specifying ports, 
as shown below:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:[10000-11000] 
Glacier2.Filter.Address.Reject=192.168.1.[5,6]:[10500,10501]

In this configuration, the router allows clients to access all of the ports in the range 
10000 to 11000, except for the two ports 10500 and 10501.

At first glance, you might think that the following property definition is point-
less because it would prevent clients from accessing any back-end server:

Glacier2.Filter.Address.Reject=*

In reality, this configuration only prevents clients from accessing servers using 
direct proxies, that is, proxies that contain endpoints. As a result, the property 
causes Glacier2 to accept only indirect proxies (see Section 2.2.2).

NOTE: By default, a Glacier2 router forwards requests for any address, which is equiva-
lent to defining the property Glacier2.Filter.Address.Accept=*.

Category Filters

As described in Section 30.5, the Ice::Identity type contains two string 
members: category and name. You can configure a router with a list of valid iden-
tity categories, in which case it only routes requests for objects in those categories. 
The configuration property Glacier2.Filter.Category.Accept 
supplies the category list:

Glacier2.Filter.Category.Accept=cat1 cat2

This property does not affect the routing of callback requests from back-end 
servers to router clients. See Section 40.4 for more information on callbacks.
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NOTE: By default a Glacier2 router forwards requests for any category.

If a category contains spaces, you can enclose the value in single or double quotes. 
If a category contains a quote character, it must be escaped with a leading back-
slash.

A session manager can also configure category filters dynamically; see 
Section 40.7 for details.

Identity Filters

The ability to filter on identity categories, as described in the previous section, is a 
convenient way to limit clients to particular groups of objects. For even stricter 
control over the identities that clients are allowed to access, you can use the 
Glacier2.Filter.Identity.Accept property. The value of this prop-
erty is a list of identities, separated by whitespace, representing the only objects 
the router’s clients may use.

If an identity contains spaces, you can enclose the value in single or double 
quotes. If an identity contains a quote character, it must be escaped with a leading 
backslash.

Clearly, specifying a static list of identities is only practical for a small set of 
objects. Furthermore, in many applications, the complete set of identities cannot 
be known in advance, such as when objects are created on a per-session basis and 
use UUIDs in their identities. For these situations, category-based filtering is 
generally sufficient. However, a session manager can also use Glacier2’s dynamic 
filtering interface, SessionControl, to manage the set of valid identities at run 
time. See Section 40.7 for more information.

Adapter Filters

Applications often use IceGrid in their back-end network to simplify server 
administration and take advantage of the benefits offered by indirect proxies. 
Once you have configured Glacier2 with an appropriate locator (see 
Section 40.12), clients can use indirect proxies to refer to objects in IceGrid-
managed servers. Recall from Section 2.2.2 that an indirect proxy comes in two 
forms: one that contains only an identity, and one that contains an identity and an 
object adapter identifier. You can use the category and identity filters described in 
previous sections to control identity-only proxies, and you can use the property 
Glacier2.Filter.AdapterId.Accept to enforce restrictions on indirect 
proxies that use an object adapter identifier.
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For example, the following property definition allows a client to use the proxy 
factory@WidgetAdapter but not the proxy factory@SecretAdapter:

Glacier2.Filter.AdapterId.Accept=WidgetAdapter

If an adapter identifier contains spaces, you can enclose the value in single or 
double quotes. If an adapter identifier contains a quote character, it must be 
escaped with a leading backslash.

A session manager can also configure this filter dynamically, as described in 
Section 40.7.

Proxy Filters

The Glacier2 router maintains an internal routing table that contains an entry for 
each proxy used by a router client; the size of the routing table grows in propor-
tion to the number of clients and their proxy usage. Furthermore, the amount of 
memory that the routing table consumes is affected by the number of endpoints in 
each proxy. Glacier2 provides two properties that you can use to limit the size of 
the routing table and defend against malicious router clients.

The property Glacier2.RoutingTable.MaxSize specifies the 
maximum number of entries allowed in the routing table. If the size of the table 
exceeds the value of this property, the router evicts older entries on a least-
recently-used basis. (Eviction of proxies from the routing table is transparent to 
router clients.) The default size of the routing table is 1000, but you may need to 
define a different value depending on the needs of your application. While experi-
menting with different values, you may find it useful to define the property 
Glacier2.Trace.RoutingTable to see a log of the router’s activities with 
respect to the routing table.

The property Glacier2.Filter.ProxySizeMax sets a limit on the size 
of a stringified proxy. The Ice run time places no limits on the size of proxy 
components such as identities and hostnames, but a malicious client could manu-
facture very large proxies in a denial-of-service attack on a Glacier2 router. By 
setting this property to a reasonably small value, you can prevent proxies from 
consuming excessive memory in the router process.

Client Impact

The Glacier2 router immediately terminates a client’s session if it attempts to use 
a proxy that is rejected by an address filter or exceeds the size limit defined by the 
property Glacier2.Filter.ProxySizeMax. The Ice run time in the client 
responds by raising ConnectionLostException to the application.
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If a client attempts to use a proxy that is rejected by a category, identity or 
adapter identifier filter, the router raises ObjectNotExistException.

To obtain more information on the router’s reasons for terminating a session or 
rejecting a request, set the following property and examine the router’s log output:

Glacier2.Client.Trace.Reject=1

40.5.3 Administration
Glacier2 supports an administrative interface that allows you to shut down a router 
programmatically:

module Glacier2 { 
    interface Admin { 
        idempotent void shutdown(); 
    }; 
};

To prevent unwanted clients from using the Admin interface, the object is only 
accessible on the endpoints defined by the Glacier2.Admin.Endpoints 
property. This property has no default value, meaning the Admin interface is inac-
cessible unless you explicitly define it.

The Glacier2.Admin.Endpoints property also affects session 
managers because the SessionControl proxy supplied by the router uses the 
administrative endpoints. If the property is not defined, session managers receive a 
null proxy instead. See Section 40.6 for an introduction to session managers and 
Section 40.7 for more information on the SessionControl interface.

If you decide to define Glacier2.Admin.Endpoints, choose your 
endpoints carefully. We generally recommend the use of endpoints that are acces-
sible only from behind a firewall.

40.6 Session Management

A Glacier2 router requires a client to create a session (see Section 40.3.6) and 
forwards requests on behalf of the client until its session expires. A session 
expires when it is explicitly destroyed, or when it times out due to inactivity.

If your application needs to track the session activities of a router, you can 
configure the router to use a custom session manager. For example, your applica-
tion may need to acquire resources and initialize the state of back-end services for 
each new session, and later reclaim those resources when the session expires.
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As with the authentication facility described in Section 40.5, Glacier2 
provides two session manager interfaces that an application can implement. The 
SessionManager interface receives notifications about sessions that use password 
authentication, while the SSLSessionManager interface is for sessions authenti-
cated using SSL certificates.

40.6.1 The Session Manager Interfaces
The relevant Slice definitions are shown below:

module Glacier2 { 
    exception CannotCreateSessionException { 
        string reason; 
    }; 
 
    interface Session { 
        void destroy(); 
    }; 
 
    interface SessionManager { 
        Session* create(string userId, SessionControl* control) 
            throws CannotCreateSessionException; 
    }; 
 
    interface SSLSessionManager { 
        Session* create(SSLInfo info, SessionControl* control) 
            throws CannotCreateSessionException; 
    }; 
};

When a client invokes createSession on the Router interface (see 
Section 40.3.6), the router validates the client’s user name and password and then 
calls SessionManager::create. Similarly, a call to createSessionFromSecure-
Connection causes the router to invoke SSLSessionManager::create. The 
SSLInfo structure is described in Section 40.5.1. The second argument to the 
create operations is a proxy for a SessionControl object, which a session can 
use to perform dynamic filtering (see Section 40.7).

The create operations must return the proxy of a new Session object, or 
raise CannotCreateSessionException and provide an appropriate reason. The 
Session proxy returned by create is ultimately returned to the client as the result 
of createSession or createSessionFromSecureConnection.
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Glacier2 invokes the destroy operation on a Session proxy when the session 
expires. This provides a custom session manager with the opportunity to reclaim 
resources that were acquired for the session during create.

NOTE: The create operations may be called with information that identifies an existing 
session. For example, this can occur if a client has lost its connection to the router 
and therefore must create a new session but its previous session has not expired 
yet, and the router therefore has not yet invoked destroy on its Session proxy. A 
session manager implementation must be prepared to handle this situation.

To configure the router with a custom session manager, define the properties 
Glacier2.SessionManager or Glacier2.SSLSessionManager with 
the proxies of the session manager objects. If necessary, you can configure a 
router with proxies for both types of session managers.

If a session manager proxy is not supplied, the call to createSession or 
createSessionFromSecureConnection always returns a null proxy.

A sample implementation of the SessionManager interface is provided in the 
demo/Glacier2/callback directory.

40.6.2 Session Timeouts
The value of the Glacier2.SessionTimeout property specifies the number 
of seconds a session must be inactive before it expires. If the property is not 
defined, then sessions never expire due to inactivity. If a non-zero value is speci-
fied, it is very important that the application chooses a value that does not result in 
premature session expiration. For example, if it is normal for a client to create a 
session and then have long periods of inactivity, then a suitably long timeout must 
be chosen, or timeouts must be disabled altogether.

Once a session has expired (or been destroyed for some other reason), the 
client will no longer be able to send requests via the router, but instead receives a 
ConnectionLostException. The client must explicitly create a new session in 
order to continue using the router. If necessary, clients can use a dedicated thread 
to keep their sessions alive. The router operation getSessionTimeout allows a 
client to determine the timeout period (see Section 40.3.6). The example in 
demo/Glacier2/chat shows how to use a thread to prevent premature 
session termination.

In general, we recommend the use of an appropriate session timeout, other-
wise resources created for each session will accumulate in the router.
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40.6.3 Connection Caching
Glacier2 disables connection caching on session manager proxies, therefore if you 
configure the router with a session manager proxy that contains multiple 
endpoints, the router attempts to use a different endpoint for each invocation on a 
session manager. The purpose of this behavior is to distribute the load among 
multiple active session manager objects without using the replication features 
provided by IceGrid. Be aware that including an invalid endpoint in your session 
manager proxy, such as the endpoint of a session manager server that is not 
currently running, can cause router clients to experience delays during session 
creation.

If your session managers are in a replica group, Section 40.12.2 provides more 
information on the router’s caching behavior.

40.7 Dynamic Filtering

Section 40.5.2 described various ways of statically configuring a router to filter 
requests. Glacier2 also allows a session manager to customize filters for each 
session at run time via its SessionControl interface:

module Glacier2 { 
    interface SessionControl { 
        StringSet* categories(); 
        StringSet* adapterIds(); 
        IdentitySet* identities(); 
        void destroy(); 
    }; 
};

The router creates a SessionControl object for each client session and supplies a 
proxy for the object to the session manager create operations (see Section 40.6). 
Note that the SessionControl proxy is null unless the router is configured with 
administrative endpoints, as explained in Section 40.5.3.

Invoking the destroy operation causes the router to destroy the client’s 
session, which eventually results in an invocation of destroy on the application-
defined Session object, if one was provided.

The interface operations categories, adapterIds and identities return 
proxies to objects representing the modifiable filters for the session. The router 
initializes these filters using their respective static configuration properties.
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The SessionControl object uses a StringSet to manage the category and 
adapter identifier filters:

module Glacier2 { 
    interface StringSet { 
        idempotent void add(Ice::StringSeq additions); 
        idempotent void remove(Ice::StringSeq deletions); 
        idempotent Ice::StringSeq get(); 
    }; 
};

Similarly, the IdentitySet interface manages the identity filters:

module Glacier2 { 
    interface IdentitySet { 
        idempotent void add(Ice::IdentitySeq additions); 
        idempotent void remove(Ice::IdentitySeq deletions); 
        idempotent Ice::IdentitySeq get(); 
    }; 
};

In both interfaces, the add operation silently ignores duplicates, and the remove 
operation silently ignores non-existent entries.

Dynamic filtering is often necessary when each session must be restricted to a 
particular group of objects. Upon session creation, a session manager typically 
allocates of a number of objects in back-end servers for that session to use. To 
prevent other sessions from accessing these objects (intentionally or not), the 
session manager can configure the session’s filters so that it is only permitted to 
use the objects that were created for it.

For example, a session manager can retain the SessionControl proxy and add 
a new identity to the IdentitySet as each new object is created for the session. A 
simpler solution is to create a unique identifier for the session, add it to the 
session’s category filter, and use that category in the identities of all of the objects 
accessible by that session. Using a category filter in this way reserves an identity 
namespace for each session and avoids the need to update the filter for each new 
object.

To aid in logging and debugging, you can select a category that identifies the 
client, such as the user name that was supplied during session creation, or an 
attribute of the client’s certificate such as the common name, as long as the 
selected category is sufficiently unique that it will not conflict with another 
client’s session. You must also ensure that the categories you assign to sessions 
never match the categories of back-end objects that are not meant to be accessed 
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by router clients. As an example, consider the following session manager imple-
mentation:

class SessionManagerI : public Glacier2::SessionManager 
{ 
public: 
 
    virtual Glacier2::SessionPrx 
    create(const string& username, 
           const Glacier2::SessionControlPrx& ctrl, 
           const Ice::Current& curr) 
    { 
        string category = "_" + username; 
        ctrl->categories()->add(category); 
        // ... 
    } 
};

This session manager derives a category for the session by prepending an under-
score to the user name and then adds this category to the session’s filter. As long 
as our back-end objects do not use a leading underscore in their identity catego-
ries, this guarantees that a session’s category can never match the category of a 
back-end object.

40.8 Request Buffering

A Glacier2 router can forward requests in buffered or unbuffered mode. In addi-
tion, the buffering mode can be set independently for each direction (client-to-
server and server-to-client).

The configuration properties Glacier2.Client.Buffered and 
Glacier2.Server.Buffered govern the buffering behavior. The former 
affects buffering of requests from clients to servers, and the latter affects buffering 
of requests from servers to clients. If a property is not specified, the default value 
is 1, which enables buffering. A property value of 0 selects the unbuffered mode.

40.8.1 Unbuffered Mode
In unbuffered mode, the router forwards an incoming request in the same thread 
that received the request. This mode uses fewer resources than buffered mode, but 
it also has some limitations:
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• Nested twoway requests are not supported.

• Twoway requests are serialized. After forwarding a twoway request to a 
server, the router cannot forward any more requests from that client until the 
server has responded to the first request. The same is true for twoway requests 
from servers to clients.

• It is susceptible to denial-of-service attacks by hostile clients when used for 
requests from servers to clients (i.e., only when the property 
Glacier2.Server.Buffered is set to zero). For example, a client that 
receives a callback from a server and blocks indefinitely inside the callback 
can disable communications for all other clients.

However, for some applications, the lower resource requirements of the unbuf-
fered mode are attractive enough to warrant a careful application design that 
addresses this mode’s limitations.

40.8.2 Buffered Mode
In buffered mode, the router queues incoming requests and creates an extra thread 
(or two4) dedicated to processing the request queue of each connected client. 
While buffered mode consumes more resources than unbuffered mode, it does not 
suffer the limitations of unbuffered mode described in Section 40.8.1. Further-
more, buffered mode offers some additional functionality not available in unbuf-
fered mode, such as the ability to batch requests (see Section 40.9.3).

The configuration properties Glacier2.Client.SleepTime and 
Glacier2.Server.SleepTime can be used to ensure that a single client or 
server, respectively, does not flood the router with requests. A non-zero value 
causes the router’s thread dedicated to a connection to sleep for the specified 
number of milliseconds after it has sent all of the pending requests. Incoming 
requests are queued while the connection’s thread is asleep.

If a property is not defined, or its value is zero, then the router’s thread does 
not sleep after sending queued requests.

4. The router creates a thread if Glacier2.Client.Buffered=1, and another thread if 
Glacier2.Server.Buffered=1.
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40.9 Request Contexts

The Glacier2 router examines the context of an incoming request (see 
Section 30.11) for special keys that affect how the router forwards the request. 
These contexts have the same semantics regardless of whether the request is sent 
from client to server or from server to client.

40.9.1 _fwd 
The _fwd context determines the proxy mode that the router uses when 
forwarding the request. The value associated with the _fwd key must be a string 
containing one or more of the characters shown in Table 40.1.

These characters match the stringified proxy options described in Appendix D.
For requests whose _fwd context specify a batch mode, the forwarding 

behavior of the router depends on whether it is buffering requests (see 
Section 40.9.3).

If the _fwd key is not present in a request context, the mode used by the 
router to forward that request depends on the mode used by the client’s proxy and 
the router’s own configuration. If the client used twoway mode, the router also 
uses twoway mode. If the client sent the request as a oneway or batch oneway, the 

Table 40.1. Legal values for _fwd context key.

Value Mode

d Datagram

D Batch datagram

o Oneway

O Batch oneway

s Secure

t Twoway

z Compress
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router’s behavior is determined by the configuration properties described in 
Section 40.9.3.

40.9.2 _ovrd 
In buffered mode, the router allows a new incoming request to override any 
pending requests that are still in the router’s queue, effectively replacing any 
pending requests with the new request. For a new request to override a pending 
request, both requests must meet the following criteria:

• they specify the _ovrd key in the request context with the same value

• they are oneway requests

• they are requests on the same object.

This feature is intended to be used by clients that are sending frequent oneway 
requests in which the most recent request takes precedence. This feature mini-
mizes the number of requests that are forwarded to the server when requests are 
sent frequently enough that they accumulate in the router’s queue before the router 
has a chance to process them.

40.9.3 Batch Requests
Clients can direct the router to forward oneway requests in batches by including 
the D or O characters in the _fwd context, as described in Section 40.9.1. If the 
router is configured for buffered mode and several such requests accumulate in its 
queue, the router forwards them together in a batch rather than as individual 
requests. See Section 30.15 for more information on batched invocations.

In addition, the properties Glacier2.Client.AlwaysBatch and 
Glacier2.Server.AlwaysBatch determine whether oneway requests are 
always batched regardless of the _fwd context. The former property affects 
requests from clients to servers, while the latter affects requests from servers to 
clients. If a property is defined with a non-zero value, then all requests whose 
_fwd context includes the o character are treated as if O were specified instead, 
and are batched when possible. Likewise, requests whose _fwd context includes 
the d character are treated as if D were specified.

If a property is not defined, the router does not batch requests unless specifi-
cally directed to do so by the _fwd context.
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40.9.4 Context Forwarding
The configuration properties Glacier2.Client.ForwardContext and 
Glacier2.Server.ForwardContext determine whether the router 
includes the context when forwarding a request. The former property affects 
requests from clients to servers, while the latter affects requests from servers to 
clients. If a property is not defined or has the value zero, the router does not 
include the context when forwarding requests.

40.10 Firewalls

The Glacier2 router requires only one external port to receive connections from 
clients and therefore can easily coexist with a network firewall device. For 
example, consider the network shown in Figure 40.7.

Figure 40.7. Using Glacier2 with a network firewall.

In contrast to Figure 40.6, the Glacier2 router in this example has both of its 
endpoints in the private network and its host requires only one IP address. We 
assume that the firewall has been configured to forward connections from port 
8000 to the router’s client endpoint at port 9998. Meanwhile, the client must be 
configured to use the firewall’s address information in its router proxy, as shown 
below:

Ice.Default.Router=Glacier2/router:ssl -h 5.6.7.8 -p 8000

The Glacier2 router configuration for this example requires the following proper-
ties:

Glacier2.Client.Endpoints=ssl -h 10.0.0.1 -p 9998 
Glacier2.Client.PublishedEndpoints=ssl -h 5.6.7.8 -p 8000 
Glacier2.Server.Endpoints=tcp -h 10.0.0.1 -p 9999
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There are two points of interest in this configuration:

1. The Glacier2.Client.PublishedEndpoints property is necessary 
so that any proxies created by the router contain the firewall’s addressing 
information.

2. The server endpoint specifies a fixed port (9999), but the router does not 
require a fixed port in this endpoint to operate properly.

40.11 Advanced Client Configurations

This section discusses strategies that Glacier2 clients can use to address more 
advanced requirements.

40.11.1 Object Adapter Strategies
An application that needs to support callback requests from a router as well as 
requests from local clients should use multiple object adapters. This strategy 
ensures that proxies created by these object adapters contain the appropriate 
endpoints. For example, suppose we have the network configuration shown in 
Figure 40.8. Notice that the two local area networks use the same private network 
addresses, which is not an unrealistic scenario.

Figure 40.8. Supporting callback and local requests.

Now, if the callback client were to use a single object adapter for handling both 
callback requests and local requests, then any proxies created by that object 
adapter would contain the application’s local endpoints as well as the router’s 
server endpoints. As you might imagine, this could cause some subtle problems.
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1. When the local client attempts to establish a connection to the callback client 
via one of these proxies, it might arbitrarily select one of the router’s server 
endpoints to try first. Since the router’s server endpoints use addresses in the 
same network, the local client attempts to make a connection over the local 
network, with two possible outcomes: the connection attempts to those 
endpoints fail, in which case they are skipped and the real local endpoints are 
attempted; or, even worse, one of the endpoints might accidentally be valid in 
the local network, in which case the local client has just connected to some 
unknown server.

2. The server may encounter similar problems when attempting to establish a 
local connection to the router in order to make a callback request.

The solution is to dedicate an object adapter solely to handling callback requests, 
and another one for servicing local clients. The object adapter dedicated to call-
back requests must be configured with the router proxy as described in 
Section 40.4.4.

40.11.2 Using Multiple Routers
A client is not limited to using only one router at a time: the proxy operation 
ice_router allows a client to configure its routed proxies as necessary. With 
respect to callbacks, a client must create a new callback object adapter for each 
router that can forward callback requests to the client.

For information on configuring multiple routers, see Section 40.3.5.

40.12 IceGrid Integration

IceGrid is a server activation and location service, as described in Chapter 36. 
This section describes the ways in which you can integrate Glacier2 and IceGrid.

40.12.1 Configuring Clients
It is not uncommon for a Glacier2 client to require access to a locator service such 
as IceGrid. A locator client would typically define the property 
Ice.Default.Locator with a stringified proxy for the locator service, as 
described in Section 36.4.4. However, when that locator service is accessed via a 
Glacier2 router, the configuration requirements are slightly different. It is no 
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longer necessary for the client to define Ice.Default.Locator; this prop-
erty must be defined in the Glacier2 router’s configuration instead.

For example, consider the following network architecture:

In this case the Glacier2 router’s configuration must include the property shown 
below:

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 8000

40.12.2 Locator Timeouts
An IceGrid application might want to use replication (see Section 36.8) to 
increase the availability of Glacier2 session managers. When you configure an 
indirect proxy for a session manager (and configure Glacier2 with a locator proxy, 
as described in Section 40.12.1), the Ice run time in the router queries the locator 
to obtain a proxy for a session manager replica. By default, this proxy is cached 
for 10 minutes, meaning the router uses the same session manager proxy to create 
sessions for a 10-minute period, after which it queries the locator again. If you 
want to distribute the session-creation load among the session manager replicas 
more evenly, you can decrease the locator cache timeout using configuration prop-
erties. For example, the following settings use a timeout of 30 seconds:

Glacier2.SessionManager.LocatorCacheTimeout=30 
Glacier2.SSLSessionManager.LocatorCacheTimeout=30

As you can see, timeouts are specified individually for the SessionManager and 
SSLSessionManager proxies. You can also disable caching completely by using a 
value of 0, in which case the router queries the locator before every invocation on 
a session manager.

See Section 40.6.3 for more information on connection caching.
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40.13 Summary

Complex network environments are a fact of life. Unfortunately, the cost of 
securing an enterprise’s network is increased application complexity and adminis-
trative overhead. Glacier2 helps to minimize these costs by providing a low-
impact, efficient and secure router for Ice applications.
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Chapter 41
IceBox

41.1 Chapter Overview

In this chapter we present IceBox, an easy-to-use framework for Ice application 
services. Section 41.2 provides an overview of IceBox and the advantages of 
using it. Section 41.3 introduces the service manager and describes its role in 
IceBox. A tutorial on writing and configuring an IceBox service is presented in 
Section 41.4, and Section 41.5 puts all the pieces together.

41.2 Introduction

The Service Configurator pattern [7] is a useful technique for configuring services 
and centralizing their administration. In practical terms, this means services are 
developed as dynamically-loadable components that can be configured into a 
general purpose “super server” in whatever combinations are necessary. IceBox is 
an implementation of the Service Configurator pattern for Ice services.

A generic IceBox server replaces the typical monolithic Ice server you 
normally write. The IceBox server is configured via properties with the applica-
tion-specific services it is responsible for loading and managing, and it can be 
administered remotely. There are several advantages in using this architecture:
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• Services loaded by the same IceBox server can be configured to take advan-
tage of Ice’s collocation optimizations. For example, if one service is a client 
of another service, and those services reside in the same IceBox server, then 
invocations between them can be optimized.

• Composing an application consisting of various services is done by configura-
tion, not by compiling and linking. This decouples the service from the server, 
allowing services to be combined or separated as needed.

• Multiple Java services can be active in a single instance of a Java Virtual 
Machine (JVM). This conserves operating system resources when compared 
to running several monolithic servers, each in its own JVM.

• Services implement an IceBox service interface, providing a common frame-
work for developers and a centralized administrative facility.

• IceBox support is integrated into IceGrid, the server activation and deploy-
ment service (see Section 36.7).

41.3 The Service Manager

In addition to the objects supported by application services, an IceBox server 
supports an administrative object that implements the IceBox::ServiceManager 
interface (see Appendix B). This object is responsible for loading and initializing 
the services, as well as performing administrative actions requested by clients. An 
object adapter is created for this object so that its endpoint(s) can be secured 
against unauthorized access.

Currently, the administrative capabilities are rather limited:

module IceBox { 
interface ServiceManager { 
    nonmutating Ice::SliceChecksumDict getSliceChecksums(); 
    void shutdown(); 
}; 
};

The getSliceChecksums operation returns Slice checksums of the IceBox defini-
tions (see Section 4.20 for more information). The shutdown operation terminates 
the services and shuts down the IceBox server. Additional administrative features 
may be added in a future release.
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41.3.1 Endpoint Configuration
The endpoints for the service manager’s object adapter are defined using the 
IceBox.ServiceManager.Endpoints configuration property:

IceBox.ServiceManager.Endpoints=tcp -p 10000

Since a malicious client could make a denial-of-service attack against the service 
manager, it is advisable to use SSL endpoints (see Chapter 39), or to secure these 
endpoints with the proper firewall configuration, or both.

41.3.2 Client Configuration
A client requiring administrative access to the service manager can create a proxy 
using the endpoints defined by the property described in Section 41.3.1. The 
default identity of the service manager object is IceBox/ServiceManager, 
but this can be changed using the IceBox.InstanceName property (see 
Section 41.3.4). Therefore, a proxy using the default identity and the endpoint 
from Section 41.3.1 would be constructed as follows:

ServiceManager.Proxy=IceBox/ServiceManager:tcp -p 10000

41.3.3 Administrative Utility
An administrative utility is included with IceBox. Given the limited capabilities of 
the ServiceManager interface in its present form, it should come as no surprise 
that the administrative utility also has limited functionality. IceBox provides C++ 
and Java implementations of the utility, with the same usage:

Usage: iceboxadmin [options] [command...] 
Options: 
-h, --help           Show this message. 
-v, --version        Display the Ice version. 
 
Commands: 
shutdown             Shutdown the server.

The C++ utility is named iceboxadmin, while the Java utility is represented by 
the class IceBox.Admin. Both use the IceBox.ServiceMan-
ager.Endpoints property (see Section 41.3.1) and the IceBox.Instan-
ceName property (see Section 41.3.4) to compose the proxy for the service 
manager object. Typically, the utility is started using the same configuration file as 
the IceBox server (see Section 41.5), but that is not mandatory.
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41.3.4 Object Identities
An IceBox service hosts one well-known object, which implements the 
IceBox::ServiceManager interface and has the default identity 
IceBox/ServiceManager. If an application requires the use of multiple 
IceBox services, it is a good idea to assign unique identities to the well-known 
objects by configuring the servers with different values for the 
IceBox.InstanceName property, as shown in the following example:

IceBox.InstanceName=IceBox1

This property changes the category of the object’s identity, which becomes 
IceBox1/ServiceManager. The client’s configuration must also be changed 
to reflect the new identity:

ServiceManager.Proxy=IceBox1/ServiceManager:tcp -p 10000

41.4 Developing a Service

Writing an IceBox service requires implementing one of the IceBox service inter-
faces. The sample implementations we present in this section implement 
IceBox::Service, shown below:

module IceBox { 
local interface Service { 
    void start(string name, 
               Ice::Communicator communicator, 
               Ice::StringSeq args); 
    void stop(); 
}; 
};

As you can see, a service needs to implement only two operations, start and 
stop. These operations are invoked by the service manager; start is called after 
the service is loaded, and stop is called when the IceBox server is shutting down.

The start operation is the service’s opportunity to initialize itself; this typi-
cally includes creating an object adapter and servants. The name and args parame-
ters supply information from the service’s configuration (see Section 41.4.4), and 
the communicator parameter is an Ice::Communicator object created by the 
service manager for use by the service. Depending on the service configuration, 
this communicator instance may be shared by other services in the same IceBox 
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server, therefore care should be taken to ensure that items such as object adapters 
are given unique names.

The stop operation must reclaim any resources used by the service. Generally, 
a service deactivates its object adapter, and may also need to invoke waitForDe-
activate on the object adapter in order to ensure that all pending requests have 
been completed before the clean up process can proceed. The service manager is 
responsible for destroying the communicator instance that was passed to start.

These interfaces are declared as local for a reason: they represent a contract 
between the service manager and the service, and are not intended to be used by 
remote clients. Any interaction the service has with remote clients is done via 
servants created by the service.

41.4.1 C++ Service Example
The example we present here is taken from the demo/IceBox/hello sample 
program provided in the Ice distribution.

The class definition for our service is quite straightforward, but there are a few 
aspects worth mentioning:

#include <IceBox/IceBox.h> 
 
#if defined(_WIN32) 
#   define HELLO_API __declspec(dllexport) 
#else 
#   define HELLO_API /**/ 
#endif 
 
class HELLO_API HelloServiceI : public IceBox::Service { 
public: 
    virtual void start(const std::string&, 
                       const Ice::CommunicatorPtr&, 
                       const Ice::StringSeq&); 
    virtual void stop(); 
 
private: 
    Ice::ObjectAdapterPtr _adapter; 
};

First, we include the IceBox header file so that we can derive our implementation 
from IceBox::Service.
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Second, the preprocessor definitions are necessary because, on Windows, this 
service resides in a Dynamic Link Library (DLL), therefore we need to export the 
class so that the service manager can load it properly.

The member definitions are equally straightforward:

#include <Ice/Ice.h> 
#include <HelloServiceI.h> 
#include <HelloI.h> 
 
using namespace std; 
 
extern "C" { 
    HELLO_API IceBox::Service* 
    create(Ice::CommunicatorPtr communicator) 
    { 
        return new HelloServiceI; 
    } 
} 
 
void 
HelloServiceI::start( 
    const string& name, 
    const Ice::CommunicatorPtr& communicator, 
    const Ice::StringSeq& args) 
{ 
    _adapter = communicator->createObjectAdapter(name); 
    Ice::ObjectPtr object = new HelloI(communicator); 
    _adapter->add(object, communicator->stringToIdentity("hello"))
; 
    _adapter->activate(); 
} 
 
void 
HelloServiceI::stop() 
{ 
    _adapter->deactivate(); 
}

You might be wondering about the create function we defined. This is the entry 
point for a C++ IceBox service; that is, this function is used by the service 
manager to obtain an instance of the service, therefore it must have a particular 
signature. The name of the function is not important, but the function is expected 
to take a single argument of type Ice::CommunicatorPtr, and return a pointer to 
IceBox::Service1. In this case, we simply return a new instance of 
HelloServiceI. See Section 41.4.4 for more information on entry points.
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The start method creates an object adapter with the same name as the 
service, activates a single servant of type HelloI (not shown), and activates the 
object adapter. The stop method simply deactivates the object adapter.

This is obviously a trivial service, and yours will likely be much more inter-
esting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the code into a shared library or DLL, it can be configured into an 
IceBox server as described in Section 41.4.4.

41.4.2 Java Service Example
As with the C++ example presented in the previous section, the complete source 
for the Java example can be found in the demo/IceBox/hello directory of the 
Ice distribution. The class definition for our service looks as follows:

public class HelloServiceI extends Ice.LocalObjectImpl 
    implements IceBox.Service 
{ 
    public void 
    start(String name, 
          Ice.Communicator communicator, 
          String[] args) 
    { 
        _adapter = communicator.createObjectAdapter(name); 
        Ice.Object object = new HelloI(communicator); 
        _adapter.add(object, Ice.Util.stringToIdentity("hello")); 
        _adapter.activate(); 
    } 
 
    public void 
    stop() 
    { 
        _adapter.deactivate(); 
    } 
 
    private Ice.ObjectAdapter _adapter; 
}

1. A function with C linkage cannot return an object type, such as a smart pointer, therefore the 
entry point must return a regular pointer value.



1376 IceBox

First, notice that our class extends Ice.LocalObjectImpl. This is one of the 
few occasions when an Ice developer must implement a local interface (other 
common cases are object factories and servant locators).

The start method creates an object adapter with the same name as the 
service, activates a single servant of type HelloI (not shown), and activates the 
object adapter. The stop method simply deactivates the object adapter.

The service manager requires a service implementation to have a default 
constructor. This is the entry point for a Java IceBox service; that is, the service 
manager dynamically loads the service implementation class and invokes the 
default constructor to obtain an instance of the service.

This is obviously a trivial service, and yours will likely be much more inter-
esting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox 
server as described in Section 41.4.4.

41.4.3 C# Service Example
The complete source for the C# example can be found in the 
demo/IceBox/hello directory of the Ice distribution. The class definition for 
our service looks as follows:

class HelloServiceI : Ice.LocalObjectImpl, IceBox.Service 
{ 
    public void 
    start(string name, 
          Ice.Communicator communicator, 
          string[] args) 
    { 
        _adapter = communicator.createObjectAdapter(name); 
        _adapter.add(new HelloI(), 
                     Ice.Util.stringToIdentity("hello")); 
        _adapter.activate(); 
    } 
 
    public void 
    stop() 
    { 
        _adapter.deactivate(); 
    } 
 
    private Ice.ObjectAdapter _adapter; 
}
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First, notice that our class derives from Ice.LocalObjectImpl. This is one 
of the few occasions when an Ice developer must implement a local interface 
(other common cases are object factories and servant locators).

The start method creates an object adapter with the same name as the 
service, activates a single servant of type HelloI (not shown), and activates the 
object adapter. The stop method simply deactivates the object adapter.

The service manager requires a service implementation to have a default 
constructor. This is the entry point for a C# IceBox service; that is, the service 
manager dynamically loads the service implementation class from an assembly 
and invokes the default constructor to obtain an instance of the service.

This is obviously a trivial service, and yours will likely be much more inter-
esting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox 
server as described in Section 41.4.4.

41.4.4 Configuring a Service
A service is configured into an IceBox server using a single property. This prop-
erty serves several purposes: it defines the name of the service, it provides the 
service manager with the service entry point, and it defines properties and argu-
ments for the service.

The format of the property is shown below:

IceBox.Service.name=entry_point [args]

As an example, here is how we could specify a configuration for IceStorm (see 
Chapter 42), which is implemented as an IceBox service in C++:

IceBox.Service.IceStorm=IceStormService,31:createIceStorm

The name component of the property key is the service name (IceStorm, in this 
example). This name is passed to the service’s start operation, and must be 
unique among all services configured in the same IceBox server. It is possible, 
though rarely necessary, to load two or more instances of the same service under 
different names.

The first argument in the property value is the entry point specification. For 
C++ services, this must have the form library[,version]:symbol, where library is 
the simple name of the service’s shared library or DLL, and symbol is the name of 
the entry point function. By simple name, we mean a name without any platform-
specific prefixes or extensions; the service manager adds appropriate decorations 
depending on the platform. The version is optional. If specified, the version is 
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embedded in library name. For the above example, under Windows, the library 
name is IceStormService31.dll.2 The shared library or DLL must reside 
in a directory that appears in PATH on Windows or LD_LIBRARY_PATH on 
POSIX systems.

For Java services, the entry point is simply the complete class name (including 
any package) of the service implementation class. The class must reside in the 
class path of the IceBox server.

The entry point of a C# or Visual Basic .NET service has the form 
assembly:class. The assembly component can be specified as the name of a DLL 
present in PATH, or as the full name of an assembly residing in the Global 
Assembly Cache (GAC), such as 
hello,Version=0.0.0.0,Culture=neutral. The class component is 
the complete class name of the service implementation class.

Any arguments following the entry point specification are examined. If an 
argument has the form --name=value, then it is interpreted as a property defi-
nition that appears in the property set of the communicator passed to the service 
start operation. These arguments are removed, and any remaining arguments are 
passed to the start operation in the args parameter.

C++ Example

Here is an example of a configuration for our C++ example from Section 41.4.1:

IceBox.Service.Hello=HelloService:create \ 
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in HelloService.dll on Windows or libHelloSer-
vice.so on Linux, and the entry point function create is invoked to create an 
instance of the service. The argument --Ice.Trace.Network=1 is converted 
into a property definition, and the arguments hello and there become the two 
elements in the args sequence parameter that is passed to the start method.

Java Example

Here is an example of a configuration for our Java example from Section 41.4.2:

2. The exact name of the library that is loaded depends on the naming conventions of the platform 
IceBox executes on. For example, on Apple machines, the library name is 
libIceStormService31.dylib.
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IceBox.Service.Hello=HelloServiceI \ 
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in the class HelloServiceI. The argument 
--Ice.Trace.Network=1 is converted into a property definition, and the 
arguments hello and there become the two elements in the args sequence 
parameter that is passed to the start method.

C# Example

Here is an example of a configuration for our C# example from Section 41.4.3:

IceBox.Service.Hello=helloservice.dll:HelloServiceI \ 
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in the assembly named helloservice.dll, imple-
mented by the class HelloServiceI. The argument 
--Ice.Trace.Network=1 is converted into a property definition, and the 
arguments hello and there become the two elements in the args sequence 
parameter that is passed to the start method.

Sharing a Communicator

A service can be configured to share a communicator instance with the service 
manager using the following property:

IceBox.UseSharedCommunicator.name=1

The default behavior if this property is not specified is to create a new communi-
cator instance for the service. However, if collocation optimizations between 
services are desired, then each of those services must be configured for a shared 
communicator.

Loading Services

By default, the service manager loads the configured services in an undefined 
order, meaning services in the same IceBox server should not depend on one 
another. If services must be loaded in a particular order, the 
IceBox.LoadOrder property can be used:

IceBox.LoadOrder=Service1,Service2

In this example, Service1 is loaded first, followed by Service2. Any 
remaining services are loaded after Service2, in an undefined order. Each 
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service mentioned in IceBox.LoadOrder must have a matching 
IceBox.Service property.

41.5 Starting IceBox

Incorporating everything we discussed in the previous sections, we can now 
configure and start IceBox servers.

41.5.1 Starting the C++ Server
The configuration file for our example C++ service is shown below:

IceBox.ServiceManager.Endpoints=tcp -p 10000 
IceBox.Service.Hello=HelloService:create 
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the Hello 
service.

Assuming these properties reside in a configuration file named config, we 
can start the C++ IceBox server as follows:

$ icebox --Ice.Config=config

Additional command line options are supported, including those that allow the 
server to run as a Windows service or Unix daemon. See Section 8.3.2 for more 
information.

41.5.2 Starting the Java Server
Our Java configuration is nearly identical to the C++ version, except for the entry 
point specification:

IceBox.ServiceManager.Endpoints=tcp -p 10000 
IceBox.Service.Hello=HelloServiceI 
Hello.Endpoints=tcp -p 10001

Assuming these properties reside in a configuration file named config, we 
can start the Java IceBox server as follows:

$ java IceBox.Server --Ice.Config=config
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41.5.3 Starting the C# Server
The configuration file for our example C# service is shown below:

IceBox.ServiceManager.Endpoints=tcp -p 10000 
IceBox.Service.Hello=helloservice.dll:HelloService 
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the Hello 
service.

Assuming these properties reside in a configuration file named config, we 
can start the C# IceBox server as follows:

$ iceboxnet --Ice.Config=config

41.5.4 Initialization Failure
At startup, an IceBox server inspects its configuration for all properties having the 
prefix IceBox.Service. and initializes each service. If initialization fails for 
a service, the IceBox server invokes the stop operation on any initialized services, 
reports an error, and terminates.

41.6 Summary

IceBox offers a refreshing change of perspective: developers focus on writing 
services, not applications. The definition of an application changes as well; using 
IceBox, an application becomes a collection of discrete services whose composi-
tion is determined dynamically by configuration, rather than statically by the 
linker.
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Chapter 42
IceStorm

42.1 Chapter Overview

In this chapter we present IceStorm, an efficient publish/subscribe service for Ice 
applications. Section 42.2 provides an introduction to IceStorm, while 
Section 42.3 discusses some basic IceStorm concepts. An overview of the IceS-
torm Slice interfaces is provided in Section 42.4, and Section 42.5 presents an 
example IceStorm application. The IceStorm administration tool is described in 
Section 42.6, and the subject of federation is discussed in Section 42.7. IceStorm’s 
quality of service parameters are defined in Section 42.8. Finally, IceStorm 
configuration is addressed in Section 42.9.

42.2 Introduction

Applications often need to disseminate information to multiple recipients. For 
example, suppose we are developing a weather monitoring application in which 
we collect measurements such as wind speed and temperature from a meteorolog-
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ical tower and periodically distribute them to weather monitoring stations. We 
initially consider using the architecture shown in Figure 42.1.

Figure 42.1. Initial design for a weather monitoring application.

However, the primary disadvantage of this architecture is that it tightly couples the 
collector to its monitors, needlessly complicating the collector implementation by 
requiring it to manage the details of monitor registration, measurement delivery, 
and error recovery. We can rid ourselves of these mundane duties by incorporating 
IceStorm into our architecture, as shown in Figure 42.2.

Figure 42.2. A weather monitoring application using IceStorm.

IceStorm simplifies the collector implementation significantly by decoupling it 
from the monitors. As a publish/subscribe service, IceStorm acts as a mediator 
between the collector (the publisher) and the monitors (the subscribers), and offers 
several advantages:

Monitor
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• When the collector is ready to distribute a new set of measurements, it makes 
a single request to the IceStorm server. The IceStorm server takes responsi-
bility for delivering the request to the monitors, including handling any excep-
tions caused by ill-behaved or missing subscribers. The collector no longer 
needs to be aware of its monitors, or whether it even has any monitors at that 
moment.

• Similarly, monitors interact with the IceStorm server to perform tasks such as 
subscribing and unsubscribing, thereby allowing the collector to focus on its 
application-specific responsibilities and not on administrative trivia.

• The collector and monitor applications require very few changes to incorpo-
rate IceStorm.

42.3 Concepts

This section discusses several concepts that are important for understanding IceS-
torm’s capabilities.

42.3.1 Message
An IceStorm message is strongly typed and is represented by an invocation of a 
Slice operation: the operation name identifies the type of the message, and the 
operation parameters define the message contents. A message is published by 
invoking the operation on an IceStorm proxy in the normal fashion. Similarly, 
subscribers receive the message as a regular servant upcall. As a result, IceStorm 
uses the “push” model for message delivery; polling is not supported.

42.3.2 Topic
An application indicates its interest in receiving messages by subscribing to a 
topic. An IceStorm server supports any number of topics, which are created 
dynamically and distinguished by unique names. Each topic can have multiple 
publishers and subscribers.

A topic is essentially equivalent to an application-defined Slice interface: the 
operations of the interface define the types of messages supported by the topic. A 
publisher uses a proxy for the topic interface to send its messages, and a 
subscriber implements the topic interface (or an interface derived from the topic 
interface) in order to receive the messages. This is no different than if the 
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publisher and subscriber were communicating directly in the traditional client-
server style; the interface represents the contract between the client (the publisher) 
and the server (the subscriber), except IceStorm transparently forwards each 
message to multiple recipients.

IceStorm does not verify that publishers and subscribers are using compatible 
interfaces, therefore applications must ensure that topics are used correctly.

42.3.3 Oneway Semantics
IceStorm messages have oneway semantics (see Section 2.2.2), therefore a 
publisher cannot receive replies from its subscribers. Any of the Ice transports 
(TCP, SSL, and UDP) can be used to publish and receive messages.

42.3.4 Federation
IceStorm supports the formation of topic graphs, also known as federation. A 
topic graph is formed by creating links between topics, where a link is a unidirec-
tional association from one topic to another. Each link has a cost that may restrict 
message delivery on that link (see Section 42.7.2). A message published on a topic 
is also published on all of the topic’s links for which the message cost does not 
exceed the link cost.

Once a message has been published on a link, the receiving topic publishes the 
message to its subscribers, but does not publish it on any of its links. In other 
words, IceStorm messages propagate at most one hop from the originating topic in 
a federation (see Section 42.7.1).

Figure 42.3 presents an example of topic federation. Topic T1 has links to T2 
and T3, as indicated by the arrows. The subscribers S1 and S2 receive all messages 
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published on T2, as well as those published on T1. Subscriber S3 receives 
messages only from T1, and S4 receives messages from both T3 and T1.

Figure 42.3. Topic federation.

IceStorm makes no attempt to prevent a subscriber from receiving duplicate 
messages. For example, if a subscriber is subscribed to both T2 and T3, then it 
would receive two requests for each message published on T1.

42.3.5 Quality of Service
IceStorm allows each subscriber to specify its own quality of service (QoS) 
parameters that affect the delivery of its messages. Quality of service parameters 
are represented as a dictionary of name-value pairs. The supported QoS parame-
ters are described in Section 42.8.

42.3.6 Persistence
IceStorm has a database in which it maintains information about its topics and 
links. However, a message sent via IceStorm is not stored persistently, but rather is 
discarded as soon as it is delivered to the topic’s current set of subscribers. If an 
error occurs during delivery to a subscriber, IceStorm does not queue messages for 
that subscriber.

42.3.7 Subscriber Errors
If IceStorm encounters a failure while attempting to deliver a message to a 
subscriber, the subscriber is immediately unsubscribed from the topic on which 
the message was published.
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Slow or unresponsive subscribers can also create problems. IceStorm attempts 
to deliver messages as soon as they are published: when the IceStorm publisher 
object receives a message, it may immediately make nested invocations to the 
topic’s subscribers. Therefore, if a subscriber is not consuming messages as fast as 
they are being published, it may cause threads to accumulate in IceStorm. If the 
number of threads reaches the maximum size of the thread pool (see 
Section 30.9), then no new messages can be published. You may also want to set a 
timeout in IceStorm’s configuration (using Ice.Override.Timeout) so that 
an unresponsive subscriber does not block the service indefinitely.

42.4 IceStorm Interface Overview

This section provides a brief introduction to the Slice interfaces comprising the 
IceStorm service. See Appendix B for the Slice documentation.

42.4.1 TopicManager
The TopicManager is a singleton object that acts as a factory and repository of 
Topic objects. Its interface and related types are shown below:

module IceStorm { 
dictionary<string, Topic*> TopicDict; 
 
exception TopicExists { 
    string name; 
}; 
 
exception NoSuchTopic { 
    string name; 
}; 
 
interface TopicManager { 
    Topic* create(string name) throws TopicExists; 
    nonmutating Topic* retrieve(string name) throws NoSuchTopic; 
    nonmutating TopicDict retrieveAll(); 
    nonmutating Ice::SliceChecksumDict getSliceChecksums(); 
}; 
};

The create operation is used to create a new topic, which must have a unique 
name. The retrieve operation allows a client to obtain a proxy for an existing 
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topic, and retrieveAll supplies a dictionary of all existing topics. The 
getSliceChecksums operation returns Slice checksums for the IceStorm defini-
tions (see Section 4.20 for more information).

42.4.2 Topic
The Topic interface represents a topic and provides several administrative opera-
tions for configuring links and managing subscribers.

module IceStorm { 
struct LinkInfo { 
    Topic* theTopic; 
    string name; 
    int cost; 
}; 
sequence<LinkInfo> LinkInfoSeq; 
 
dictionary<string, string> QoS; 
 
exception LinkExists { 
    string name; 
}; 
 
exception NoSuchLink { 
    string name; 
}; 
 
interface Topic { 
    nonmutating string getName(); 
    nonmutating Object* getPublisher(); 
    void subscribe(QoS theQoS, Object* subscriber); 
    idempotent void unsubscribe(Object* subscriber); 
    idempotent void link(Topic* linkTo, int cost) 
        throws LinkExists; 
    idempotent void unlink(Topic* linkTo) throws NoSuchLink; 
    nonmutating LinkInfoSeq getLinkInfoSeq(); 
    void destroy(); 
}; 
};

The getName operation returns the name assigned to the topic, while the getPub-
lisher operation returns a proxy for the topic’s publisher object (see 
Section 42.5.2).
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The subscribe operation adds a subscriber’s proxy to the topic; if another 
subscriber proxy already exists with the same object identity, the subscriber’s 
proxy is replaced with the new one. The unsubscribe operation removes the 
subscriber from the topic.

A link to another topic is created using the link operation; if a link already 
exists to the given topic, the LinkExists exception is raised. Links are destroyed 
using the unlink operation.

Finally, the destroy operation permanently destroys the topic.

42.5 Using IceStorm

In this section we expand on the weather monitoring example from Section 42.2, 
demonstrating how to create, subscribe to and publish messages on a topic. We 
use the following Slice definitions in our example:

struct Measurement { 
    string tower; // tower id 
    float windSpeed; // knots 
    short windDirection; // degrees 
    float temperature; // degrees Celsius 
}; 
 
interface Monitor { 
    void report(Measurement m); 
};

Monitor is our topic interface. For the sake of simplicity, it defines just one opera-
tion, report, taking a Measurement struct as its only parameter.

42.5.1 Implementing a Publisher
The implementation of our collector application can be summarized easily:

1. Obtain a proxy for the TopicManager. This is the primary IceStorm object, 
used by both publishers and subscribers.

2. Obtain a proxy for the Weather topic, either by creating the topic if it does 
not exist, or retrieving the proxy for the existing topic.

3. Obtain a proxy for the Weather topic’s “publisher object.” This proxy is 
provided for the purpose of publishing messages, and therefore is narrowed to 
the topic interface (Monitor).
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4. Collect and report measurements.

In the sections below, we present collector implementations in C++ and Java.

C++ Example

As usual, our C++ example begins by including the necessary header files. The 
interesting ones are IceStorm/IceStorm.h, which is generated from the 
IceStorm Slice definitions, and Monitor.h, containing the generated code for 
our monitor definitions shown above.

#include <Ice/Ice.h> 
#include <IceStorm/IceStorm.h> 
#include <Monitor.h> 
 
int main(int argc, char* argv[]) 
{ 
    ... 
    Ice::ObjectPrx obj = communicator->stringToProxy( 
        "IceStorm/TopicManager:tcp -p 9999"); 
    IceStorm::TopicManagerPrx topicManager = 
        IceStorm::TopicManagerPrx::checkedCast(obj); 
    IceStorm::TopicPrx topic; 
    try { 
        topic = topicManager->retrieve("Weather"); 
    } 
    catch (const IceStorm::NoSuchTopic&) { 
        topic = topicManager->create("Weather"); 
    } 
 
    Ice::ObjectPrx pub = topic->getPublisher(); 
    if (!pub->ice_isDatagram()) 
        pub = pub->ice_oneway(); 
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub); 
    while (true) { 
        Measurement m = getMeasurement(); 
        monitor->report(m); 
    } 
    ... 
}

After obtaining a proxy for the topic manager, the collector attempts to retrieve the 
topic. If the topic does not exist yet, the collector receives a NoSuchTopic excep-
tion and then creates the topic.
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    IceStorm::TopicPrx topic; 
    try { 
        topic = topicManager->retrieve("Weather"); 
    } 
    catch (const IceStorm::NoSuchTopic&) { 
        topic = topicManager->create("Weather"); 
    }

The next step is obtaining a proxy for the publisher object, which the collector 
narrows to the Monitor interface.

    Ice::ObjectPrx pub = topic->getPublisher(); 
    if (!pub->ice_isDatagram()) 
        pub = pub->ice_oneway(); 
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);

Finally, the collector enters its main loop, collecting measurements and publishing 
them via the IceStorm publisher object.

    while (true) { 
        Measurement m = getMeasurement(); 
        monitor->report(m); 
    }

Java Example

The equivalent Java version is shown below.

public static void main(String[] args) 
{ 
    ... 
    Ice.ObjectPrx obj = communicator.stringToProxy( 
        "IceStorm/TopicManager:tcp -p 9999"); 
    IceStorm.TopicManagerPrx topicManager = 
        IceStorm.TopicManagerPrxHelper.checkedCast(obj); 
    IceStorm.TopicPrx topic = null; 
    try { 
        topic = topicManager.retrieve("Weather"); 
    } 
    catch (IceStorm.NoSuchTopic ex) { 
        topic = topicManager.create("Weather"); 
    } 
 
    Ice.ObjectPrx pub = topic.getPublisher(); 
    if (!pub.ice_isDatagram()) 
        pub = pub.ice_oneway(); 
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub); 
    while (true) { 
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        Measurement m = getMeasurement(); 
        monitor.report(m); 
    } 
    ... 
}

After obtaining a proxy for the topic manager, the collector attempts to retrieve the 
topic. If the topic does not exist yet, the collector receives a NoSuchTopic excep-
tion and then creates the topic.

    IceStorm.TopicPrx topic = null; 
    try { 
        topic = topicManager.retrieve("Weather"); 
    } 
    catch (IceStorm.NoSuchTopic ex) { 
        topic = topicManager.create("Weather"); 
    }

The next step is obtaining a proxy for the publisher object, which the collector 
narrows to the Monitor interface.

    Ice.ObjectPrx pub = topic.getPublisher(); 
    if (!pub.ice_isDatagram()) 
        pub = pub.ice_oneway(); 
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub);

Finally, the collector enters its main loop, collecting measurements and publishing 
them via the IceStorm publisher object.

    while (true) { 
        Measurement m = getMeasurement(); 
        monitor.report(m); 
    }

42.5.2 Using a Publisher Object
Each topic creates a publisher object for the express purpose of publishing 
messages. It is a special object in that it implements an Ice interface that allows 
the object to receive and forward requests (i.e., IceStorm messages) without 
requiring knowledge of the operation types.

Type Safety

From the publisher’s perspective, the publisher object appears to be an applica-
tion-specific type. In reality, the publisher object can forward requests for any 
type, and that introduces a degree of risk: a misbehaving publisher can use 
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uncheckedCast to narrow the publisher object to any type and invoke any 
operation; the publisher object unknowingly forwards those requests to the 
subscribers.

If a publisher sends a request using an incorrect type, the Ice run time in a 
subscriber typically responds by raising OperationNotExistException. 
However, since the subscriber receives its messages as oneway invocations, no 
response can be sent to the publisher object to indicate this failure, and therefore 
neither the publisher nor the subscriber is aware of the type-mismatch problem. In 
short, IceStorm places the burden on the developer to ensure that publishers and 
subscribers are using it correctly.

Oneway or Twoway?

IceStorm messages have oneway semantics (see Section 42.3.3), but publishers 
may use either oneway or twoway invocations when sending messages to the 
publisher object. Each invocation style has advantages and disadvantages that you 
should consider when deciding which one to use. The differences between the 
invocation styles affect a publisher in four ways:

• Efficiency

Oneway invocations have the advantage in efficiency because the Ice run time 
in the publisher does not await a reply to each message.

• Ordering

The use of oneway invocations by a publisher may affect the order in which 
subscribers receive messages. If ordering is important, use twoway invoca-
tions (also see Section 42.8.1).

• Reliability

Oneway invocations can be lost under certain circumstances, even when they 
are sent over a reliable transport such as TCP (see Section 30.13). If the loss of 
messages is unacceptable, or you are unable to address the potential causes of 
lost oneway messages, then twoway invocations are recommended.

• Delays

A publisher may experience network-related delays when sending messages to 
IceStorm if subscribers are slow in processing messages. Twoway invocations 
are more susceptible to these delays than oneway invocations.
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Transports

Each subscriber can select its own transport for message delivery, therefore the 
transport used by a publisher to communicate with IceStorm has no effect on how 
IceStorm delivers messages to its subscribers.

For example, a subscriber may be configured to use a UDP transport if the 
possibility of lost messages is acceptable. However, the TCP or SSL transports are 
generally recommended for IceStorm’s publisher endpoint in order to ensure that 
published messages are delivered reliably to IceStorm, even if they may not be 
delivered reliably to some subscribers.

Request Contexts

A request context is an optional argument of all remote invocations (see 
Section 30.11). If a publisher supplies a request context when publishing a 
message, IceStorm will forward it intact to subscribers.

Services such as Glacier2 employ request contexts to provide applications 
with more control over the service’s behavior. For example, if a publisher knows 
that IceStorm is delivering messages to subscribers via a Glacier2 router, the 
publisher can influence Glacier2’s behavior by including a request context, as 
shown in the following C++ example:

    Ice::ObjectPrx pub = topic->getPublisher(); 
    Ice::Context ctx; 
    ctx["_fwd"] = "Oz"; 
    MonitorPrx monitor = 
        MonitorPrx::uncheckedCast(pub->ice_context(ctx));

The _fwd context key, when encountered by Glacier2, causes the router to 
forward the request using compressed batch oneway messages. The 
ice_context method is used to obtain a proxy that includes the Glacier2 
request context in every invocation, eliminating the need for the publisher to 
specify it explicitly. See Section 40.9 for more information on Glacier2’s use of 
request contexts.

42.5.3 Implementing a Subscriber
Our subscriber implementation takes the following steps:

1. Obtain a proxy for the TopicManager. This is the primary IceStorm object, 
used by both publishers and subscribers.

2. Create an object adapter to host our Monitor servant.
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3. Instantiate the Monitor servant and activate it with the object adapter.

4. Subscribe to the Weather topic.

5. Process report messages until shutdown.

6. Unsubscribe from the Weather topic.

In the sections below, we present monitor implementations in C++ and Java.

C++ Example

Our C++ monitor implementation begins by including the necessary header files. 
The interesting ones are IceStorm/IceStorm.h, which is generated from the 
IceStorm Slice definitions, and Monitor.h, containing the generated code for 
our monitor definitions shown at the beginning of Section 42.2.

#include <Ice/Ice.h> 
#include <IceStorm/IceStorm.h> 
#include <Monitor.h> 
 
using namespace std; 
 
class MonitorI : virtual public Monitor { 
public: 
    virtual void report(const Measurement& m, 
                        const Ice::Current&) { 
        cout << "Measurement report:" << endl 
             << "  Tower: " << m.tower << endl 
             << "  W Spd: " << m.windSpeed << endl 
             << "  W Dir: " << m.windDirection << endl 
             << "   Temp: " << m.temperature << endl 
             << endl; 
    } 
}; 
 
int main(int argc, char* argv[]) 
{ 
    ... 
    Ice::ObjectPrx obj = communicator->stringToProxy( 
        "IceStorm/TopicManager:tcp -p 9999"); 
    IceStorm::TopicManagerPrx topicManager = 
        IceStorm::TopicManagerPrx::checkedCast(obj); 
 
    Ice::ObjectAdapterPtr adapter = 
        communicator->createObjectAdapter("MonitorAdapter"); 
 
    MonitorPtr monitor = new MonitorI; 
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    Ice::ObjectPrx proxy = adapter->addWithUUID(monitor); 
 
    IceStorm::TopicPrx topic; 
    try { 
        topic = topicManager->retrieve("Weather"); 
        IceStorm::QoS qos; 
        topic->subscribe(qos, proxy); 
    } 
    catch (const IceStorm::NoSuchTopic&) { 
        // Error! No topic found! 
        ... 
    } 
 
    adapter->activate(); 
    communicator->waitForShutdown(); 
 
    topic->unsubscribe(proxy); 
    ... 
}

Our implementation of the Monitor servant is currently quite simple. A real 
implementation might update a graphical display, or incorporate the measure-
ments into an ongoing calculation.

class MonitorI : virtual public Monitor { 
public: 
    virtual void report(const Measurement& m, 
                        const Ice::Current&) { 
        cout << "Measurement report:" << endl 
             << "  Tower: " << m.tower << endl 
             << "  W Spd: " << m.windSpeed << endl 
             << "  W Dir: " << m.windDirection << endl 
             << "   Temp: " << m.temperature << endl 
             << endl; 
    } 
};

After obtaining a proxy for the topic manager, the program creates an object 
adapter, instantiates the Monitor servant and activates it.

    Ice::ObjectAdapterPtr adapter = 
        communicator->createObjectAdapter("MonitorAdapter"); 
 
    MonitorPtr monitor = new MonitorI; 
    Ice::ObjectPrx proxy = adapter->addWithUUID(monitor);

Next, the monitor subscribes to the topic.
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    IceStorm::TopicPrx topic; 
    try { 
        topic = topicManager->retrieve("Weather"); 
        IceStorm::QoS qos; 
        topic->subscribe(qos, proxy); 
    } 
    catch (const IceStorm::NoSuchTopic&) { 
        // Error! No topic found! 
        ... 
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After 
waitForShutdown returns, the monitor cleans up by unsubscribing from the 
topic.

    adapter->activate(); 
    communicator->waitForShutdown(); 
 
    topic->unsubscribe(proxy);

Java Example

The Java implementation of the monitor is shown below.

class MonitorI extends _MonitorDisp { 
    public void report(Measurement m, Ice.Current curr) { 
        System.out.println( 
            "Measurement report:\n" + 
            "  Tower: " + m.tower + "\n" + 
            "  W Spd: " + m.windSpeed + "\n" + 
            "  W Dir: " + m.windDirection + "\n" + 
            "   Temp: " + m.temperature + "\n"); 
    } 
} 
 
public static void main(String[] args) 
{ 
    ... 
    Ice.ObjectPrx obj = communicator.stringToProxy( 
        "IceStorm/TopicManager:tcp -p 9999"); 
    IceStorm.TopicManagerPrx topicManager = 
        IceStorm.TopicManagerPrxHelper.checkedCast(obj); 
 
    Ice.ObjectAdapterPtr adapter = 
        communicator.createObjectAdapter("MonitorAdapter"); 
 
    Monitor monitor = new MonitorI(); 



42.5 Using IceStorm 1399

    Ice.ObjectPrx proxy = adapter.addWithUUID(monitor); 
 
    IceStorm.TopicPrx topic = null; 
    try { 
        topic = topicManager.retrieve("Weather"); 
        java.util.Map qos = null; 
        topic.subscribe(qos, proxy); 
    } 
    catch (IceStorm.NoSuchTopic ex) { 
        // Error! No topic found! 
        ... 
    } 
 
    adapter.activate(); 
    communicator.waitForShutdown(); 
 
    topic.unsubscribe(proxy); 
    ... 
}

Our implementation of the Monitor servant is currently quite simple. A real 
implementation might update a graphical display, or incorporate the measure-
ments into an ongoing calculation.

class MonitorI extends _MonitorDisp { 
    public void report(Measurement m, Ice.Current curr) { 
        System.out.println( 
            "Measurement report:\n" + 
            "  Tower: " + m.tower + "\n" + 
            "  W Spd: " + m.windSpeed + "\n" + 
            "  W Dir: " + m.windDirection + "\n" + 
            "   Temp: " + m.temperature + "\n"); 
    } 
}

After obtaining a proxy for the topic manager, the program creates an object 
adapter, instantiates the Monitor servant and activates it.

    Monitor monitor = new MonitorI(); 
    Ice.ObjectPrx proxy = adapter.addWithUUID(monitor);

Next, the monitor subscribes to the topic.

    IceStorm.TopicPrx topic = null; 
    try { 
        topic = topicManager.retrieve("Weather"); 
        java.util.Map qos = null; 
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        topic.subscribe(qos, proxy); 
    } 
    catch (IceStorm.NoSuchTopic ex) { 
        // Error! No topic found! 
        ... 
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After 
waitForShutdown returns, the monitor cleans up by unsubscribing from the 
topic.

    adapter.activate(); 
    communicator.waitForShutdown(); 
 
    topic.unsubscribe(proxy);

42.6 IceStorm Administration

The IceStorm administration tool is a command-line program that provides 
administrative control of an IceStorm server. The tool requires that the IceS-
torm.TopicManager.Proxy property be specified as described in 
Section 42.9.2.

The following command-line options are supported:

$ icestormadmin -h 
Usage: icestormadmin [options] [file...] 
Options: 
-h, --help           Show this message. 
-v, --version        Display the Ice version. 
-DNAME               Define NAME as 1. 
-DNAME=DEF           Define NAME as DEF. 
-UNAME               Remove any definition for NAME. 
-IDIR                Put DIR in the include file search path. 
-e COMMANDS          Execute COMMANDS. 
-d, --debug          Print debug messages.

The tool operates in three modes, depending on the command-line arguments:

1. If one or more -e options are specified, the tool executes the given commands 
and exits.

2. If one or more files are specified, the tool preprocesses each file with the C 
preprocessor, executes the commands in each file, and exits.

3. Otherwise, the tool enters an interactive session.
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The help command displays the following usage information:

help

Print this message.

exit, quit

Exit this program.

create TOPICS

Add TOPICS.

destroy TOPICS

Remove TOPICS.

link FROM TO COST

Link FROM to TO with the given COST.

unlink FROM TO

Unlink TO from FROM.

graph DATA COST

Construct the link graph as described in DATA with COST.

list [TOPICS]

Display information on TOPICS or all topics.

Many of the commands accept one or more topic names (TOPICS) as arguments. 
Topic names containing white space or matching a command keyword must be 
enclosed in single or double quotes.

For more information on the graph command, see Section 42.7.3.

42.7 Topic Federation

The ability to link topics together into a federation provides IceStorm applications 
with a lot of flexibility, while the notion of a “cost” associated with links allows 
applications to restrict the flow of messages in creative ways. IceStorm applica-
tions have complete control of topic federation using the TopicManager interface 
described in Appendix B, allowing links to be created and removed dynamically 



1402 IceStorm

as necessary. For many applications, however, the topic graph is static and there-
fore can be configured using the administrative tool discussed in Section 42.6.

42.7.1 Message Propagation
IceStorm messages are never propagated over more than one link. For example, 
consider the topic graph shown in Figure 42.4.

Figure 42.4. Message propagation.

In this case, messages published on A are propagated to B, but B does not propa-
gate A’s messages to C. Therefore, subscriber SB receives messages published on 
topics A and B, but subscriber SC only receives messages published on topics B 
and C. If the application needs messages to propagate from A to C, then a link 
must be established directly between A and C.

42.7.2 Cost
As described in Section 42.7.1, IceStorm messages are only propagated on the 
originating topic’s immediate links. In addition, applications can use the notion of 
cost to further restrict message propagation.

A cost is associated with messages and links. When a message is published on 
a topic, the topic compares the cost associated with each of its links against the 
message cost, and only propagates the message on those links whose cost equals 
or exceeds the message cost. A cost value of zero (0) has the following implica-
tions:

• messages with a cost value of zero (0) are published on all of the topic’s links 
regardless of the link cost;

• links with a cost value of zero (0) accept all messages regardless of the 
message cost.
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For example, consider the topic graph shown in Figure 42.5.

Figure 42.5. Cost semantics.

Publisher P1 publishes a message on topic A with a cost of 1. This message is 
propagated on the link to topic B because the link has a cost of 0 and therefore 
accepts all messages. The message is also propagated on the link to topic C, 
because the message cost does not exceed the link cost (1). On the other hand, the 
message published by P2 with a cost of 2 is only propagated on the link to B.

Request Context

The cost of a message is specified in an Ice request context. Each Ice proxy opera-
tion has an implicit argument of type Ice::Context representing the request 
context (see Section 30.11). This argument is rarely used, but it is the ideal loca-
tion for specifying the cost of an IceStorm message because an application only 
needs to supply a request context if it actually uses IceStorm’s cost feature. If the 
request context does not contain a cost value, the message is assigned the default 
cost value of zero (0).

Publishing a Message with a Cost

The code examples below demonstrate how a collector can publish a measurement 
with a cost value of 5. First, the C++ version:

    Measurement m = getMeasurement(); 
    Ice::Context ctx; 
    ctx["cost"] = "5"; 
    monitor->report(m, ctx);

And here is the equivalent version in Java:
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    Measurement m = getMeasurement(); 
    java.util.HashMap ctx = new java.util.HashMap(); 
    ctx.put("cost", "5"); 
    monitor.report(m, ctx);

Receiving a Message with a Cost

A subscriber can discover the cost of a message by examining the request context 
supplied in the Ice::Current argument. For example, here is a C++ implementa-
tion of Monitor::report that displays the cost value if it is present:

    virtual void report(const Measurement& m, 
                        const Ice::Current& curr) { 
        Ice::Context::const_iterator p = curr.ctx.find("cost"); 
        cout << "Measurement report:" << endl 
             << "  Tower: " << m.tower << endl 
             << "  W Spd: " << m.windSpeed << endl 
             << "  W Dir: " << m.windDirection << endl 
             << "   Temp: " << m.temperature << endl 
             << "   Temp: " << m.temperature << endl; 
        if (p != curr.ctx.end()) 
            cout << "   Cost: " << p->second << endl; 
        cout << endl; 
    }

And here is the equivalent Java implementation:

    public void report(Measurement m, Ice.Current curr) { 
        String cost = null; 
        if (curr.ctx != null) 
            cost = curr.ctx.get("cost"); 
        System.out.println( 
            "Measurement report:\n" + 
            "  Tower: " + m.tower + "\n" + 
            "  W Spd: " + m.windSpeed + "\n" + 
            "  W Dir: " + m.windDirection + "\n" + 
            "   Temp: " + m.temperature); 
        if (cost != null) 
            System.out.println("   Cost: " + cost); 
        System.out.println(); 
    }

For the sake of efficiency, the Ice for Java run time may supply a null value for the 
request context in Ice.Current, therefore an application is required to check 
for null before using the request context. Furthermore, a non-null request context 
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is subject to change after the completion of the request, so an application that 
wishes to retain the request context must make a copy of it (e.g., using clone).

42.7.3 Automating Federation
Given the restrictions on message propagation described in the previous sections, 
creating a complex topic graph can be a tedious endeavor. Of course, creating a 
topic graph is not typically a common occurrence, since IceStorm keeps a persis-
tent record of the graph. However, there are situations where an automated proce-
dure for creating a topic graph can be valuable, such as during development when 
the graph might change significantly and often, or when graphs need to be recom-
puted based on changing costs.

Administration Tool Script

A simple way to automate the creation of a topic graph is to create a text file 
containing commands to be executed by the IceStorm administration tool. For 
example, the commands to create the topic graph shown in Figure 42.5 are shown 
below:

create A B C 
link A B 0 
link A C 1

If we store these commands in the file graph.txt, we can execute them using 
the following command:

$ icestormadmin --Ice.Config=config graph.txt

We assume that the configuration file config contains the definition for the 
property IceStorm.TopicManager.Proxy.

XML Graph Descriptor

IceStorm provides an alternative method of configuring topic graphs for applica-
tions that use message and link costs. This feature is employed using the adminis-
tration tool’s graph command, which accepts an XML graph descriptor and 
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establishes links between topics based on reachability within a maximum cost. For 
example, let us start with the graph shown in Figure 42.6.

Figure 42.6. Initial graph.

The XML graph descriptor for this topic graph is shown below.

<?xml version="1.0" encoding="iso-8859-1"?> 
<graph> 
  <vertex-set> 
    <vertex name="A"/> 
    <vertex name="B"/> 
    <vertex name="C"/> 
    <vertex name="D"/> 
    <vertex name="E"/> 
  </vertex-set> 
  <edge-set> 
    <edge source="A" target="B" cost="1"/> 
    <edge source="A" target="C" cost="2"/> 
    <edge source="C" target="D" cost="1"/> 
    <edge source="D" target="E" cost="1"/> 
  </edge-set> 
</graph>

As you can see, the descriptor format is quite straightforward. The outer graph 
element contains one vertex-set element and one edge-set element. The 
vertex-set element is comprised of two or more vertex elements having a 
single attribute, name, providing the name of a topic. The edge-set element 
contains one or more edge elements that describe links between topics. The 
source and target attributes supply the topic names, and the cost attribute 
defines the link cost.
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Although this descriptor accurately describes the structure of the graph in 
Figure 42.6, the graph that is ultimately created by the administration tool’s 
graph command is dependent on the specified maximum cost. Suppose we save 
our graph descriptor as graph.xml and execute the following commands:

$ icestormadmin --Ice.Config=config 
>>> create A B C 
>>> graph "graph.xml" 1

We must first create the topics that are used as vertices in our XML graph 
descriptor. Next, we instruct the administration tool to create a graph using a 
maximum cost of 1, which results in the graph shown in Figure 42.7.

Figure 42.7. Graph with maximum cost of 1.

Notice that the link from A to C was not created, because the cost of that link (2) 
exceeded the maximum cost. Now consider the outcome of using a maximum cost 
of 2:

>>> graph "graph.xml" 2
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As shown in Figure 42.8, the link from A to C is now present. In addition, a link 
from C to E has been established with a cost of 2, because E is reachable from C 
within the maximum cost.

Figure 42.8. Graph with maximum cost of 2.

We can verify that the links are created properly using the list command:

>>> list A B C D E 
A 
    B with cost 0 
    C with cost 2 
B 
C 
    D with cost 1 
    E with cost 2 
D 
    E with cost 1 
E

The graph command can be used repeatedly to experiment with different cost 
configurations. For each invocation of the graph command, the administration 
tool recomputes the graph based on the specified maximum cost, establishes the 
necessary links, and removes any links that are no longer valid given the new cost 
constraints.
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42.8 Quality of Service

An IceStorm subscriber specifies QoS parameters at the time of subscription. 
IceStorm currently supports only one QoS parameter, reliability, which is 
described in the section below.

42.8.1 Reliability
The QoS parameter reliability affects message delivery. The legal values 
for this parameter are oneway, batch, twoway and twoway ordered. If not 
specified, the default value is oneway.

oneway and batch

In the oneway reliability mode, each published message results in a separate 
oneway invocation to the subscriber. Specifying the value batch causes much 
different behavior: IceStorm temporarily queues messages for the subscriber and 
flushes them at regular intervals by delivering them as batch oneway requests (see 
Section 30.15). There is no difference between the two reliability modes as far as 
the subscriber’s servant implementation is concerned; the messages are delivered 
individually as servant up-calls in the normal fashion. However, there is a differ-
ence in terms of safety and performance.

The oneway mode emphasizes safety by delivering its messages as soon as 
they are received in order to minimize the possibility of lost messages should an 
IceStorm failure occur.

By contrast, the batch mode queues messages for a configurable amount of 
time, increasing the possibility of lost messages in the event of failure, but 
providing better performance by minimizing network overhead. The frequency 
with which the batch mode flushes its queues is determined by the configuration 
property IceStorm.Flush.Timeout, as described in Appendix C.

The performance improvement offered by the batch mode is especially 
apparent for topics in which small messages are sent frequently. Rather than 
making many small requests, as would be done in oneway mode, the messages are 
accumulated and delivered in groups, amortizing the network overhead across 
several messages. However, the subscriber should only use the batch mode if it 
is willing to wait up to the flush timeout for new messages.

Both modes are susceptible to lost messages when a connection is closed. For 
this reason, server-side active connection management (which is disabled by 
default) should not be used. Section 34.6.2 discusses this issue in detail.
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If batch mode is used, the messages are relatively large, and the flush 
timeout is too long, it is possible that the accumulated batch request could exceed 
the Ice run time’s maximum message size and cause the messages to be discarded. 
In this situation you would need to flush the batch request more frequently by 
decreasing the flush timeout, or increase the maximum message size by setting 
Ice.MessageSizeMax to a larger value.

twoway

The twoway reliability mode uses twoway invocations between IceStorm and the 
subscriber, but makes no guarantees about the order in which messages are deliv-
ered. If maintaining message order is important, see the description of the 
twoway ordered mode below.

When IceStorm receives a new message from a publisher, the twoway mode 
causes the service to immediately forward that message to the subscriber as a 
twoway invocation. This mode is similar to oneway, with the advantage that a 
subscriber could safely enable server-side active connection management (see 
Section 34.4) to conserve resources without the risk of lost messages.

twoway ordered

The twoway ordered reliability mode uses twoway invocations between IceS-
torm and the subscriber. Furthermore, this mode guarantees that the subscriber 
receives messages in the order they were received by the service.

Upon receipt of a new message from a publisher, the twoway ordered 
mode causes IceStorm to immediately deliver the message to the subscriber, but 
only if no other message is currently being delivered to that subscriber. Otherwise, 
the message is queued and delivered as soon as all preceding messages are sent. 
This internal queue makes publishers less susceptible to subscriber delays, but a 
slow subscriber can cause messages to accumulate in the service.

Notice that twoway ordered does not guarantee that a subscriber receives 
messages from the same publisher in the order they were sent by that publisher. 
The order in which IceStorm processes invocations from the same publisher 
depends on several factors, such as whether the publisher uses oneway or twoway 
invocations, and the threading model configured for the IceStorm service.

Messages can be delivered to subscribers out of order if a publisher uses 
oneway invocations, as described in Section 30.13. This is not a concern when the 
publisher uses twoway invocations because there is no possibility that IceStorm 
can process those invocations out of order. In many cases, the best compromise to 
guarantee the order of messages from the same publisher is to use twoway invoca-
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tions between the publisher and IceStorm, and the twoway ordered quality of 
service for the subscriber.

42.8.2 Example
The Slice type IceStorm::QoS is defined as a dictionary whose key and value 
types are both string, therefore the QoS parameter name and value are both 
represented as strings. The example code presented in Section 42.5.3 used an 
empty dictionary for the QoS argument, meaning default values are used. The 
C++ and Java examples shown below illustrate how to set the reliability 
parameter to batch.

C++ Example

IceStorm::QoS qos; 
qos["reliability"] = "batch"; 
topic->subscribe(qos, proxy);

Java Example

java.util.Map qos = new java.util.HashMap(); 
qos.put("reliability", "batch"); 
topic.subscribe(qos, proxy);

42.9 Configuring IceStorm

IceStorm is a relatively lightweight service in that it requires very little configura-
tion and is implemented as an IceBox service (see Chapter 41). The configuration 
properties supported by IceStorm are described in Appendix C; however, most of 
them control diagnostic output and are not discussed in this chapter.

42.9.1 Server Configuration
The sample server configuration file shown below presents the properties of 
primary interest:

IceBox.Service.IceStorm=IceStormService,31:createIceStorm 
Freeze.DbEnv.IceStorm.DbHome=db 
IceStorm.TopicManager.Endpoints=tcp -p 9999 
IceStorm.Publish.Endpoints=tcp
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The first property defines the entry point for the IceStorm service. The service 
name (the last component of the IceBox.Service property name, IceStorm 
in this example) determines the prefix for the IceStorm configuration properties. It 
is not mandatory to use IceStorm as the service name, but it is recommended if 
there is no preferred name.

IceStorm uses Freeze to manage the service’s persistent state, therefore the 
second property specifies the pathname of the Freeze database environment direc-
tory (see Chapter 37) for the service. In this example, the directory db is used, 
which must already exist in the current working directory.

The final two properties specify the endpoints used by the IceStorm object 
adapters; notice that their property names begin with IceStorm, matching the 
service name. The TopicManager property specifies the endpoints on which 
the TopicManager and Topic objects reside; these endpoints typically use a 
connection-oriented protocol such as TCP or SSL. The Publish property speci-
fies the endpoints used by topic publisher objects.

42.9.2 Client Configuration
Clients of the service can define a proxy for the TopicManager object as follows:

IceStorm.TopicManager.Proxy=IceStorm/TopicManager:tcp -p 9999

The name of the property is not relevant, but the endpoint must match that of the 
IceStorm.TopicManager.Endpoints property, and the object identity 
must use the IceStorm service name as the identity category and TopicMan-
ager as the identity name.

42.9.3 Object Identities
IceStorm hosts one well-known object, which implements the IceStorm::Topic-
Manager interface. The default identity of this object is IceStorm/Topic-
Manager, as seen in the stringified proxy example from Section 42.9.2. If an 
application requires the use of multiple IceStorm services, it is a good idea to 
assign unique identities to the well-known objects by configuring the services 
with different values for the IceStorm.InstanceName property, as shown in 
the following example:

IceStorm.InstanceName=Measurement
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This property changes the category of the object’s identity, which becomes 
Measurement/TopicManager. The client’s configuration must also be 
changed to reflect the new identity:

IceStorm.TopicManager.Proxy=Measurement/TopicManager:tcp -p 9999

42.10 Summary

IceStorm is a publish/subscribe service that offers Ice applications a flexible and 
efficient means of publishing oneway requests to a group of subscribers. IceStorm 
simplifies development by relieving the application from the burden of managing 
subscribers and handling delivery errors, allowing the application to focus on 
publishing its data and not on the minutiae of distribution. Finally, IceStorm lever-
ages Ice request-forwarding facilities in order to provide a typed interface to 
publishers and subscribers, minimizing the impact on applications.
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Chapter 43
IcePatch2

43.1 Chapter Overview

This chapter presents IcePatch2,1 the Ice solution for secure replication of a direc-
tory tree. Section 43.2 provides an overview of IcePatch2 concepts and operation, 
and Sections 43.3 to 43.5 discuss how to prepare a file set and how to run the 
IcePatch2 client and server. Section 43.6 shows how to configure multiple 
IcePatch2 servers, and Section 43.7 describes the creation of a custom IcePatch2 
client.

43.2 Introduction

IcePatch2 is an efficient file patching service that is easy to configure and use. It 
includes the following components:

• the IcePatch server (icepatch2server)

• a text-based IcePatch client (icepatch2client)

1. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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• a text-based tool to compress files and calculate checksums 
(icepatch2calc)

• a Slice API and C++ convenience library for developing custom IcePatch2 
clients

As with all Ice services, IcePatch2 can be configured to use Ice facilities such as 
Glacier2 for firewall support and IceSSL for secure communication.

IcePatch2 is conceptually quite simple. The server is given responsibility for a 
file system directory (the data directory) containing the files and subdirectories 
that are to be distributed to IcePatch2 clients. You use icepatch2calc to 
compress these files and to create a file that contains a checksum for each file. The 
server transmits the compressed files to the client, which recreates the data direc-
tory and its contents on the client side, patching any files that have changed since 
the previous run.

IcePatch2 is efficient: transfer rates for files are comparable to what you 
would get using ftp.

43.3 Using icepatch2calc

Suppose we have the directories and files shown in Figure 43.1 in the data direc-
tory on the server side.

Figure 43.1. An example data directory.

Assume that the file named emptyFile is empty (contains zero bytes) and that 
the remaining files contain data.

To prepare this directory for the transmission by the server, you must first run 
icepatch2calc. (The command shown assumes that the data directory is the 
current directory.)

$ icepatch2calc .

Data Directory

bin emptyFile

hello

= Directory

= File

nonEmptyFile
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After running this command, the contents of the data directory are as shown in 
Figure 43.2.

Figure 43.2. Contents of the data directory after running icepatch2calc.

Note that icepatch2calc compresses the files in the data directory (except for 
emptyFile, which is not compressed). Also note that icepatch2calc 
creates an additional file, IcePatch2.sum in the data directory. The contents of 
this file are as follows:

. 3a52ce780950d4d969792a2559cd519d7ee8c727 -1

./bin bd362140a3074eb3edb5e4657561e029092c3d91 -1

./bin/hello 77b11db586a1f20aab8553284241bb3cd532b3d5 70

./emptyFile 082c37fc2641db68d195df83844168f8a464eada 0

./nonEmptyFile aec7301c408e6ce184ae5a34e0ea46e0f0563746 72
Each line in the checksum file contains the name of the uncompressed file or 
directory (relative to the data directory), a checksum, and a byte count. For direc-
tories, the count is -1; for uncompressed files, the count is 0; for compressed 
files, the count is the number of bytes in the compressed file. The lines in the file 
are sorted alphabetically by their pathname.

If you add files or delete files from the data directory or make changes to 
existing files, you must stop the server, run icepatch2calc again to update the 
IcePatch2.sum checksum file, and restart the server.

43.3.1 icepatch2calc Options
icepatch2calc has the following syntax:

icepatch2calc [options] data_dir [file...]

Normally, you will run icepatch2calc by simply specifying a data directory, 
in which case the program traverses the data directory, compresses all files, and 
creates an entry in the checksum file for each file and directory.

Data Directory

bin emptyFile

hello

= Directory

= File

nonEmptyFileIcePatch2.sum

hello.bz2

nonEmptyFile.bz2
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You can also nominate specific files or directories on the command line. In 
this case, icepatch2calc only compresses and calculates checksums for the 
specified files and directories. This is useful if you have a very large file tree and 
want to refresh the checksum entries for only a few selected files or directories 
that you have updated. (In this case, the program does not traverse the data direc-
tory and, therefore, will also not detect any updated, added, or deleted files, except 
in any of the specified directories.) Any file or directory names you specify on the 
command line must either be pathnames relative to the data directory or, if you use 
absolute pathnames, those pathnames must have the data directory as a prefix.

The command supports the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays the version number.

• -z, --compress

Normally, icepatch2calc scans the data directory and compresses a file 
only if no compressed version exists, or if the compressed version of a file has 
a modification time that predates that of the uncompressed version. If you 
specify -z, the tool re-scans and recompresses the entire data directory, 
regardless of the time stamps on files. This option is useful if you suspect that 
time stamps in the data directory may be incorrect.

• -Z, --no-compress

This option allows you to create a client-side checksum file.

Do not use this option when creating the checksum file for the server—the 
option is for creating a client-side IcePatch2.sum file for incremental 
updates (see page 1422).

• -i, --case-insensitive

This option disallows file names that differ only in case. (An error message 
will be printed if icepatch2calc encounters any files that differ in case 
only.) This is in particular useful for Unix servers with Windows clients, since 
Windows folds the case of file names, and therefore such files would override 
each other on the Windows client.

• -V, --verbose

This option prints a progress message for each file that is compressed and for 
each checksum that is computed.
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43.4 Running the Server

Once you have run icepatch2calc on the data directory, you can start the 
icepatch2server:

$ icepatch2server .

The server expects the data directory as its single command-line argument. If you 
omit to specify the data directory, the server uses the setting of the 
IcePatch2.Directory property (see Appendix C) to determine the data 
directory.

The server has two different sets of endpoints, one for regular operations, and 
one for administration:

• IcePatch2.Endpoints

This property determines the endpoint at which the server listens for client 
requests. This property must be specified.

• IcePatch2.Admin.Endpoints

If this property is not set, the only way to shut down the server is to kill it 
somehow, such as by interrupting the server from the command line. If this 
property is set, the server offers an additional interface with a shutdown oper-
ation, allowing clients to remotely stop the server. Typically, you would set 
this property to a port that is not accessible to potentially hostile clients.

43.4.1 icepatch2server Options
Regardless of whether you run the server under Windows or a UNIX-like oper-
ating system, it provides the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays a version number.

In addition, the server supports the following options under Windows:

• --service name

Run as the Windows service name.
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• --install name [--display disp] [--executable exec] 
[args]

Install as Windows service name. If disp is provided, use it as the display 
name, otherwise use name. If exec is provided, use it as the service execut-
able. Any additional arguments are passed unchanged to the service at startup.

• --uninstall name

Uninstall the Windows service name.

• --start name [args]

Start the Windows service name. Any additional arguments are passed 
unchanged to the service.

• --stop name

Stop the Windows service name.

For UNIX-like operating systems, the server supports the following additional 
options:

• --daemon

Make the server a UNIX daemon process.

• --noclose

Do not close the standard file descriptors (stdin, stdout, and stderr).

43.5 Running the Client

Once the icepatch2server is running, you can use icepatch2client to 
get a copy of the data directory that is maintained by the server. For example:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com \ 
> -p 10000" .

The client expects the data directory as its single command-line argument. As for 
the server, you must specify the IcePatch2.Endpoints property so the 
client knows where to find the server.

If you have not run the client previously, it asks you whether you want to do a 
thorough patch. You must reply “yes” at this point (or run the client with the -t 
option—see page 1421). The client then goes through the following steps:

1. It traverses the local data directory and creates a local IcePatch2.sum 
checksum file.
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2. It obtains the relevant list of checksums from the server and compares it to the 
list of checksums it has built locally:

1.The client deletes each file that appears in the local checksum file but not in 
the server’s file.

2.The client retrieves every file that appears in the server’s checksum file, but 
not in the local file.

3.The client patches every file that, locally, has a checksum that differs from 
the corresponding checksum on the server side.

When the client finishes, the contents of the data directory on the client side 
exactly match the contents of the data directory on the server side. However, only 
the uncompressed files are created on the client side—the server stores the 
compressed version of the files simply to avoid redundantly compressing a file 
every time it is retrieved by a client.

Using icepatch2client for Partial Updates

Once you have run the client, the client-side data directory contains an 
IcePatch2.sum file that reflects the contents of the data directory. If you run 
icepatch2client a second time, the program uses the contents of the local 
checksum file: for each entry in the local checksum file, the client compares the 
local checksum with the server-side checksum; if the checksums differ, the client 
updates the corresponding file. In addition, the client deletes any files that exist 
only locally but not on the server side, and it fetches any new files that have been 
added to the server since the last time the client was run.

If you edit a client-side file and change its contents, the client does not realize 
that this has happened and patch the file to be in sync with the version on the 
server again. This is because the client normally does not recompute the checksum 
for a file to see whether the stored checksum in IcePatch2.sum still agrees 
with the actual checksum for the current file contents.

If you have locally modified some files and want to make sure that those 
modified files are updated to reflect the contents of the same files on the server 
side, you must run a thorough patch with the -t option. Then the client first 
traverses the local data directory and recomputes the checksum for each file, and 
then compares these checksums against the server-side ones. This means that, if 
you edit a file locally so it differs from the server-side version, -t forces that file 
to be updated.



1422 IcePatch2

Preventing Deletion of Local Files

By default, the client deletes any files that exist in the local data directory but that 
are unknown to the server. If you do not want this behavior, you can set the 
IcePatch2.Remove property to 0 (the default value is 1). This prevents dele-
tion of files and directories that exist only on the client side.

Creating an Incremental Patch

Suppose you have a number of deployed clients that have been patched previ-
ously, and you want to distribute a new version of the application to these clients. 
To update the clients with the new version of the application, the clients can do a 
thorough patch. However, this is expensive if the pre-existing file set on the client 
side is large, because a thorough patch recompresses all files to compute the 
checksums.

As an alternative, you can place all the files for the distribution into a directory 
and run icepatch2calc -Z on that directory. With the -Z option, 
icepatch2calc creates a checksum file with the correct checksum, but with a 
file size of 0 for each file, that is, the -Z option omits compressing the files. Once 
you have created the new IcePatch2.sum file in this way, you can distribute it 
to clients which then can use it to patch their distribution without having to do a 
thorough patch. For large file sets, this can result in considerable time savings.

Setting Transfer Size

You can set the IcePatch2.ChunkSize property to control the number of 
bytes that the client fetches per request. The default value is 100 kilobytes.

43.5.1 icepatch2client Options
The client supports the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays a version number.

• -t, --thorough

Do a thorough patch, recomputing all checksums.
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43.6 Object Identities

An IcePatch2 service hosts one well-known object, which implements the 
IcePatch2::FileServer interface and has the default identity 
IcePatch2/server. If an application requires the use of multiple IcePatch2 
services, it is a good idea to assign unique identities to the well-known objects by 
configuring the servers with different values for the IcePatch2.Instance-
Name property, as shown in the following example:

$ icepatch2server --IcePatch2.InstanceName=PublicFiles ...

This property changes the category of the object’s identity, which becomes 
PublicFiles/server. The client’s configuration must also be changed to 
reflect the new identity:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com \ 
> -p 10000" --IcePatch2.InstanceName=PublicFiles .

43.7 Creating a Custom Client

You may wish to closely integrate an IcePatch2 client into your own applications, 
for example, to provide a graphical user interface, or to present detailed progress 
updates during patching.
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The Ice for C++ distribution ships with a simple graphical IcePatch2 client, as 
shown in Figure 43.3.

Figure 43.3. A graphical IcePatch2 client.

You can find the source code for this client in the demo/IcePatch2/MFC 
directory of the Ice distribution. You can use the code in this demo as the basis for 
your own graphical client. The Slice interfaces for IcePatch2 are documented in 
Appendix B.

43.8 Summary

IcePatch2 addresses a requirement common to both development and deployment 
scenarios: the safe, secure, and efficient replication of a directory tree. The 
IcePatch2 server is easy to configure and efficient. For simple uses, IcePatch2 
provides a client that can be used to patch directory hierarchies from the command 
line. Using IcePatch2 demo as a starting point, you can create custom clients of 
your own if you require better integration of the client with your application.



Appendices
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Appendix A
Slice Keywords

The following identifiers are Slice keywords:

Keywords must be capitalized as shown.

bool enum implements module string
byte exception int nonmutating struct
class extends interface Object throws
const false local out true
dictionary float LocalObject sequence void
double idempotent long short
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Appendix B 
Slice Documentation

B.1 Ice

Overview

module Ice

The Ice core library. Among many other features, the Ice core library manages all 
the communication tasks using an efficient protocol (including protocol compres-
sion and support for both TCP and UDP), provides a thread pool for multi-
threaded servers, and additional functionality that supports high scalability.

BoolSeq

sequence<bool> BoolSeq;

A sequence of bools.

ByteSeq

sequence<byte> ByteSeq;

A sequence of bytes.
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Used By

BadMagicException::badMagic, ::IcePatch2::ByteSeqSeq, 

::IcePatch2::FileInfo::checksum, 

::IcePatch2::FileServer::getChecksum, 

::IcePatch2::FileServer::getFileCompressed.

DoubleSeq

sequence<double> DoubleSeq;

A sequence of doubles.

EndpointSeq

local sequence<Endpoint> EndpointSeq;

FloatSeq

sequence<float> FloatSeq;

A sequence of floats.

IdentitySeq

sequence<Identity> IdentitySeq;

A sequence of identities.

Used By

::Glacier2::IdentitySet::add, ::Glacier2::IdentitySet::get, 

::Glacier2::IdentitySet::remove.

IntSeq

sequence<int> IntSeq;

A sequence of ints.
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LongSeq

sequence<long> LongSeq;

A sequence of longs.

ObjectProxySeq

sequence<Object*> ObjectProxySeq;

A sequence of object proxies.

Used By

Router::addProxies, ::IceGrid::Query::findAllObjectsByType.

ObjectSeq

sequence<Object> ObjectSeq;

A sequence of objects.

ShortSeq

sequence<short> ShortSeq;

A sequence of shorts.

StringSeq

sequence<string> StringSeq;

A sequence of strings.

Used By

::IceGrid::ApplicationUpdateDescriptor::removeVariables, 

::Glacier2::SSLInfo::certs, ::Glacier2::StringSet::add, 

::Glacier2::StringSet::get, ::Glacier2::StringSet::remove, 

::IceGrid::ApplicationUpdateDescriptor::removeNodes, 

::IceGrid::NodeUpdateDescriptor::removePropertySets, Proper-

ties::getCommandLineOptions, Properties::parseCommandLineOptions, 

Properties::parseIceCommandLineOptions, ::IceBox::Service::start, 
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::IceGrid::Admin::getAllAdapterIds, ::IceGrid::Admin::getAllAppli-

cationNames, ::IceGrid::Admin::getAllNodeNames, 

::IceGrid::Admin::getAllRegistryNames, 

::IceGrid::Admin::getAllServerIds, ::IceGrid::DistributionDe-

scriptor::directories, ::IceGrid::NodeUpdateDe-

scriptor::removeServers, 

::IceGrid::NodeUpdateDescriptor::removeVariables, 

::IceGrid::PatchException::reasons, ::IceGrid::PropertySetDe-

scriptor::references, ::IceGrid::ServerDescriptor::envs, 

::IceGrid::ServerDescriptor::options, ::IceGrid::TemplateDe-

scriptor::parameters, ::IceGrid::ApplicationUpdateDe-

scriptor::removeServiceTemplates, 

::IceGrid::ApplicationUpdateDescriptor::removeServerTemplates, 

::IceGrid::ApplicationUpdateDescriptor::removeReplicaGroups, 

::IceGrid::ApplicationUpdateDescriptor::removePropertySets.

Context

dictionary<string, string> Context;

A request context. Context is used to transmit metadata about a request from the 
server to the client, such as Quality-of-Service (QoS) parameters. Each operation 
on the client has a Context as its implicit final parameter.

Used By

Communicator::getDefaultContext, Communicator::setDefaultContext, 

Current::ctx.

FacetMap

local dictionary<string, Object> FacetMap;

A mapping from facet name to servant.

Used By

ObjectAdapter::findAllFacets, ObjectAdapter::removeAllFacets.
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ObjectDict

local dictionary<Identity, Object> ObjectDict;

A mapping between identities and Ice objects.

PropertyDict

local dictionary<string, string> PropertyDict;

A simple collection of properties, represented as a dictionary of key/value pairs. 
Both key and value are strings.

Used By

Properties::getPropertiesForPrefix.

See Also

Properties::getPropertiesForPrefix.

SliceChecksumDict

dictionary<string, string> SliceChecksumDict;

Used By

::IceBox::ServiceManager::getSliceChecksums, 

::IceGrid::Admin::getSliceChecksums, ::IceStorm::TopicMan-

ager::getSliceChecksums.

B.2 Ice::AdapterAlreadyActiveException

Overview

exception AdapterAlreadyActiveException

This exception is raised if a server tries to set endpoints for an adapter that is 
already active.
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Used By

LocatorRegistry::setAdapterDirectProxy, LocatorRegistry::setRepli-

catedAdapterDirectProxy.

B.3 Ice::AdapterNotFoundException

Overview

exception AdapterNotFoundException

This exception is raised if an adapter cannot be found.

Used By

Locator::findAdapterById, LocatorRegistry::setAdapterDirectProxy, 

LocatorRegistry::setReplicatedAdapterDirectProxy.

B.4 Ice::AlreadyRegisteredException

Overview

local exception AlreadyRegisteredException

This exception is raised if an attempt is made to register a servant, servant locator, 
facet, object factory, plug-in, object adapter, object, or user exception factory 
more than once for the same ID.

kindOfObject

string kindOfObject;

The kind of object that is registered already: "servant", "servant locator", "facet", 
"object factory", "plug-in", "object adapter", "object", or "user exception factory".

id

string id;
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The ID (or name) of the object that is registered already.

B.5 Ice::BadMagicException

Overview

local exception BadMagicException extends ProtocolException

This exception is a specialization of ProtocolException, indicating that a 
message did not start with the expected magic number ('I', 'c', 'e', 'P').

badMagic

ByteSeq badMagic;

A sequence containing the first four bytes of the incorrect message.

B.6 Ice::CloneNotImplementedException

Overview

local exception CloneNotImplementedException

This exception is raised if ice_clone is called on a class that is derived from an 
abstract Slice class (that is, a class containing operations), and the derived class 
does not provide an implementation of the ice_clone operation (C++ only).

B.7 Ice::CloseConnectionException

Overview

local exception CloseConnectionException extends ProtocolException

This exception is a specialization of ProtocolException, indicating that the 
connection has been gracefully shut down by the server. The operation call that 
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caused this exception has not been executed by the server. In most cases you will 
not get this exception, because the client will automatically retry the operation call 
in case the server shut down the connection. However, if upon retry the server 
shuts down the connection again, and the retry limit has been reached, then this 
exception is propagated to the application code.

B.8 Ice::CloseTimeoutException

Overview

local exception CloseTimeoutException extends TimeoutException

This exception is a specialization of TimeoutException for connection closure 
timeout conditions.

B.9 Ice::CollocationOptimizationException

Overview

local exception CollocationOptimizationException

This exception is raised if a feature is requested that is not supported with colloca-
tion optimization.

B.10 Ice::Communicator

Overview

local interface Communicator

The central object in Ice. One or more communicators can be instantiated for an 
Ice application. Communicator instantiation is language specific, and not speci-
fied in Slice code.
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Used By

::Freeze::Connection::getCommunicator, ObjectAdapter::getCommuni-

cator, ::IceBox::Service::start.

See Also

Logger, Stats, ObjectAdapter, Properties, ObjectFactory.

destroy

void destroy();

Destroy the communicator. This operation calls shutdown implicitly. Calling 
destroy cleans up memory, and shuts down this communicator's client function-
ality. Subsequent calls to destroy are ignored.

See Also

shutdown.

shutdown

void shutdown();

Shuts down this communicator's server functionality, including the deactivation of 
all object adapters. (Attempts to use a deactivated object adapter raise Object-
AdapterDeactivatedException.) Subsequent calls to shutdown are ignored. 
After shutdown returns, no new requests are processed. However, requests that 
have been started before shutdown was called might still be active. You can use 
waitForShutdown to wait for the completion of all requests. 

See Also

destroy, waitForShutdown, ObjectAdapter::deactivate.

waitForShutdown

void waitForShutdown();

Wait until this communicator's server functionality has shut down completely. 
Calling shutdown initiates shut-down, and waitForShutdown only returns when 
all outstanding requests have completed. A typical use of this operation is to call it 
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from the main thread, which then waits until some other thread calls shutdown. 
After shut-down is complete, the main thread returns and can do some cleanup 
work before it finally calls destroy to also shut down the client functionality, and 
then exits the application.

See Also

shutdown, destroy, ObjectAdapter::waitForDeactivate.

stringToProxy

[ "cpp:const" ] Object* stringToProxy(string str);

Convert a string into a proxy. For example, MyCategory/MyObject:tcp -h 
some_host -p 10000 creates a proxy that refers to the Ice object having an iden-
tity with a name "MyObject" and a category "MyCategory", with the server 
running on host "some_host", port 10000. If the string does not parse correctly, the 
operation throws ProxyParseException.

Parameters

str

The string to convert into a proxy.

Return Value

The proxy.

See Also

proxyToString.

proxyToString

[ "cpp:const" ] string proxyToString(Object* obj);

Convert a proxy into a string.

Parameters

obj

The proxy to convert into a string.
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Return Value

The "stringified" proxy.

See Also

stringToProxy.

stringToIdentity

[ "cpp:const" ] Identity stringToIdentity(string str);

Convert a string into an identity.

Parameters

str

The string to convert into an identity.

Return Value

The identity.

See Also

identityToString.

identityToString

[ "cpp:const" ] string identityToString(Identity ident);

Convert an identity into a string.

Parameters

ident

The identity to convert into a string.

Return Value

The "stringified" identity.

See Also

stringToIdentity.
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createObjectAdapter

ObjectAdapter createObjectAdapter(string name);

Create a new object adapter. The endpoints for the object adapter are taken from 
the property name.Endpoints.

Parameters

name

The object adapter name.

Return Value

The new object adapter.

See Also

createObjectAdapterWithEndpoints, ObjectAdapter, Properties.

createObjectAdapterWithEndpoints

ObjectAdapter createObjectAdapterWithEndpoints(string name, string 
endpoints);

Create a new object adapter with endpoints. This operation sets the property 
name.Endpoints, and then calls createObjectAdapter. It is provided as a conve-
nience function.

It is legal to create an object adapter without any endpoints. Such an object 
adapter cannot be accessed remotely and, therefore, is accessible only for collo-
cated invocations that originate from the the same communicator as is used by the 
adapter. space.

Parameters

name

The object adapter name.

endpoints

The endpoints for the object adapter.

Return Value

The new object adapter.
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See Also

createObjectAdapter, ObjectAdapter, Properties.

createObjectAdapterWithRouter

ObjectAdapter createObjectAdapterWithRouter(string name, Router* 
rtr);

Create a new object adapter with a router. This operation creates a routed object 
adapter.

Parameters

name

The object adapter name.

router

The router.

Return Value

The new object adapter.

See Also

createObjectAdapter, ObjectAdapter, Properties.

addObjectFactory

void addObjectFactory(ObjectFactory factory, string id);

Add a servant factory to this communicator. Installing a factory with an id for 
which a factory is already registered throws AlreadyRegisteredException.

When unmarshaling an Ice object, the Ice run-time reads the most-derived 
type id off the wire and attempts to create an instance of the type using a factory. If 
no instance is created, either because no factory was found, or because all facto-
ries returned nil, the object is sliced to the next most-derived type and the process 
repeats. If no factory is found that can create an instance, the Ice run-time throws 
NoObjectFactoryException.
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The following order is used to locate a factory for a type: 

1. The Ice run-time looks for a factory registered specifically for the type.

2. If no instance has been created, the Ice run-time looks for the default factory, 
which is registered with an emtpy type id.

3. If no instance has been created by any of the preceding steps, the Ice run-time 
looks for a factory that may have been statically generated by the language 
mapping for non-abstract classes.

Parameters

factory

The factory to add.

id

The type id for which the factory can create instances, or an empty string for 
the default factory.

See Also

findObjectFactory, ObjectFactory.

findObjectFactory

[ "cpp:const" ] ObjectFactory findObjectFactory(string id);

Find a servant factory registered with this communicator.

Parameters

id

The type id for which the factory can create instances, or an empty string for 
the default factory.

Return Value

The servant factory, or null if no servant factory was found for the given id.

See Also

addObjectFactory, ObjectFactory.
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getDefaultContext

[ "cpp:const" ] Context getDefaultContext();

Get the currently-set default context.

Return Value

The currently established default context. If no default context is currently set, 
getDefaultContext returns an empty context.

See Also

setDefaultContext.

setDefaultContext

void setDefaultContext(Context ctx);

Set a default context on this communicator. All newly created proxies will use this 
default context. This operation has no effect on existing proxies. 
You can also set a context for an individual proxy by calling the operation 
ice_context on the proxy.

Parameters

ctx

The default context to be set.

See Also

getDefaultContext.

getProperties

[ "cpp:const" ] Properties getProperties();

Get the properties for this communicator.

Return Value

This communicator's properties.
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See Also

Properties.

getLogger

[ "cpp:const" ] Logger getLogger();

Get the logger for this communicator.

Return Value

This communicator's logger.

See Also

Logger.

getStats

[ "cpp:const" ] Stats getStats();

Get the statistics callback object for this communicator.

Return Value

This communicator's statistics callback object.

See Also

Stats.

getDefaultRouter

[ "cpp:const" ] Router* getDefaultRouter();

Get the default router this communicator.

Return Value

The default router for this communicator.

See Also

setDefaultRouter, Router.
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setDefaultRouter

void setDefaultRouter(Router* rtr);

Set a default router for this communicator. All newly created proxies will use this 
default router. To disable the default router, null can be used. Note that this opera-
tion has no effect on existing proxies. 
You can also set a router for an individual proxy by calling the operation 
ice_router on the proxy.

Parameters

rtr

The default router to use for this communicator.

See Also

getDefaultRouter, createObjectAdapterWithRouter, Router.

getDefaultLocator

[ "cpp:const" ] Locator* getDefaultLocator();

Get the default locator this communicator.

Return Value

The default locator for this communicator.

See Also

setDefaultLocator, Locator.

setDefaultLocator

void setDefaultLocator(Locator* loc);

Set a default Ice locator for this communicator. All newly created proxy and 
object adapters will use this default locator. To disable the default locator, null can 
be used. Note that this operation has no effect on existing proxies or object 
adapters. 
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You can also set a locator for an individual proxy by calling the operation 
ice_locator on the proxy, or for an object adapter by calling the operation 
setLocator on the object adapter.

Parameters

loc

The default locator to use for this communicator.

See Also

getDefaultLocator, Locator, ObjectAdapter::setLocator.

getPluginManager

[ "cpp:const" ] PluginManager getPluginManager();

Get the plug-in manager for this communicator.

Return Value

This communicator's plug-in manager.

See Also

PluginManager.

flushBatchRequests

void flushBatchRequests();

Flush any pending batch requests for this communicator. This causes all batch 
requests that were sent via proxies obtained via this communicator to be sent to 
the server.

B.11 Ice::CommunicatorDestroyedException

Overview

local exception CommunicatorDestroyedException
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This exception is raised if the Communicator has been destroyed.

See Also

Communicator::destroy.

B.12 Ice::CompressionException

Overview

local exception CompressionException extends ProtocolException

This exception is a specialization of ProtocolException that is raised if there is a 
problem with compressing or uncompressing data.

B.13 Ice::ConnectFailedException

Overview

local exception ConnectFailedException extends SocketException

This exception is a specialization of SocketException for connection failures.

Derived Exceptions

ConnectionRefusedException.

B.14 Ice::ConnectTimeoutException

Overview

local exception ConnectTimeoutException extends TimeoutException

This exception is a specialization of TimeoutException for connection establish-
ment timeout conditions.
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B.15 Ice::Connection

Overview

local interface Connection

The user-level interface to a connection.

Used By

Current::con.

close

void close(bool force);

Close a connection, either gracefully or forcefully. If a connection is closed force-
fully, it closes immediately, without sending the relevant close connection 
protocol messages to the peer and waiting for the peer to acknowledge these 
protocol messages.

Parameters

force

If true, close forcefully. Otherwise the connection is closed gracefully.

createProxy

[ "cpp:const" ] Object* createProxy(Identity id);

Create a special proxy that always uses this connection. This can be used for call-
backs from a server to a client if the server cannot directly establish a connection 
to the client, for example because of firewalls. In this case, the server would create 
a proxy using an already established connection from the client.

Parameters

id

The identity for which a proxy is to be created.
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Return Value

A proxy that matches the given identity and uses this connection.

See Also

setAdapter.

setAdapter

void setAdapter(ObjectAdapter adapter);

Explicitly set an object adapter that dispatches requests that are received over this 
connection. A client can invoke an operation on a server using a proxy, and then 
set an object adapter for the outgoing connection that is used by the proxy in order 
to receive callbacks. This is useful if the server cannot establish a connection back 
to the client, for example because of firewalls.

Parameters

adapter

The object adapter that should be used by this connection to dispatch requests. 
The object adapter must be activated. When the object adapter is deactivated, 
it is automatically removed from the connection.

See Also

createProxy, setAdapter.

getAdapter

[ "cpp:const" ] ObjectAdapter getAdapter();

Get the object adapter that dispatches requests for this connection.

Return Value

The object adapter that dispatches requests for the connection, or null if no 
adapter is set.

See Also

setAdapter.
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flushBatchRequests

void flushBatchRequests();

Flush any pending batch requests for this connection. This causes all batch 
requests that were sent via proxies that use this connection to be sent to the server.

type

[ "cpp:const" ] string type();

Return the connection type. This corresponds to the endpoint type, i.e., "tcp", 
"udp", etc.

Return Value

The type of the connection.

timeout

[ "cpp:const" ] int timeout();

Get the timeout for the connection.

Return Value

The connection's timeout.

toString

[ "cpp:const" ] string toString();

Return a description of the connection as human readable text, suitable for logging 
or error messages.

Return Value

The description of the connection as human readable text.
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B.16 Ice::ConnectionLostException

Overview

local exception ConnectionLostException extends SocketException

This exception is a specialization of SocketException, indicating a lost connec-
tion.

B.17 Ice::ConnectionNotValidatedException

Overview

local exception ConnectionNotValidatedException extends 
ProtocolException

This exception is a specialization of ProtocolException, that is raised if a 
message is received over a connection that is not yet validated.

B.18 Ice::ConnectionRefusedException

Overview

local exception ConnectionRefusedException extends 
ConnectFailedException

This exception is a specialization of ConnectFailedException for connection 
failures, where the server host actively refuses a connection.

B.19 Ice::ConnectionTimeoutException

Overview

local exception ConnectionTimeoutException extends 
TimeoutException
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This exception is a specialization of TimeoutException, and indicates that a 
connection has been shut down because it has been idle for some time.

B.20 Ice::Current

Overview

local struct Current

Information about the current method invocation for servers. Each operation on 
the server has a Current as its implicit final parameter. Current is mostly used for 
Ice services. Most applications ignore this parameter.

Used By

ServantLocator::finished, ServantLocator::locate.

adapter

ObjectAdapter adapter;

The object adapter.

con

Connection con;

Information about the connection over which the current method invocation was 
received. If the invocation is direct due to collocation optimization, this value is 
set to null.

id

Identity id;

The Ice object identity.
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facet

string facet;

The facet.

operation

string operation;

The operation name.

mode

OperationMode mode;

The mode of the operation.

ctx

Context ctx;

The request context, as received from the client.

requestId

int requestId;

The request id unless oneway (0) or collocated (-1).

B.21 Ice::DNSException

Overview

local exception DNSException

This exception indicates a DNS problem. For details on the cause, error should 
be inspected.
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error

int error;

The error number describing the DNS problem. For C++ and Unix, this is equiva-
lent to h_errno. For C++ and Windows, this is the value returned by WSAGetLas-
tError().

host

string host;

The host name that could not be resolved.

B.22 Ice::DatagramLimitException

Overview

local exception DatagramLimitException extends ProtocolException

This exception is a specialization of ProtocolException that is raised if a data-
gram exceeds the configured send or receive buffer size, or exceeds the maximum 
payload size of a UDP packet (65507 bytes).

B.23 Ice::EncapsulationException

Overview

local exception EncapsulationException extends MarshalException

This exception is a specialization of MarshalException, indicating a malformed 
data encapsulation.
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B.24 Ice::Endpoint

Overview

local interface Endpoint

The user-level interface to an endpoint.

Used By

EndpointSeq.

toString

[ "cpp:const" ] string toString();

Return a string representation of the endpoint.

Return Value

The string representation of the endpoint.

B.25 Ice::EndpointParseException

Overview

local exception EndpointParseException

This exception is raised if there was an error while parsing an endpoint.

str

string str;

The string that could not be parsed.
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B.26 Ice::EndpointSelectionType

Overview

enum EndpointSelectionType

Determines the order in which the Ice run time uses the endpoints in a proxy when 
establishing a connection.

Random

Random

Random causes the endpoints to be arranged in a random order.

Ordered

Ordered

Ordered forces the Ice run time to use the endpoints in the order they appeared in 
the proxy.

B.27 Ice::FacetNotExistException

Overview

local exception FacetNotExistException extends 
RequestFailedException

This exception is raised if no facet with the given name exists, but at least one 
facet with the given identity exists.
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B.28 Ice::FeatureNotSupportedException

Overview

local exception FeatureNotSupportedException

This exception is raised if an unsupported feature is used. The unsupported feature 
string contains the name of the unsupported feature

unsupportedFeature

string unsupportedFeature;

The name of the unsupported feature.

B.29 Ice::FileException

Overview

local exception FileException extends SyscallException

This exception is a specialization of SyscallException for file errors.

path

string path;

The path of the file responsible for the error.

B.30 Ice::ForcedCloseConnectionException

Overview

local exception ForcedCloseConnectionException extends 
ProtocolException
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This exception is raised by an operation call if the application forcefully closes the 
connection used by this call with Connection::close.

See Also

Connection::close.

B.31 Ice::Identity

Overview

struct Identity

The identity of an Ice object. An empty name denotes a null object.

Used By

::Freeze::Evictor::add, ::Freeze::Evictor::addFacet, 

::Freeze::Evictor::createObject, ::Freeze::Evictor::destroyObject, 

::Freeze::Evictor::hasFacet, ::Freeze::Evictor::hasObject, 

::Freeze::Evictor::keep, ::Freeze::Evictor::keepFacet, 

::Freeze::Evictor::release, ::Freeze::Evictor::releaseFacet, 

::Freeze::Evictor::remove, ::Freeze::Evictor::removeFacet, 

::Freeze::EvictorIterator::next, ::Freeze::ServantInitial-

izer::initialize, Communicator::identityToString, Communi-

cator::stringToIdentity, Connection::createProxy, Current::id, 

IdentitySeq, IllegalIdentityException::id, Locator::findObjectById, 

ObjectAdapter::add, ObjectAdapter::addFacet, ObjectAdapter::create-

DirectProxy, ObjectAdapter::createIndirectProxy, Object-

Adapter::createProxy, ObjectAdapter::createReverseProxy, 

ObjectAdapter::find, ObjectAdapter::findAllFacets, Object-

Adapter::findFacet, ObjectAdapter::remove, ObjectAdapter::removeAll-

Facets, ObjectAdapter::removeFacet, ObjectDict, 

RequestFailedException::id, ::IceGrid::Admin::getObjectInfo, 

::IceGrid::Admin::removeObject, ::IceGrid::AdminSession::setObserv-

ersByIdentity, ::IceGrid::ObjectDescriptor::id, ::IceGrid::ObjectEx-

istsException::id, ::IceGrid::ObjectNotRegisteredException::id, 

::IceGrid::ObjectObserver::objectRemoved, ::IceGrid::Query::findOb-
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jectById, ::IceGrid::Session::allocateObjectById, 

::IceGrid::Session::releaseObject.

name

string name;

The name of the Ice object.

category

string category;

The Ice object category.

See Also

ServantLocator, ObjectAdapter::addServantLocator.

B.32 Ice::IdentityParseException

Overview

local exception IdentityParseException

This exception is raised if there was an error while parsing a stringified identity.

str

string str;

The string that could not be parsed.

B.33 Ice::IllegalIdentityException

Overview

local exception IllegalIdentityException
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This exception is raised if an illegal identity is encountered.

id

Identity id;

The illegal identity.

B.34 Ice::IllegalIndirectionException

Overview

local exception IllegalIndirectionException extends 
MarshalException

This exception is a specialization of MarshalException, indicating an illegal 
indirection during unmarshaling.

B.35 Ice::IllegalMessageSizeException

Overview

local exception IllegalMessageSizeException extends 
ProtocolException

This exception is a specialization of ProtocolException, indicating that the 
message size is illegal, i.e., it is less than the minimum required size.

B.36 Ice::InitializationException

Overview

local exception InitializationException

This exception is raised when a failure occurs during initialization.
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reason

string reason;

The reason for the failure.

B.37 Ice::InvalidReplicaGroupIdException

Overview

exception InvalidReplicaGroupIdException

This exception is raised if the replica group provided by the server is invalid.

Used By

LocatorRegistry::setReplicatedAdapterDirectProxy.

B.38 Ice::Locator

Overview

interface Locator

The Ice locator interface. This interface is used by clients to lookup adapters and 
objects. It is also used by servers to get the locator registry proxy. 

The Locator interface is intended to be used by Ice internals and by locator 
implementations. Regular user code should not attempt to use any functionality of 
this interface directly.

findObjectById

[ "amd", "nonmutating", "cpp:const" ] Object* 
findObjectById(Identity id) throws ObjectNotFoundException;

Find an object by identity and return its proxy.
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Parameters

id

The identity.

Return Value

The proxy, or null if the object is not active.

Exceptions

ObjectNotFoundException

Raised if the object cannot be found.

findAdapterById

[ "amd", "nonmutating", "cpp:const" ] Object* 
findAdapterById(string id) throws AdapterNotFoundException;

Find an adapter by id and return its proxy (a dummy direct proxy created by the 
adapter).

Parameters

id

The adapter id.

Return Value

The adapter proxy, or null if the adapter is not active.

Exceptions

AdapterNotFoundException

Raised if the adapter cannot be found.

getRegistry

[ "nonmutating", "cpp:const" ] LocatorRegistry* getRegistry();

Get the locator registry.
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Return Value

The locator registry.

B.39 Ice::LocatorRegistry

Overview

interface LocatorRegistry

The Ice locator registry interface. This interface is used by servers to register 
adapter endpoints with the locator. 
The LocatorRegistry interface is intended to be used by Ice internals and by 
locator implementations. Regular user code should not attempt to use any func-
tionality of this interface directly.

setAdapterDirectProxy

[ "amd", "ami" ] void setAdapterDirectProxy(string id, Object* 
proxy) throws AdapterNotFoundException, 
AdapterAlreadyActiveException;

Set the adapter endpoints with the locator registry.

Parameters

id

The adapter id.

proxy

The adapter proxy (a dummy direct proxy created by the adapter). The direct 
proxy contains the adapter endpoints.

Exceptions

AdapterNotFoundException

Raised if the adapter cannot be found, or if the locator only allows registered 
adapters to set their active proxy and the adapter is not registered with the 
locator.
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AdapterAlreadyActive

Raised if an adapter with the same id is already active.

setReplicatedAdapterDirectProxy

[ "amd", "ami" ] void setReplicatedAdapterDirectProxy(string 
adapterId, string replicaGroupId, Object* p) throws 
AdapterNotFoundException, AdapterAlreadyActiveException, 
InvalidReplicaGroupIdException;

Set the adapter endpoints with the locator registry.

Parameters

adapterId

The adapter id.

replicaGroupId

The replica group id.

p

The adapter proxy (a dummy direct proxy created by the adapter). The direct 
proxy contains the adapter endpoints.

Exceptions

AdapterNotFoundException

Raised if the adapter cannot be found, or if the locator only allows registered 
adapters to set their active proxy and the adapter is not registered with the 
locator.

AdapterAlreadyActive

Raised if an adapter with the same id is already active.

InvalidReplicaGroupIdException

Raised if the given replica group doesn't match the one registered with the 
locator registry for this object adapter.

setServerProcessProxy

[ "amd" ] void setServerProcessProxy(string id, Process* proxy) 
throws ServerNotFoundException;
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Set the process proxy for a server.

Parameters

id

The server id.

proxy

The process proxy.

Exceptions

ServerNotFoundException

Raised if the server cannot be found.

B.40 Ice::Logger

Overview

local interface Logger

The Ice message logger. Applications can provide their own logger by imple-
menting this interface and installing it in a communicator.

Used By

Communicator::getLogger.

print

void print(string message);

Print a message. The message is printed literally, without any decorations such as 
executable name or time stamp.

trace

void trace(string category, string message);

Log a trace message.
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Parameters

category

The trace category.

message

The trace message to log.

warning

void warning(string message);

Log a warning message.

Parameters

message

The warning message to log.

See Also

error.

error

void error(string message);

Log an error message.

Parameters

message

The error message to log.

See Also

warning.
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B.41 Ice::MarshalException

Overview

local exception MarshalException extends ProtocolException

This exception is a specialization of ProtocolException that is raised upon an 
error during marshaling or unmarshaling data.

Derived Exceptions

EncapsulationException, IllegalIndirectionException, MemoryLimitEx-

ception, NegativeSizeException, NoObjectFactoryException, ProxyUnmar-

shalException, StringConversionException, UnexpectedObjectException, 

UnmarshalOutOfBoundsException.

B.42 Ice::MemoryLimitException

Overview

local exception MemoryLimitException extends MarshalException

This exception is a specialization of MarshalException that is raised if the 
system-specific memory limit is exceeded during marshaling or unmarshaling.

B.43 Ice::NegativeSizeException

Overview

local exception NegativeSizeException extends MarshalException

This exception is a specialization of MarshalException that is raised if a negative 
size (e.g., a negative sequence size) is received.
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B.44 Ice::NoEndpointException

Overview

local exception NoEndpointException

This exception is raised if no suitable endpoint is available.

proxy

string proxy;

The stringified proxy for which no suitable endpoint is available.

B.45 Ice::NoObjectFactoryException

Overview

local exception NoObjectFactoryException extends MarshalException

This exception is a specialization of MarshalException that is raised if no suit-
able object factory was found during unmarshaling of a Slice class instance.

See Also

ObjectFactory, Communicator::addObjectFactory, Communicator::findOb-

jectFactory.

type

string type;

The Slice type ID of the class instance for which no no factory could be found.
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B.46 Ice::NotRegisteredException

Overview

local exception NotRegisteredException

This exception is raised if an attempt is made to remove a servant, facet, object 
factory, plug-in, object adapter, object, or user exception factory that is not 
currently registered.

kindOfObject

string kindOfObject;

The kind of object that could not be removed: "servant", "facet", "object factory", 
"plug-in", "object adapter", "object", or "user exception factory".

id

string id;

The ID (or name) of the object that could not be removed.

B.47 Ice::ObjectAdapter

Overview

local interface ObjectAdapter

The object adapter, which is responsible for receiving requests from endpoints, 
and for mapping between servants, identities, and proxies.

Used By

::Freeze::ServantInitializer::initialize, Communicator::createOb-

jectAdapter, Connection::getAdapter, Connection::setAdapter, 

Current::adapter, Communicator::createObjectAdapterWithRouter, 

Communicator::createObjectAdapterWithEndpoints.
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See Also

Communicator, ServantLocator.

getName

[ "cpp:const" ] string getName();

Get the name of this object adapter.

Return Value

This object adapter's name.

getCommunicator

[ "cpp:const" ] Communicator getCommunicator();

Get the communicator this object adapter belongs to.

Return Value

This object adapter's communicator.

See Also

Communicator.

activate

void activate();

Activate all endpoints that belong to this object adapter. After activation, the 
object adapter can dispatch requests received through its endpoints.

See Also

hold, deactivate.

hold

void hold();
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Temporarily hold receiving and dispatching requests. The object adapter can be 
reactivated with the activate operation. 

Holding is not immediate, i.e., after hold returns, the object adapter might still be 
active for some time. You can use waitForHold to wait until holding is complete. 

See Also

activate, deactivate, waitForHold.

waitForHold

void waitForHold();

Wait until the object adapter holds requests. Calling hold initiates holding of 
requests, and waitForHold only returns when holding of requests has been 
completed.

See Also

hold, waitForDeactivate, Communicator::waitForShutdown.

deactivate

void deactivate();

Deactivate all endpoints that belong to this object adapter. After deactivation, the 
object adapter stops receiving requests through its endpoints. Object adapters that 
have been deactivated must not be reactivated again, and cannot be used other-
wise. Attempts to use a deactivated object adapter raise ObjectAdapterDeacti-
vatedException; however, attempts to deactivate an already deactivated object 
adapter are ignored and do nothing. 

After deactivate returns, no new requests are processed by the object adapter. 
However, requests that have been started before deactivate was called might still 
be active. You can use waitForDeactivate to wait for the completion of all 
requests for this object adapter. 

See Also

activate, hold, waitForDeactivate, Communicator::shutdown.
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waitForDeactivate

void waitForDeactivate();

Wait until the object adapter has deactivated. Calling deactivate initiates object 
adapter deactivation, and waitForDeactivate only returns when deactivation has 
been completed. Once waitForDeactivate has returned it is possible to recreate an 
object adapter with the same name.

See Also

deactivate, waitForHold, Communicator::waitForShutdown.

add

Object* add(Object servant, Identity id);

Add a servant to this object adapter's Active Servant Map. Note that one servant 
can implement several Ice objects by registering the servant with multiple identi-
ties. Adding a servant with an identity that is in the map already throws 
AlreadyRegisteredException.

Parameters

servant

The servant to add.

id

The identity of the Ice object that is implemented by the servant.

Return Value

A proxy that matches the given identity and this object adapter.

See Also

Identity, addFacet, addWithUUID, remove, find.

addFacet

Object* addFacet(Object servant, Identity id, string facet);

Like add, but with a facet. Calling add(servant, * id) is equivalent to calling 
addFacet with an empty facet.
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Parameters

servant

The servant to add.

id

The identity of the Ice object that is implemented by the servant.

facet

The facet. An empty facet means the default facet.

Return Value

A proxy that matches the given identity, facet, and this object adapter.

See Also

Identity, add, addFacetWithUUID, removeFacet, findFacet.

addWithUUID

Object* addWithUUID(Object servant);

Add a servant to this object adapter's Active Servant Map, using an automatically 
generated UUID as its identity. Note that the generated UUID identity can be 
accessed using the proxy's ice_getIdentity operation.

Parameters

servant

The servant to add.

Return Value

A proxy that matches the generated UUID identity and this object adapter.

See Also

Identity, add, addFacetWithUUID, remove, find.

addFacetWithUUID

Object* addFacetWithUUID(Object servant, string facet);
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Like addWithUUID, but with a facet. Calling addWithUUID(servant) is equivalent 
to calling addFacetWithUUID with an empty facet.

Parameters

servant

The servant to add.

facet

The facet. An empty facet means the default facet.

Return Value

A proxy that matches the generated UUID identity, facet, and this object adapter.

See Also

Identity, addFacet, addWithUUID, removeFacet, findFacet.

remove

Object remove(Identity id);

Remove a servant (that is, the default facet) from the object adapter's Active 
Servant Map.

Parameters

id

The identity of the Ice object that is implemented by the servant. If the servant 
implements multiple Ice objects, remove has to be called for all those Ice 
objects. Removing an identity that is not in the map throws NotRegistere-
dException.

Return Value

The removed servant.

See Also

Identity, add, addWithUUID.
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removeFacet

Object removeFacet(Identity id, string facet);

Like remove, but with a facet. Calling remove(id) is equivalent to calling 
removeFacet with an empty facet.

Parameters

id

The identity of the Ice object that is implemented by the servant.

facet

The facet. An empty facet means the default facet.

Return Value

The removed servant.

See Also

Identity, addFacet, addFacetWithUUID.

removeAllFacets

FacetMap removeAllFacets(Identity id);

Remove all facets with the given identity from the Active Servant Map (that is, 
completely remove the Ice object, including its default facet). Removing an iden-
tity that is not in the map throws NotRegisteredException.

Parameters

id

The identity of the Ice object to be removed.

Return Value

A collection containing all the facet names and servants of the removed Ice object.

See Also

remove, removeFacet.
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find

[ "cpp:const" ] Object find(Identity id);

Look up a servant in this object adapter's Active Servant Map by the identity of 
the Ice object it implements. 
This operation only tries to lookup a servant in the Active Servant Map. It does not 
attempt to find a servant by using any installed ServantLocator.

Parameters

id

The identity of the Ice object for which the servant should be returned.

Return Value

The servant that implements the Ice object with the given identity, or null if no 
such servant has been found.

See Also

Identity, findFacet, findByProxy.

findFacet

[ "cpp:const" ] Object findFacet(Identity id, string facet);

Like find, but with a facet. Calling find(id) is equivalent to calling findFacet 
with an empty facet.

Parameters

id

The identity of the Ice object for which the servant should be returned.

facet

The facet. An empty facet means the default facet.

Return Value

The servant that implements the Ice object with the given identity and facet, or 
null if no such servant has been found.
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See Also

Identity, find, findByProxy.

findAllFacets

[ "cpp:const" ] FacetMap findAllFacets(Identity id);

Find all facets with the given identity in the Active Servant Map.

Parameters

id

The identity of the Ice object for which the facets should be returned.

Return Value

A collection containing all the facet names and servants that have been found, or 
an empty map if there is no facet for the given identity.

See Also

find, findFacet.

findByProxy

[ "cpp:const" ] Object findByProxy(Object* proxy);

Look up a servant in this object adapter's Active Servant Map, given a proxy. 
This operation only tries to lookup a servant in the Active Servant Map. It does not 
attempt to find a servant via any installed ServantLocators.

Parameters

proxy

The proxy for which the servant should be returned.

Return Value

The servant that matches the proxy, or null if no such servant has been found.

See Also

find, findFacet.
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addServantLocator

void addServantLocator(ServantLocator locator, string category);

Add a Servant Locator to this object adapter. Adding a servant locator for a cate-
gory for which a servant locator is already registered throws AlreadyRegistere-
dException. To dispatch operation calls on servants, the object adapter tries to 
find a servant for a given Ice object identity and facet in the following order: 

1. The object adapter tries to find a servant for the identity and facet in the Active 
Servant Map.

2. If no servant has been found in the Active Servant Map, the object adapter 
tries to find a locator for the category component of the identity. If a locator is 
found, the object adapter tries to find a servant using this locator.

3. If no servant has been found by any of the preceding steps, the object adapter 
tries to find a locator for an empty category, regardless of the category 
contained in the identity. If a locator is found, the object adapter tries to find a 
servant using this locator.

4. If no servant has been found with any of the preceding steps, the object 
adapter gives up and the caller receives ObjectNotExistException or 
FacetNotExistException.

 
Only one locator for the empty category can be installed.

Parameters

locator

The locator to add.

category

The category for which the Servant Locator can locate servants, or an empty 
string if the Servant Locator does not belong to any specific category.

See Also

Identity, findServantLocator, ServantLocator.

findServantLocator

[ "cpp:const" ] ServantLocator findServantLocator(string 
category);
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Find a Servant Locator installed with this object adapter.

Parameters

category

The category for which the Servant Locator can locate servants, or an empty 
string if the Servant Locator does not belong to any specific category.

Return Value

The Servant Locator, or null if no Servant Locator was found for the given cate-
gory.

See Also

Identity, addServantLocator, ServantLocator.

createProxy

[ "cpp:const" ] Object* createProxy(Identity id);

Create a proxy for the object with the given identity. If this object adapter is 
configured with an adapter id, the return value is an indirect proxy that refers to 
the adapter id. If a replica group id is also defined, the return value is an indirect 
proxy that refers to the replica group id. Otherwise, if no adapter id is defined, the 
return value is a direct proxy containing this object adapter's published endpoints.

Parameters

id

The object's identity.

Return Value

A proxy for the object with the given identity.

See Also

Identity.

createDirectProxy

[ "cpp:const" ] Object* createDirectProxy(Identity id);
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Create a direct proxy for the object with the given identity. The returned proxy 
contains this object adapter's published endpoints.

Parameters

id

The object's identity.

Return Value

A proxy for the object with the given identity.

See Also

Identity.

createIndirectProxy

[ "cpp:const" ] Object* createIndirectProxy(Identity id);

Create an indirect proxy for the object with the given identity. If this object 
adapter is configured with an adapter id, the return value refers to the adapter id. 
Otherwise, the return value contains only the object identity.

Parameters

id

The object's identity.

Return Value

A proxy for the object with the given identity.

See Also

Identity.

createReverseProxy

[ "cpp:const" ] Object* createReverseProxy(Identity id);

Create a "reverse proxy" for the object with the given identity. A reverse proxy 
uses the incoming connections that have been established from a client to this 
object adapter. 
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This operation is intended to be used by special services, such as Router imple-
mentations. Regular user code should not attempt to use this operation. 

Parameters

id

The identity for which a proxy is to be created.

Return Value

A "reverse proxy" that matches the given identity and uses the incoming connec-
tions of this object adapter.

See Also

Identity.

setLocator

void setLocator(Locator* loc);

Set an Ice locator for this object adapter. By doing so, the object adapter will 
register itself with the locator registry when it is activated for the first time. 
Furthermore, the proxies created by this object adapter will contain the adapter 
name instead of its endpoints.

Parameters

loc

The locator used by this object adapter.

See Also

createDirectProxy, Locator, LocatorRegistry.

B.48 Ice::ObjectAdapterDeactivatedException

Overview

local exception ObjectAdapterDeactivatedException
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This exception is raised if an attempt is made to use a deactivated ObjectAdapter.

See Also

ObjectAdapter::deactivate, Communicator::shutdown.

name

string name;

Name of the adapter.

B.49 Ice::ObjectAdapterIdInUseException

Overview

local exception ObjectAdapterIdInUseException

This exception is raised if an ObjectAdapter cannot be activated because the 
Locator detected another active ObjectAdapter with the same adapter id.

id

string id;

Adapter ID.

B.50 Ice::ObjectFactory

Overview

local interface ObjectFactory

A factory for objects. Object factories are used in several places, for example, 
when receiving "objects by value" and when ::Freeze restores a persistent object. 
Object factories must be implemented by the application writer, and registered 
with the communicator.
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Used By

Communicator::addObjectFactory, Communicator::findObjectFactory.

See Also

::Freeze.

create

Object create(string type);

Create a new object for a given object type. The type is the absolute Slice type id, 
i.e., the id relative to the unnamed top-level Slice module. For example, the abso-
lute Slice type id for interfaces of type Bar in the module Foo is ::Foo::Bar. 

The leading "::" is required.

Parameters

type

The object type.

Return Value

The object created for the given type, or nil if the factory is unable to create the 
object.

destroy

void destroy();

Called when the factory is removed from the communicator, or if the communi-
cator is destroyed.

See Also

Communicator::destroy.
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B.51 Ice::ObjectNotExistException

Overview

local exception ObjectNotExistException extends 
RequestFailedException

This exception is raised if an object does not exist on the server, that is, if no facets 
with the given identity exist.

B.52 Ice::ObjectNotFoundException

Overview

exception ObjectNotFoundException

This exception is raised if an object cannot be found.

Used By

Locator::findObjectById.

B.53 Ice::OperationMode

Overview

enum OperationMode

The OperationMode determines the skeleton signature (for C++), as well as the 
retry behavior of the Ice run time for an operation invocation in case of a (poten-
tially) recoverable error.

Used By

Current::mode.
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Normal

Normal

Ordinary operations have Normal mode. These operations modify object state; 
invoking such an operation twice in a row has different semantics than invoking it 
once. The Ice run time guarantees that it will not violate at-most-once semantics 
for Normal operations.

Nonmutating

Nonmutating

Operations that use the Slice Nonmutating keyword must not modify object state. 
For C++, nonmutating operations generate const member functions in the skel-
eton. In addition, the Ice run time will attempt to transparently recover from 
certain run-time errors by re-issuing a failed request and propagate the failure to 
the application only if the second attempt fails.

Idempotent

Idempotent

Operations that use the Slice Idempotent keyword can modify object state, but 
invoking an operation twice in a row must result in the same object state as 
invoking it once. For example, x = 1 is an idempotent statement, whereas x += 1 
is not. For idempotent operations, the Ice run-time uses the same retry behavior as 
for nonmutating operations in case of a potentially recoverable error.

B.54 Ice::OperationNotExistException

Overview

local exception OperationNotExistException extends 
RequestFailedException

This exception is raised if an operation for a given object does not exist on the 
server. Typically this is caused by either the client or the server using an outdated 
Slice specification.
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B.55 Ice::Plugin

Overview

local interface Plugin

A communicator plugin. A plugin generally adds a feature to a communicator, 
such as support for a protocol. The communicator loads its plugins in two stages: 
the first stage creates the plugins, and the second stage invokes initialize on 
each one.

Used By

PluginManager::addPlugin, PluginManager::getPlugin.

initialize

void initialize();

Perform any necessary initialization steps.

destroy

void destroy();

Called when the communicator is being destroyed.

B.56 Ice::PluginInitializationException

Overview

local exception PluginInitializationException

This exception indicates that a failure occurred while initializing a plug-in.

reason

string reason;
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The reason for the failure.

B.57 Ice::PluginManager

Overview

local interface PluginManager

Each communicator has a plugin manager to administer the set of plugins.

Used By

Communicator::getPluginManager.

initializePlugins

void initializePlugins();

Initialize the configured plugins. The communicator automatically initializes the 
plugins by default, but an application may need to interact directly with a plugin 
prior to initialization. In this case, the application must set Ice.InitPlugins=0 
and then invoke initializePlugins manually. The plugins are initialized in the 
order in which they are loaded. If a plugin raises an exception during initializa-
tion, the communicator invokes destroy on the plugins that have already been 
initialized.

Exceptions

InitializationException

Raised if the plugins have already been initialized.

getPlugin

Plugin getPlugin(string name);

Obtain a plugin by name.
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Parameters

name

The plugin's name.

Return Value

The plugin.

Exceptions

NotRegisteredException

Raised if no plugin is found with the given name.

addPlugin

void addPlugin(string name, Plugin pi);

Install a new plugin.

Parameters

name

The plugin's name.

pi

The plugin.

Exceptions

AlreadyRegisteredException

Raised if a plugin already exists with the given name.

destroy

void destroy();

Called when the communicator is being destroyed.
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B.58 Ice::Process

Overview

interface Process

An administrative interface for process management. Managed servers must 
implement this interface. 

A servant implementing this interface is a potential target for denial-of-service 
attacks, therefore proper security precautions should be taken. For example, the 
servant can use a UUID to make its identity harder to guess, and be registered in 
an object adapter with a secured endpoint.

shutdown

[ "ami" ] void shutdown();

Initiate a graceful shut-down.

See Also

Communicator::shutdown.

writeMessage

void writeMessage(string message, int fd);

Write a message on the process' stdout or stderr.

Parameters

message

The message.

fd

1 for stdout, 2 for stderr.
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B.59 Ice::Properties

Overview

local interface Properties

A property set used to configure Ice and Ice applications. Properties are key/value 
pairs, with both keys and values being strings. By convention, property keys 
should have the form application-name[.category[.sub-category]].name.

Used By

Communicator::getProperties, clone.

getProperty

string getProperty(string key);

Get a property by key. If the property does not exist, an empty string is returned.

Parameters

key

The property key.

Return Value

The property value.

See Also

setProperty.

getPropertyWithDefault

string getPropertyWithDefault(string key, string value);

Get a property by key. If the property does not exist, the given default value is 
returned.
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Parameters

key

The property key.

value

The default value to use if the property does not exist.

Return Value

The property value or the default value.

See Also

setProperty.

getPropertyAsInt

int getPropertyAsInt(string key);

Get a property as an integer. If the property does not exist, 0 is returned.

Parameters

key

The property key.

Return Value

The property value interpreted as an integer.

See Also

setProperty.

getPropertyAsIntWithDefault

int getPropertyAsIntWithDefault(string key, int value);

Get a property as an integer. If the property does not exist, the given default value 
is returned.
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Parameters

key

The property key.

value

The default value to use if the property does not exist.

Return Value

The property value interpreted as an integer, or the default value.

See Also

setProperty.

getPropertiesForPrefix

PropertyDict getPropertiesForPrefix(string prefix);

Get all properties whose keys begins with prefix. If prefix is an empty string, then 
all properties are returned.

Return Value

The matching property set.

setProperty

void setProperty(string key, string value);

Set a property. To unset a property, set it to the empty string.

Parameters

key

The property key.

value

The property value.

See Also

getProperty.
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getCommandLineOptions

StringSeq getCommandLineOptions();

Get a sequence of command-line options that is equivalent to this property set. 
Each element of the returned sequence is a command-line option of the form --
key=value.

Return Value

The command line options for this property set.

parseCommandLineOptions

StringSeq parseCommandLineOptions(string prefix, StringSeq 
options);

Convert a sequence of command-line options into properties. All options that 
begin with --prefix. are converted into properties. If the prefix is empty, all 
options that begin with -- are converted to properties.

Parameters

prefix

The property prefix, or an empty string to convert all options starting with --.

options

The command-line options.

Return Value

The command-line options that do not start with the specified prefix, in their orig-
inal order.

parseIceCommandLineOptions

StringSeq parseIceCommandLineOptions(StringSeq options);

Convert a sequence of command-line options into properties. All options that 
begin with one of the following prefixes are converted into properties: --Ice, --
IceBox, --IceGrid, --IcePatch, --IcePatch2, --IceSSL, --IceStorm, --
Freeze, --Glacier, and --Glacier2.
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Parameters

options

The command-line options.

Return Value

The command-line options that do not start with one of the listed prefixes, in their 
original order.

load

void load(string file);

Load properties from a file.

Parameters

file

The property file.

clone

Properties clone();

Create a copy of this property set.

Return Value

A copy of this property set.

B.60 Ice::ProtocolException

Overview

local exception ProtocolException

A generic exception base for all kinds of protocol error conditions.
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Derived Exceptions

BadMagicException, CloseConnectionException, CompressionException, 

ConnectionNotValidatedException, DatagramLimitException, ForcedClo-

seConnectionException, IllegalMessageSizeException, MarshalException, 

UnknownMessageException, UnknownReplyStatusException, UnknownReques-

tIdException, UnsupportedEncodingException, UnsupportedProtocolEx-

ception.

reason

string reason;

The reason for the failure.

B.61 Ice::ProxyParseException

Overview

local exception ProxyParseException

This exception is raised if there was an error while parsing a stringified proxy.

str

string str;

The string that could not be parsed.

B.62 Ice::ProxyUnmarshalException

Overview

local exception ProxyUnmarshalException extends MarshalException

This exception is a specialization of MarshalException that is raised if inconsis-
tent data is received while unmarshaling a proxy.



1496 Slice Documentation

B.63 Ice::RequestFailedException

Overview

local exception RequestFailedException

This exception is raised if a request failed. This exception, and all exceptions 
derived from RequestFailedException, are transmitted by the Ice protocol, even 
though they are declared local.

Derived Exceptions

FacetNotExistException, ObjectNotExistException, 

OperationNotExistException.

id

Identity id;

The identity of the Ice Object to which the request was sent.

facet

string facet;

The facet to which the request was sent.

operation

string operation;

The operation name of the request.

B.64 Ice::Router

Overview

interface Router
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The Ice router interface. Routers can be set either globally with Communi-
cator::setDefaultRouter, or with ice_router on specific proxies.

Derived Classes and Interfaces

::Glacier2::Router.

getClientProxy

[ "nonmutating", "cpp:const" ] Object* getClientProxy();

Get the router's client proxy, i.e., the proxy to use for forwarding requests from the 
client to the router.

Return Value

The router's client proxy.

getServerProxy

[ "nonmutating", "cpp:const" ] Object* getServerProxy();

Get the router's server proxy, i.e., the proxy to use for forwarding requests from 
the server to the router.

Return Value

The router's server proxy.

addProxy

[ "deprecate:addProxy() has been deprecated, use addProxies() 
instead." ] void addProxy(Object* proxy);

Add new proxy information to the router's routing table. 
This operation is deprecated, and only used for old Ice clients (older than version 
3.1).

Deprecated

addProxy() has been deprecated, use addProxies() instead.
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Parameters

proxy

The proxy to add.

addProxies

ObjectProxySeq addProxies(ObjectProxySeq proxies);

Add new proxy information to the router's routing table.

Parameters

proxies

The proxies to add.

Return Value

Proxies discarded by the router.

B.65 Ice::SecurityException

Overview

local exception SecurityException

This exception indicates a failure in a security subsystem, such as the IceSSL 
plugin.

reason

string reason;

The reason for the failure.
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B.66 Ice::ServantLocator

Overview

local interface ServantLocator

The servant locator, which is called by the object adapter to locate a servant that is 
not found in its active servant map.

Derived Classes and Interfaces

::Freeze::Evictor.

Used By

ObjectAdapter::addServantLocator, ObjectAdapter::findServantLocator.

See Also

ObjectAdapter, ObjectAdapter::addServantLocator, Object-

Adapter::findServantLocator.

locate

Object locate(Current curr, out LocalObject cookie);

Called by the object adapter before a request is made when a servant cannot be 
found in the object adapter's active servant map. Note that the object adapter does 
not automatically insert the returned servant into its active servant map. This must 
be done by the servant locator implementation, if this is desired. 

Important: If you call locate from your own code, you must also call finished when you 
have finished using the servant, provided that a non-null servant was returned. 
Otherwise you will get undefined behavior if you use Servant Locators such as the 
::Freeze::Evictor.

Parameters

curr

Information about the current operation for which a servant is required.

cookie

A "cookie" that will be passed to finished.
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Return Value

The located servant, or null if no suitable servant has been found.

See Also

ObjectAdapter, Current, finished.

finished

void finished(Current curr, Object servant, LocalObject cookie);

Called by the object adapter after a request has been made. This operation is only 
called if locate was called prior to the request and returned a non-null servant. 
This operation can be used for cleanup purposes after a request.

Parameters

curr

Information about the current operation call for which a servant was located 
by locate.

servant

The servant that was returned by locate.

cookie

The cookie that was returned by locate.

See Also

ObjectAdapter, Current, locate.

deactivate

void deactivate(string category);

Called when the object adapter in which this servant locator is installed is deacti-
vated.

Parameters

category

Indicates for which category the servant locator is being deactivated.
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See Also

ObjectAdapter::deactivate, Communicator::shutdown, Communi-

cator::destroy.

B.67 Ice::ServerNotFoundException

Overview

exception ServerNotFoundException

This exception is raised if a server cannot be found.

Used By

LocatorRegistry::setServerProcessProxy.

B.68 Ice::SocketException

Overview

local exception SocketException extends SyscallException

This exception is a specialization of SyscallException for socket errors.

Derived Exceptions

ConnectFailedException, ConnectionLostException.

B.69 Ice::Stats

Overview

local interface Stats
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An interface Ice uses to report statistics, such as how much data is sent or 
received. Applications must provide their own Stats by implementing this inter-
face and installing it in a communicator.

Used By

Communicator::getStats.

bytesSent

void bytesSent(string protocol, int num);

Callback to report that data has been sent.

Parameters

protocol

The protocol over which data has been sent (for example "tcp", "udp", or 
"ssl").

num

How many bytes have been sent.

bytesReceived

void bytesReceived(string protocol, int num);

Callback to report that data has been received.

Parameters

protocol

The protocol over which data has been received (for example "tcp", "udp", or 
"ssl").

num

How many bytes have been received.
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B.70 Ice::StringConversionException

Overview

local exception StringConversionException extends MarshalException

This exception is a specialization of MarshalException that is raised when a 
string conversion to or from UTF-8 fails during marshaling or unmarshaling.

B.71 Ice::SyscallException

Overview

local exception SyscallException

This exception is raised if a system error occurred in the server or client process. 
There are many possible causes for such a system exception. For details on the 
cause, error should be inspected.

Derived Exceptions

FileException, SocketException.

error

int error;

The error number describing the system exception. For C++ and Unix, this is 
equivalent to errno. For C++ and Windows, this is the value returned by GetLas-
tError() or WSAGetLastError().

B.72 Ice::TimeoutException

Overview

local exception TimeoutException
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This exception indicates a timeout condition.

Derived Exceptions

CloseTimeoutException, ConnectTimeoutException, ConnectionTimeoutEx-

ception.

B.73 Ice::TwowayOnlyException

Overview

local exception TwowayOnlyException

This exception is raised if an attempt is made to invoke an operation with 
ice_oneway, ice_batchOneway, ice_datagram, or ice_batchDatagram and the 
operation has a return value, out parameters, or an exception specification.

operation

string operation;

The name of the operation that was invoked.

B.74 Ice::UnexpectedObjectException

Overview

local exception UnexpectedObjectException extends MarshalException

This exception is a specialization of MarshalException that is raised if the type 
of an unmarshaled Slice class instance does not match the type excepted by an 
operation that is passed that instance. This can happen if client and server are 
compiled with mismatched Slice definitions or if a class of the wrong type is 
passed as a parameter or return value using dynamic invocation. This exception 
can also be raised if IceStorm is used to send Slice class instances and an opera-
tion is subscribed to the wrong topic.
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type

string type;

The Slice type ID of the class instance that was unmarshaled.

expectedType

string expectedType;

The Slice type ID that was excepted by the receiving operation.

B.75 Ice::UnknownException

Overview

local exception UnknownException

This exception is raised if an operation call on a server raises an unknown excep-
tion. For example, for C++, this exception is raised if the server throws a C++ 
exception that is not directly or indirectly derived from Ice::LocalException or 
Ice::UserException.

Derived Exceptions

UnknownLocalException, UnknownUserException.

unknown

string unknown;

A textual representation of the unknown exception. This field may or may not be 
set, depending on the security policy of the server. Some servers may give this 
information to clients for debugging purposes, while others may not wish to 
disclose information about server internals.
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B.76 Ice::UnknownLocalException

Overview

local exception UnknownLocalException extends UnknownException

This exception is raised if an operation call on a server raises a local exception. 
Because local exceptions are not transmitted by the Ice protocol, the client 
receives all local exceptions raised by the server as UnknownLocalException. The 
only exception to this rule are all exceptions derived from RequestFailedExcep-
tion, which are transmitted by the Ice protocol even though they are declared 
local.

B.77 Ice::UnknownMessageException

Overview

local exception UnknownMessageException extends ProtocolException

This exception is a specialization of ProtocolException, indicating that an 
unknown protocol message has been received.

B.78 Ice::UnknownReplyStatusException

Overview

local exception UnknownReplyStatusException extends 
ProtocolException

This exception is a specialization of ProtocolException, indicating that an 
unknown reply status has been received.
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B.79 Ice::UnknownRequestIdException

Overview

local exception UnknownRequestIdException extends 
ProtocolException

This exception is a specialization of ProtocolException, indicating that a 
response for an unknown request ID has been received.

B.80 Ice::UnknownUserException

Overview

local exception UnknownUserException extends UnknownException

This exception is raised if an operation call on a server raises a user exception that 
is not declared in the exception's throws clause. Such undeclared exceptions are 
not transmitted from the server to the client by the Ice protocol, but instead the 
client just gets an UnknownUserException. This is necessary in order to not 
violate the contract established by an operation's signature: Only local exceptions 
and user exceptions declared in the throws clause can be raised.

B.81 Ice::UnmarshalOutOfBoundsException

Overview

local exception UnmarshalOutOfBoundsException extends 
MarshalException

This exception is a specialization of MarshalException that is raised if an out-of-
bounds condition occurs during unmarshaling.
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B.82 Ice::UnsupportedEncodingException

Overview

local exception UnsupportedEncodingException extends 
ProtocolException

This exception is a specialization of ProtocolException, indicating that an 
unsupported data encoding version has been encountered.

badMajor

int badMajor;

The major version number of the unsupported encoding.

badMinor

int badMinor;

The minor version number of the unsupported encoding.

major

int major;

The major version number of the encoding that is supported.

minor

int minor;

The highest minor version number of the encoding that can be supported.



 1509

B.83 Ice::UnsupportedProtocolException

Overview

local exception UnsupportedProtocolException extends 
ProtocolException

This exception is a specialization of ProtocolException, indicating that an 
unsupported protocol version has been encountered.

badMajor

int badMajor;

The major version number of the unsupported protocol.

badMinor

int badMinor;

The minor version number of the unsupported protocol.

major

int major;

The major version number of the protocol that is supported.

minor

int minor;

The highest minor version number of the protocol that can be supported.
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B.84 Ice::VersionMismatchException

Overview

local exception VersionMismatchException

This exception is raised if the Ice library version does not match the Ice header 
files version.

B.85 Slice2DocBook

Overview

module Slice2DocBook

This module exists to illustrate the functionality of slice2docbook.

B.86 Slice2DocBook::C

Overview

class C

Derived Classes and Interfaces

D.

Used By

OtherExample::op2.
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B.87 Slice2DocBook::D

Overview

class D extends C

B.88 Slice2DocBook::DE

Overview

exception DE extends E

j

int j;

B.89 Slice2DocBook::E

Overview

exception E

This exception is thrown by OtherExampleOp.

Derived Exceptions

DE.

Used By

OtherExample::op.
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i

int i;

Just like Foo, i is a popular name for examples.

B.90 Slice2DocBook::Example

Overview

interface Example

This interface is an example.

See Also

OtherExample.

op

Foo op(Foo input, out Foo output);

B.91 Slice2DocBook::Foo

Overview

struct Foo

In time-honored fashion, if someone needs to come up with an example API, the 
API must contain a type name Foo.

Used By

Example::op, OtherExample::op.



 1513

fs

string fs;

This is a field for illustration purposes.

d

double d;

Another field for illustration purposes.

B.92 Slice2DocBook::OtherExample

Overview

interface OtherExample

This interface is another example.

See Also

Example.

op

void op(Foo input) throws E;

op2

void op2(C x);
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B.93 Freeze

Overview

module Freeze

Freeze provides automatic persistence for Ice servants.

Key

sequence<byte> Key;

A database key, represented as a sequence of bytes.

Value

sequence<byte> Value;

A database value, represented as a sequence of bytes.

B.94 Freeze::CatalogData

Overview

struct CatalogData

The catalog keeps information about Freeze Maps and Freeze evictors in a 
Berkeley Db environment. It is used by FreezeScript.

evictor

bool evictor;

key

string key;
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value

string value;

B.95 Freeze::Connection

Overview

local interface Connection

A connection to a database (database environment with Berkeley DB). If you want 
to use a connection concurrently in multiple threads, you need to serialize access 
to this connection.

beginTransaction

Transaction beginTransaction();

Create a new transaction. Only one transaction at a time can be associated with a 
connection.

Return Value

The new transaction

Exceptions

raises

TransactionAlreadyInProgressException if a transaction is already associated 
with this connection.

currentTransaction

[ "cpp:const" ] Transaction currentTransaction();

Returns the transaction associated with this connection.
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Return Value

The current transaction if there is one, null otherwise.

close

void close();

Closes this connection. If there is an associated transaction, it is rolled back.

getCommunicator

[ "cpp:const" ] ::Ice::Communicator getCommunicator();

Returns the communicator associated with this connection

getName

[ "cpp:const" ] string getName();

The name of the connected system (e.g. Berkeley DB environment)

B.96 Freeze::DatabaseException

Overview

local exception DatabaseException

A Freeze database exception.

Derived Exceptions

DeadlockException, NotFoundException.

See Also

DB, Evictor, Connection.

message

string message;
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A message describing the reason for the exception.

B.97 Freeze::DeadlockException

Overview

local exception DeadlockException extends DatabaseException

A Freeze database deadlock exception. Applications can react to this exception by 
aborting and trying the transaction again.

B.98 Freeze::Evictor

Overview

local interface Evictor extends ::Ice::ServantLocator

An automatic Ice object persistence manager, based on the evictor pattern. The 
evictor is a servant locator implementation that stores the persistent state of its 
objects in a database. Any number of objects can be registered with an evictor, but 
only a configurable number of servants are active at a time. These active servants 
reside in a queue; the least recently used servant in the queue is the first to be 
evicted when a new servant is activated.

See Also

ServantInitializer.

setSize

void setSize(int sz);

Set the size of the evictor's servant queue. This is the maximum number of 
servants the evictor keeps active. Requests to set the queue size to a value smaller 
than zero are ignored.
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Parameters

sz

The size of the servant queue. If the evictor currently holds more than 
setSize servants in its queue, it evicts enough servants to match the new size. 
Note that this operation can block if the new queue size is smaller than the 
current number of servants that are servicing requests. In this case, the opera-
tion waits until a sufficient number of servants complete their requests.

Exceptions

EvictorDeactivatedException

Raised if a the evictor has been deactivated.

See Also

getSize.

getSize

int getSize();

Get the size of the evictor's servant queue.

Return Value

The size of the servant queue.

Exceptions

EvictorDeactivatedException

Raised if a the evictor has been deactivated.

See Also

setSize.

add

Object* add(Object servant, ::Ice::Identity id);

Add a servant to this evictor. The state of the servant passed to this operation will 
be saved in the evictor's persistent store.
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Parameters

servant

The servant to add.

id

The identity of the Ice object that is implemented by the servant.

Return Value

A proxy that matches the given identity and this evictor's object adapter.

Exceptions

AlreadyRegisteredException

Raised if the evictor already has an object with this identity.

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if the evictor has been deactivated.

See Also

addFacet, remove, removeFacet.

addFacet

Object* addFacet(Object servant, ::Ice::Identity id, string 
facet);

Like add, but with a facet. Calling add(servant, id) is equivalent to calling 
addFacet with an empty facet.

Parameters

servant

The servant to add.

id

The identity of the Ice object that is implemented by the servant.

facet

The facet. An empty facet means the default facet.
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Return Value

A proxy that matches the given identity and this evictor's object adapter.

Exceptions

AlreadyRegisteredException

Raised if the evictor already has an object with this identity.

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if the evictor has been deactivated.

See Also

add, remove, removeFacet.

remove

Object remove(::Ice::Identity id);

Permanently destroy an Ice object.

Parameters

id

The identity of the Ice object.

Return Value

The removed servant.

Exceptions

NotRegisteredException

Raised if this identity was not registered with the evictor.

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if the evictor has been deactivated.
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See Also

add, removeFacet.

removeFacet

Object removeFacet(::Ice::Identity id, string facet);

Like remove, but with a facet. Calling remove(id) is equivalent to calling 
removeFacet with an empty facet.

Parameters

id

The identity of the Ice object.

facet

The facet. An empty facet means the default facet.

Return Value

The removed servant.

Exceptions

NotRegisteredException

Raised if this identity was not registered with the evictor.

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if the evictor has been deactivated.

See Also

remove, addFacet.

keep

void keep(::Ice::Identity id);

Lock this object in the evictor cache. This lock can be released by release or 
remove. release releases only one lock, while remove releases all the locks.
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Parameters

id

The identity of the Ice object.

Exceptions

NotRegisteredException

Raised if this identity was not registered with the evictor.

DatabaseException

Raised if a database failure occurred.

See Also

keepFacet, release, remove.

keepFacet

void keepFacet(::Ice::Identity id, string facet);

Like keep, but with a facet. Calling keep(id) is equivalent to calling keepFacet 
with an empty facet.

Parameters

id

The identity of the Ice object.

facet

The facet. An empty facet means the default facet.

Exceptions

NotRegisteredException

Raised if this identity was not registered with the evictor.

DatabaseException

Raised if a database failure occurred.

See Also

keep, releaseFacet, removeFacet.
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release

void release(::Ice::Identity id);

Release a "lock" acquired by keep. Once all the locks on an object have been 
released, the object is again subject to the normal eviction strategy.

Parameters

id

The identity of the Ice object.

Exceptions

NotRegisteredException

Raised if this object was not "locked" with keep or keepFacet.

See Also

keepFacet, release.

releaseFacet

void releaseFacet(::Ice::Identity id, string facet);

Like release, but with a facet. Calling release(id) is equivalent to calling 
releaseFacet with an empty facet.

Parameters

id

The identity of the Ice object.

facet

The facet. An empty facet means the default facet.

Exceptions

NotRegisteredException

Raised if this object was not "locked" with keep or keepFacet.

See Also

keep, releaseFacet.
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hasObject

bool hasObject(::Ice::Identity id);

Returns true if the given identity is managed by the evictor with the default facet.

Return Value

true if the identity is managed by the evictor, false otherwise.

Exceptions

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if a the evictor has been deactivated.

hasFacet

bool hasFacet(::Ice::Identity id, string facet);

Like hasObject, but with a facet. Calling hasObject(id) is equivalent to calling 
hasFacet with an empty facet.

Return Value

true if the identity is managed by the evictor for the given facet, false otherwise.

Exceptions

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if a the evictor has been deactivated.

getIterator

EvictorIterator getIterator(string facet, int batchSize);

Get an iterator for the identities managed by the evictor.



 1525

Parameters

facet

The facet. An empty facet means the default facet.

batchSize

Internally, the Iterator retrieves the identities in batches of size batchSize. 
Selecting a small batchSize can have an adverse effect on performance.

Return Value

A new iterator.

Exceptions

EvictorDeactivatedException

Raised if a the evictor has been deactivated.

createObject

[ "deprecate:createObject() has been deprecated, use add() 
instead." ] void createObject(::Ice::Identity id, Object servant);

Add or update a servant. The state of the servant passed to this operation will be 
saved in the evictor's persistent store. This operation is deprecated and will be 
removed in a future release. It is recommended to use add instead.

Deprecated
createObject() has been deprecated, use add() instead.

Parameters

id

The identity of the Ice object that is implemented by the servant.

servant

The servant to add.

Exceptions

DatabaseException

Raised if a database failure occurred.
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EvictorDeactivatedException

Raised if the evictor has been deactivated.

See Also

add, destroyObject.

destroyObject

[ "deprecate:destroyObject() has been deprecated, use remove() 
instead." ] void destroyObject(::Ice::Identity id);

Permanently destroy an Ice object. Like remove, except destroyObject does not 
raise any exception when the object does not exist. This operation is deprecated 
and will be removed in a future release. It is recommended to use remove instead.

Deprecated

destroyObject() has been deprecated, use remove() instead.

Parameters

id

The identity of the Ice object.

Exceptions

DatabaseException

Raised if a database failure occurred.

EvictorDeactivatedException

Raised if the evictor has been deactivated.

See Also

remove, createObject.
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B.99 Freeze::EvictorDeactivatedException

Overview

local exception EvictorDeactivatedException

This exception is raised if the evictor has been deactivated.

B.100 Freeze::EvictorIterator

Overview

local interface EvictorIterator

An iterator for the objects managed by the evictor. Note that an EvictorIterator is 
not thread-safe: the application needs to serialize access to a given EvictorIterator, 
for example by using it in just one thread.

Used By

Evictor::getIterator.

See Also

Evictor.

hasNext

bool hasNext();

Determines if the iteration has more elements.

Return Value

True if the iterator has more elements, false otherwise.

Exceptions

DatabaseException

Raised if a database failure occurs while retrieving a batch of objects.
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next

::Ice::Identity next();

Obtains the next identity in the iteration.

Return Value

s The next identity in the iteration.

Exceptions

NoSuchElementException

Raised if there is no further elements in the iteration.

DatabaseException

Raised if a database failure occurs while retrieving a batch of objects.

B.101 Freeze::InvalidPositionException

Overview

local exception InvalidPositionException

This Freeze Iterator is not on a valid position, for example this position has been 
erased.

B.102 Freeze::NoSuchElementException

Overview

local exception NoSuchElementException

This exception is raised if there are no further elements in the iteration.
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B.103 Freeze::NotFoundException

Overview

local exception NotFoundException extends DatabaseException

A Freeze database exception, indicating that a database record could not be found.

B.104 Freeze::ObjectRecord

Overview

struct ObjectRecord

The evictor uses a number of maps ::Ice::Identity to ObjectRecord as its 
persistent storage.

servant

Object servant;

stats

Statistics stats;

B.105 Freeze::ServantInitializer

Overview

local interface ServantInitializer

A servant initializer is installed in an evictor and provides the application with an 
opportunity to perform custom servant initialization.
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See Also

Evictor.

initialize

void initialize(::Ice::ObjectAdapter adapter, ::Ice::Identity 
identity, string facet, Object servant);

Called whenever the evictor creates a new servant. This operation allows applica-
tion code to perform custom servant initialization after the servant has been 
created by the evictor and its persistent state has been restored.

Parameters

adapter

The object adapter in which the evictor is installed.

identity

The identity of the Ice object for which the servant was created.

facet

The facet. An empty facet means the default facet.

servant

The servant to initialize.

See Also

::Ice::Identity.

B.106 Freeze::Statistics

Overview

struct Statistics

The evictor maintains statistics about each object.

Used By

ObjectRecord::stats.
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creationTime

long creationTime;

The time the object was created, in milliseconds since Jan 1, 1970 0:00.

lastSaveTime

long lastSaveTime;

The time the object was last saved, in milliseconds relative to creationTime.

avgSaveTime

long avgSaveTime;

The average time between saves, in milliseconds.

B.107 Freeze::Transaction

Overview

local interface Transaction

A transaction. If you want to use a transaction concurrently in multiple threads, 
you need to serialize access to this transaction.

Used By

Connection::beginTransaction, Connection::currentTransaction.

commit

void commit();

Commit this transaction.

rollback

void rollback();
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Roll back this transaction.

B.108 Freeze::TransactionAlreadyInProgressExceptio
n

Overview

local exception TransactionAlreadyInProgressException

B.109 IceBox

Overview

module IceBox

IceBox is an application server specifically for Ice applications. IceBox can easily 
run and administer Ice services that are dynamically loaded as a DLL, shared 
library, or Java class.

B.110 IceBox::FailureException

Overview

local exception FailureException

Indicates a failure occurred. For example, if a service encounters an error during 
initialization, or if the service manager is unable to load a service executable.

reason

string reason;

The reason for the failure.
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B.111 IceBox::Service

Overview

local interface Service

An application service managed by a ServiceManager.

start

void start(string name, ::Ice::Communicator communicator, 
::Ice::StringSeq args);

Start the service. The given communicator is created by the ServiceManager for 
use by the service. This communicator may also be used by other services, 
depending on the service configuration. 
The ServiceManager owns this communicator, and is responsible for destroying 
it.

Parameters

name

The service's name, as determined by the configuration.

communicator

A communicator for use by the service.

args

The service arguments that were not converted into properties.

Exceptions

FailureException

Raised if start failed.

stop

void stop();

Stop the service.
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B.112 IceBox::ServiceManager

Overview

interface ServiceManager

Administers a set of Service instances.

See Also

Service.

getSliceChecksums

[ "nonmutating", "cpp:const" ] ::Ice::SliceChecksumDict 
getSliceChecksums();

Returns the checksums for the IceBox Slice definitions.

Return Value

A dictionary mapping Slice type ids to their checksums.

shutdown

void shutdown();

Shutdown all services. This will cause Service::stop to be invoked on all 
configured services.

B.113 Glacier2

Overview

module Glacier2

Glacier2 is a firewall solution for Ice. Glacier2 authenticates and filters client 
requests and allows callbacks to the client in a secure fashion. In combination with 
IceSSL, Glacier2 provides a security solution that is both non-intrusive and easy 
to configure.
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B.114 Glacier2::Admin

Overview

interface Admin

The Glacier2 administrative interface. This must only be accessible from inside 
the firewall.

shutdown

void shutdown();

Shut down the Glacier2 router.

B.115 Glacier2::CannotCreateSessionException

Overview

exception CannotCreateSessionException

This exception is raised if an attempt to create a new session failed.

Used By

Router::createSession, Router::createSessionFromSecureConnection, 

SSLSessionManager::create, SessionManager::create.

See Also

Router::createSession, SessionManager::createSession.

reason

string reason;

The reason why session creation has failed.
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B.116 Glacier2::IdentitySet

Overview

interface IdentitySet

An object for managing the set of object identity constraints on a Session.

See Also

Session, SessionControl.

add

void add(::Ice::IdentitySeq additions);

Add a sequence of Ice identities to this set of constraints. Order is not preserved 
and duplicates are implicitly removed.

Parameters

additions

The sequence of Ice identities to be added.

remove

void remove(::Ice::IdentitySeq deletions);

Remove a sequence of identities from this set of constraints. No errors are 
returned if an entry is not found.

Parameters

deletions

The sequence of Ice identities to be removed.

get

::Ice::IdentitySeq get();

Returns a sequence of identities describing the constraints in this set.
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Return Value

The sequence of Ice identities for this set.

B.117 Glacier2::PermissionDeniedException

Overview

exception PermissionDeniedException

This exception is raised if a client is denied the ability to create a session with the 
router.

Used By

Router::createSession, Router::createSessionFromSecureConnection.

See Also

Router::createSession.

reason

string reason;

The reason why permission was denied.

B.118 Glacier2::PermissionsVerifier

Overview

interface PermissionsVerifier

The Glacier2 permissions verifier. This is called through the process of estab-
lishing a session.

See Also

Router.
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checkPermissions

[ "nonmutating", "cpp:const" ] bool checkPermissions(string 
userId, string password, out string reason);

Check whether a user has permission to access the router.

Parameters

userId

The user id for which to check permission.

password

The user's password.

reason

The reason why access was denied.

Return Value

True if access is granted, or false otherwise.

B.119 Glacier2::Router

Overview

interface Router extends ::Ice::Router

The Glacier2 specialization of the standard Ice router interface.

getCategoryForClient

[ "nonmutating", "cpp:const" ] string getCategoryForClient();

This category must be used in the identities of all of the client's callback objects. 
This is necessary in order for the router to forward callback requests to the 
intended client.

Return Value

The category.



 1539

createSession

Session* createSession(string userId, string password) throws 
PermissionDeniedException, CannotCreateSessionException;

Create a per-client session with the router. If a SessionManager has been 
installed, a proxy to a Session object is returned to the client. Otherwise, null is 
returned and only an internal session (i.e., not visible to the client) is created. If a 
session proxy is returned, it must be configured to route through the router that 
created it. This will happen automatically if the router is configured as the client's 
default router at the time the session proxy is created in the client process, other-
wise the client must configure the session proxy explicitly.

Parameters

userId

The user id for which to check the password.

password

The password for the given user id.

Return Value

A proxy for the newly created session, or null if no SessionManager has been 
installed.

Exceptions

PermissionDeniedException

Raised if the password for the given user id is not correct, or if the user is not 
allowed access.

CannotCreateSessionException

Raised if the session cannot be created.

See Also

Session, SessionManager, PermissionsVerifier.

createSessionFromSecureConnection

Session* createSessionFromSecureConnection() throws 
PermissionDeniedException, CannotCreateSessionException;
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Create a per-client session with the router. The user is authenticated through the 
SSL certificates that have been associated with the connection. If a SessionMan-
ager has been installed, a proxy to a Session object is returned to the client. 
Otherwise, null is returned and only an internal session (i.e., not visible to the 
client) is created. If a session proxy is returned, it must be configured to route 
through the router that created it. This will happen automatically if the router is 
configured as the client's default router at the time the session proxy is created in 
the client process, otherwise the client must configure the session proxy explicitly.

Return Value

A proxy for the newly created session, or null if no SessionManager has been 
installed.

Exceptions

PermissionDeniedException

Raised if the user cannot be authenticated or if the user is not allowed access.

CannotCreateSessionException

Raised if the session cannot be created.

See Also

Session, SessionManager, PermissionsVerifier.

destroySession

void destroySession() throws SessionNotExistException;

Destroy the calling client's session with this router.

Exceptions

SessionNotExistException

Raised if no session exists for the calling client.

getSessionTimeout

[ "nonmutating", "cpp:const" ] long getSessionTimeout();

Get the value of the session timeout. Sessions are destroyed if they see no activity 
for this period of time.
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Return Value

The timeout (in seconds).

B.120 Glacier2::SSLInfo

Overview

struct SSLInfo

Information taken from an SSL connection used for permissions verification.

Used By

SSLPermissionsVerifier::authorize, SSLSessionManager::create.

See Also

PermissionsVerifier.

remoteHost

string remoteHost;

The remote host.

remotePort

int remotePort;

The remote port.

localHost

string localHost;

The router's host.

localPort

int localPort;
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The router's port.

cipher

string cipher;

The negotiated cipher suite.

certs

::Ice::StringSeq certs;

The certificate chain.

B.121 Glacier2::SSLPermissionsVerifier

Overview

interface SSLPermissionsVerifier

The SSL Glacier2 permissions verifier. This is called through the process of estab-
lishing a session.

See Also

Router.

authorize

[ "nonmutating", "cpp:const" ] bool authorize(SSLInfo info, out 
string reason);

Check whether a user has permission to access the router.

Parameters

info

The SSL information.

reason

The reason why access was denied.
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Return Value

True if access is granted, or false otherwise.

See Also

SSLInfo.

B.122 Glacier2::SSLSessionManager

Overview

interface SSLSessionManager

The session manager for SSL authenticated users that is responsible for managing 
Session objects. New session objects are created by the Router object calling on 
an application-provided session manager. If no session manager is provided by the 
application, no client-visible sessions are passed to the client.

See Also

Router, Session.

create

Session* create(SSLInfo info, SessionControl* control) throws 
CannotCreateSessionException;

Create a new session.

Parameters

info

The SSL info.

control

A proxy to the session control object.

Return Value

A proxy to the newly created session.
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Exceptions

CannotCreateSessionException

Raised if the session cannot be created.

B.123 Glacier2::Session

Overview

interface Session

A client-visible session object, which is tied to the lifecycle of a Router.

Derived Classes and Interfaces

::IceGrid::AdminSession, ::IceGrid::Session.

See Also

Router, SessionManager.

destroy

void destroy();

Destroy the session. This is called automatically when the Router is destroyed.

B.124 Glacier2::SessionControl

Overview

interface SessionControl

An administrative session control object, which is tied to the lifecycle of a 
Session.

See Also

Session.
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categories

StringSet* categories();

Access the object that manages the allowable categories for object identities for 
this session.

Return Value

A StringSet object

adapterIds

StringSet* adapterIds();

Access the object that manages the allowable adapter identities for objects for this 
session.

Return Value

A StringSet object

identities

IdentitySet* identities();

Access the object that manages the allowable object identities for this session.

Return Value

An IdentitySet object

getSessionTimeout

int getSessionTimeout();

Get the session timeout.

Return Value

The timeout.
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destroy

[ "ami" ] void destroy();

Destroy the associated session.

B.125 Glacier2::SessionManager

Overview

interface SessionManager

The session manager for username/password authenticated users that is respon-
sible for managing Session objects. New session objects are created by the 
Router object calling on an application-provided session manager. If no session 
manager is provided by the application, no client-visible sessions are passed to the 
client.

See Also

Router, Session.

create

Session* create(string userId, SessionControl* control) throws 
CannotCreateSessionException;

Create a new session.

Parameters

userId

The user id for the session.

control

A proxy to the session control object.

Return Value

A proxy to the newly created session.
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Exceptions

CannotCreateSessionException

Raised if the session cannot be created.

B.126 Glacier2::SessionNotExistException

Overview

exception SessionNotExistException

This exception is raised if a client tries to destroy a session with a router, but no 
session exists for the client.

Used By

Router::destroySession.

See Also

Router::destroySession.

B.127 Glacier2::StringSet

Overview

interface StringSet

An object for managing the set of identity constraints for specific parts of object 
identity on a Session.

See Also

Session, SessionControl.

add

void add(::Ice::StringSeq additions);
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Add a sequence of strings to this set of constraints. Order is not preserved and 
duplicates are implicitly removed.

Parameters

additions

The sequence of strings to be added.

remove

void remove(::Ice::StringSeq deletions);

Remove a sequence of strings from this set of constraints. No errors are returned if 
an entry is not found.

Parameters

deletions

The sequence of strings to be removed.

get

::Ice::StringSeq get();

Returns a sequence of strings describing the constraints in this set.

Return Value

The sequence of strings for this set.

B.128 IceGrid

Overview

module IceGrid

IceGrid is a server activation and deployment tool. IceGrid, simplifies the 
complex task of deploying applications in a heterogeneous computer network.
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AdapterDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] sequence<AdapterDescriptor> 
AdapterDescriptorSeq;

A sequence of adapter descriptors.

Used By

CommunicatorDescriptor::adapters.

AdapterDynamicInfoSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<AdapterDynamicInfo> AdapterDynamicInfoSeq;

A sequence of adapter dynamic information structures.

Used By

NodeDynamicInfo::adapters.

AdapterInfoSeq

sequence<AdapterInfo> AdapterInfoSeq;

A sequence of adapter information structures.

Used By

AdapterObserver::adapterInit, Admin::getAdapterInfo.

ApplicationDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<ApplicationDescriptor> ApplicationDescriptorSeq;

A sequence of application descriptors.

ApplicationInfoSeq

[ "java:type:{java.util.LinkedList}" ] sequence<ApplicationInfo> 
ApplicationInfoSeq;
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Used By

ApplicationObserver::applicationInit.

DbEnvDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] sequence<DbEnvDescriptor> 
DbEnvDescriptorSeq;

A sequence of database environment descriptors.

Used By

CommunicatorDescriptor::dbEnvs.

NodeDynamicInfoSeq

sequence<NodeDynamicInfo> NodeDynamicInfoSeq;

A sequence of node dynamic information structures.

Used By

NodeObserver::nodeInit.

NodeUpdateDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<NodeUpdateDescriptor> NodeUpdateDescriptorSeq;

A sequence of node update descriptors.

Used By

ApplicationUpdateDescriptor::nodes.

ObjectDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] sequence<ObjectDescriptor> 
ObjectDescriptorSeq;

A sequence of object descriptors.
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Used By

AdapterDescriptor::allocatables, AdapterDescriptor::objects, Repli-

caGroupDescriptor::objects.

ObjectInfoSeq

sequence<ObjectInfo> ObjectInfoSeq;

A sequence of object information structures.

Used By

Admin::getAllObjectInfos, Admin::getObjectInfosByType, ObjectOb-

server::objectInit.

PropertyDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<PropertyDescriptor> PropertyDescriptorSeq;

A sequence of property descriptors.

Used By

DbEnvDescriptor::properties, PropertySetDescriptor::properties.

RegistryInfoSeq

sequence<RegistryInfo> RegistryInfoSeq;

Used By

RegistryObserver::registryInit.

ReplicaGroupDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<ReplicaGroupDescriptor> ReplicaGroupDescriptorSeq;

A sequence of replica groups.
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Used By

ApplicationDescriptor::replicaGroups, ApplicationUpdateDe-

scriptor::replicaGroups.

ServerDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] sequence<ServerDescriptor> 
ServerDescriptorSeq;

A sequence of server descriptors.

Used By

NodeDescriptor::servers, NodeUpdateDescriptor::servers.

ServerDynamicInfoSeq

[ "java:type:{java.util.LinkedList}" ] sequence<ServerDynamicInfo> 
ServerDynamicInfoSeq;

A sequence of server dynamic information structures.

Used By

NodeDynamicInfo::servers.

ServerInstanceDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<ServerInstanceDescriptor> ServerInstanceDescriptorSeq;

A sequence of server instance descriptors.

Used By

NodeDescriptor::serverInstances, NodeUpdateDescriptor::serverIn-

stances.

ServiceDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] sequence<ServiceDescriptor> 
ServiceDescriptorSeq;
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A sequence of service descriptors.

ServiceInstanceDescriptorSeq

[ "java:type:{java.util.LinkedList}" ] 
sequence<ServiceInstanceDescriptor> ServiceInstanceDescriptorSeq;

A sequence of service instance descriptors.

Used By

IceBoxDescriptor::services.

NodeDescriptorDict

dictionary<string, NodeDescriptor> NodeDescriptorDict;

Mapping of node name to node descriptor.

Used By

ApplicationDescriptor::nodes.

PropertySetDescriptorDict

dictionary<string, PropertySetDescriptor> 
PropertySetDescriptorDict;

A mapping of property set name to property set descriptor.

Used By

ApplicationDescriptor::propertySets, NodeDescriptor::propertySets, 

NodeUpdateDescriptor::propertySets, ApplicationUpdateDe-

scriptor::propertySets.

StringObjectProxyDict

dictionary<string, Object*> StringObjectProxyDict;

A dictionary of proxies.
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StringStringDict

dictionary<string, string> StringStringDict;

A mapping of string to string.

Used By

ApplicationDescriptor::variables, NodeDescriptor::variables, NodeUp-

dateDescriptor::variables, TemplateDescriptor::parameterDefaults, 

ApplicationUpdateDescriptor::variables, ServiceInstanceDe-

scriptor::parameterValues, ServerInstanceDescriptor::parameter-

Values.

TemplateDescriptorDict

dictionary<string, TemplateDescriptor> TemplateDescriptorDict;

A mapping of template identifier to template descriptor.

Used By

ApplicationUpdateDescriptor::serverTemplates, ApplicationUpdateDe-

scriptor::serviceTemplates, ApplicationDescriptor::serverTemplates, 

ApplicationDescriptor::serviceTemplates.

B.129 IceGrid::AccessDeniedException

Overview

exception AccessDeniedException

This exception is raised if an operation can't be performed because the registry 
lock wasn't acquired or is already acquired by a session.

Used By

Admin::addApplication, Admin::instantiateServer, Admin::removeAppli-

cation, Admin::syncApplication, Admin::updateApplication, AdminSes-

sion::finishUpdate, AdminSession::startUpdate.



 1555

lockUserId

string lockUserId;

B.130 IceGrid::AdapterDescriptor

Overview

struct AdapterDescriptor

An Ice object adapter descriptor.

Used By

AdapterDescriptorSeq.

name

string name;

The object adapter name.

description

string description;

The description of this object adapter.

id

string id;

The object adapter id.

replicaGroupId

string replicaGroupId;

The replica id of this adapter.



1556 Slice Documentation

registerProcess

bool registerProcess;

Flag to specify if the object adapter will register a process object.

waitForActivation

bool waitForActivation;

If true the activator will wait for this object adapter activation to mark the server as 
active.

objects

ObjectDescriptorSeq objects;

The well-known object descriptors associated with this object adapter.

allocatables

ObjectDescriptorSeq allocatables;

The allocatable object descriptors associated with this object adapter.

B.131 IceGrid::AdapterDynamicInfo

Overview

struct AdapterDynamicInfo

Dynamic information about the state of an adapter.

Used By

AdapterDynamicInfoSeq, NodeObserver::updateAdapter.

id

string id;
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The id of the adapter.

proxy

Object* proxy;

The direct proxy containing the adapter endpoints.

B.132 IceGrid::AdapterInfo

Overview

struct AdapterInfo

Information about an adapter registered with the IceGrid registry.

Used By

AdapterInfoSeq, AdapterObserver::adapterAdded, AdapterOb-

server::adapterUpdated.

id

string id;

The id of the adapter.

proxy

Object* proxy;

A dummy direct proxy that contains the adapter endpoints.

replicaGroupId

string replicaGroupId;

The replica group id of the object adapter, or empty if the adapter doesn't belong 
to a replica group.
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B.133 IceGrid::AdapterNotExistException

Overview

exception AdapterNotExistException

This exception is raised if an adapter does not exist.

Used By

Admin::getAdapterInfo, Admin::removeAdapter.

id

string id;

The id of the object adapter.

B.134 IceGrid::AdapterObserver

Overview

interface AdapterObserver

adapterInit

[ "ami" ] void adapterInit(AdapterInfoSeq adpts);

The adapterInit operation is called after the registration of the observer to commu-
nicate the current state of the registry to the observer implementation.

Parameters

serial

The current serial number of the registry database. This serial number allows 
observers to make sure that their internal state is synchronized with the 
registry.
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adapters

The adapters that were dynamically registered with the registry (not through 
the deployment mechanism).

adapterAdded

void adapterAdded(AdapterInfo info);

The adapterAdded operation is called to notify the observer when a dynamically-
registered adapter was added.

adapterUpdated

void adapterUpdated(AdapterInfo info);

The adapterUpdated operation is called to notify the observer when a dynami-
cally-registered adapter was updated.

adapterRemoved

void adapterRemoved(string id);

The adapterRemoved operation is called to notify the observer when a dynami-
cally-registered adapter was removed.

B.135 IceGrid::AdaptiveLoadBalancingPolicy

Overview

class AdaptiveLoadBalancingPolicy extends LoadBalancingPolicy

Adaptive load balancing policy.

loadSample

string loadSample;
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The load sample to use for the load balancing. The allowed values for this 
attribute are "1", "5" and "15", representing respectively the load average over the 
past minute, the past 5 minutes and the past 15 minutes.

B.136 IceGrid::Admin

Overview

interface Admin

The IceGrid administrative interface. 

Warning: Allowing access to this interface is a security risk! Please see the IceGrid docu-
mentation for further information.

addApplication

void addApplication(ApplicationDescriptor descriptor) throws 
AccessDeniedException, DeploymentException;

Add an application to IceGrid.

Parameters

descriptor

The application descriptor.

Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock or if another session is 
holding the lock.

DeploymentException

Raised if application deployment failed.

syncApplication

void syncApplication(ApplicationDescriptor descriptor) throws 
AccessDeniedException, DeploymentException, 
ApplicationNotExistException;
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Synchronize a deployed application with the given application descriptor. This 
operation will replace the current descriptor with this new descriptor.

Parameters

descriptor

The application descriptor.

Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock or if another session is 
holding the lock.

DeploymentException

Raised if application deployment failed.

ApplicationNotExistException

Raised if the application doesn't exist.

updateApplication

void updateApplication(ApplicationUpdateDescriptor descriptor) 
throws AccessDeniedException, DeploymentException, 
ApplicationNotExistException;

Update a deployed application with the given update application descriptor.

Parameters

descriptor

The update descriptor.

Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock or if another session is 
holding the lock.

DeploymentException

Raised if application deployment failed.

ApplicationNotExistException

Raised if the application doesn't exist.
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removeApplication

void removeApplication(string name) throws AccessDeniedException, 
DeploymentException, ApplicationNotExistException;

Remove an application from IceGrid.

Parameters

name

The application name.

Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock or if another session is 
holding the lock.

ApplicationNotExistException

Raised if the application doesn't exist.

instantiateServer

void instantiateServer(string application, string node, 
ServerInstanceDescriptor desc) throws AccessDeniedException, 
ApplicationNotExistException, DeploymentException;

Instantiate a server template from an application on the given node.

Parameters

application

The application name.

node

The name of the node where the server will be deployed.

desc

The descriptor of the server instance to deploy.
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Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock or if another session is 
holding the lock.

DeploymentException

Raised if server instantiation failed.

ApplicationNotExistException

Raised if the application doesn't exist.

patchApplication

[ "ami", "amd" ] void patchApplication(string name, bool shutdown) 
throws ApplicationNotExistException, PatchException;

Patch the given application data.

Parameters

name

The application name.

shutdown

If true, the servers depending on the data to patch will be shut down if neces-
sary.

Exceptions

ApplicationNotExistException

Raised if the application doesn't exist.

PatchException

Raised if the patch failed.

getApplicationInfo

[ "nonmutating", "cpp:const" ] ApplicationInfo 
getApplicationInfo(string name) throws 
ApplicationNotExistException;

Get an application descriptor.
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Parameters

name

The application name.

Return Value

The application descriptor.

Exceptions

ApplicationNotExistException

Raised if the application doesn't exist.

getDefaultApplicationDescriptor

[ "nonmutating", "cpp:const" ] ApplicationDescriptor 
getDefaultApplicationDescriptor() throws DeploymentException;

Get the default application descriptor.

Exceptions

DeploymentException

Raised if the default application descriptor can't be accessed or is invalid.

getAllApplicationNames

[ "nonmutating", "cpp:const" ] ::Ice::StringSeq 
getAllApplicationNames();

Get all the IceGrid applications currently registered.

Return Value

The application names.

getServerInfo

[ "nonmutating", "cpp:const" ] ServerInfo getServerInfo(string id) 
throws ServerNotExistException;

Get the server information for the server with the given id.
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Parameters

id

The server id.

Return Value

The server information.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

getServerState

[ "nonmutating", "cpp:const" ] ServerState getServerState(string 
id) throws ServerNotExistException, NodeUnreachableException, 
DeploymentException;

Get a server's state.

Parameters

id

The server id.

Return Value

The server state.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.
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getServerPid

[ "nonmutating", "cpp:const" ] int getServerPid(string id) throws 
ServerNotExistException, NodeUnreachableException, 
DeploymentException;

Get a server's system process id. The process id is operating system dependent.

Parameters

id

The server id.

Return Value

The server's process id.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

enableServer

[ "ami" ] void enableServer(string id, bool enabled) throws 
ServerNotExistException, NodeUnreachableException, 
DeploymentException;

Enable or disable a server. A disabled server can't be started on demand or admin-
istratively. The enable state of the server is not persistent: if the node is shut down 
and restarted, the server will be enabled by default.

Parameters

id

The server id.

enabled

True to enable the server, false to disable it.
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Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

isServerEnabled

[ "nonmutating", "cpp:const" ] bool isServerEnabled(string id) 
throws ServerNotExistException, NodeUnreachableException, 
DeploymentException;

Check if the server is enabled or disabled.

Parameters

id

The server id.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

startServer

[ "ami" ] void startServer(string id) throws 
ServerNotExistException, ServerStartException, 
NodeUnreachableException, DeploymentException;

Start a server and wait for its activation.
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Parameters

id

The server id.

Return Value

True if the server was successfully started, false otherwise.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

ServerStartException

Raised if the server couldn't be started.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

stopServer

[ "ami" ] void stopServer(string id) throws 
ServerNotExistException, ServerStopException, 
NodeUnreachableException, DeploymentException;

Stop a server.

Parameters

id

The server id.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

ServerStopException

Raised if the server couldn't be stopped.
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NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

patchServer

[ "ami", "amd" ] void patchServer(string id, bool shutdown) throws 
ServerNotExistException, NodeUnreachableException, 
DeploymentException, PatchException;

Patch a server.

Parameters

id

The server id.

shutdown

If true, servers depending on the data to patch will be shut down if necessary.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

PatchException

Raised if the patch failed.

sendSignal

void sendSignal(string id, string signal) throws 
ServerNotExistException, NodeUnreachableException, 
DeploymentException, BadSignalException;

Send signal to a server.
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Parameters

id

The server id.

signal

The signal, for example SIGTERM or 15.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

BadSignalException

Raised if the signal is not recognized by the target server.

writeMessage

void writeMessage(string id, string message, int fd) throws 
ServerNotExistException, NodeUnreachableException, 
DeploymentException;

Write message on server stdout or stderr.

Parameters

id

The server id.

message

The message.

fd

1 for stdout, 2 for stderr.

Exceptions

ServerNotExistException

Raised if the server doesn't exist.
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NodeUnreachableException

Raised if the node could not be reached.

DeploymentException

Raised if the server couldn't be deployed on the node.

getAllServerIds

[ "nonmutating", "cpp:const" ] ::Ice::StringSeq getAllServerIds();

Get all the server ids registered with IceGrid.

Return Value

The server ids.

getAdapterInfo

[ "nonmutating", "cpp:const" ] AdapterInfoSeq 
getAdapterInfo(string id) throws AdapterNotExistException;

Get the adapter information for the replica group or adapter with the given id.

Parameters

adapterId

The adapter id.

Return Value

A sequence of adapter information structures. If the given id refers to an adapter, 
this sequence will contain only one element. If the given id refers to a replica 
group, the sequence will contain the adapter information of each member of the 
replica group.

Exceptions

AdapterNotExistException

Raised if the adapter or replica group doesn't exist.
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removeAdapter

[ "ami" ] void removeAdapter(string adapterId) throws 
AdapterNotExistException, DeploymentException;

Remove the adapter with the given id.

Exceptions

AdapterNotExistException

Raised if the adapter doesn't exist.

getAllAdapterIds

[ "nonmutating", "cpp:const" ] ::Ice::StringSeq 
getAllAdapterIds();

Get all the adapter ids registered with IceGrid.

Return Value

The adapter ids.

addObject

void addObject(Object* obj) throws ObjectExistsException, 
DeploymentException;

Add an object to the object registry. IceGrid will get the object type by calling 
ice_id on the given proxy. The object must be reachable.

Parameters

obj

The object to be added to the registry.

Exceptions

ObjectExistsException

Raised if the object is already registered.

DeploymentException

Raised if the object can't be added. This might be raised if the invocation on 
the proxy to get the object type failed.
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updateObject

void updateObject(Object* obj) throws 
ObjectNotRegisteredException, DeploymentException;

Update an object in the object registry. Only objects added with this interface can 
be updated with this operation. Objects added with deployment descriptors should 
be updated with the deployment mechanism.

Parameters

obj

The object to be updated to the registry.

Exceptions

ObjectNotRegisteredException

Raised if the object isn't registered with the registry.

DeploymentException

Raised if the object can't be updated. This might happen if the object was 
added with a deployment descriptor.

addObjectWithType

void addObjectWithType(Object* obj, string type) throws 
ObjectExistsException, DeploymentException;

Add an object to the object registry and explicitly specify its type.

Parameters

obj

The object to be added to the registry.

type

The object type.

Exceptions

ObjectExistsException

Raised if the object is already registered.
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removeObject

[ "ami" ] void removeObject(::Ice::Identity id) throws 
ObjectNotRegisteredException, DeploymentException;

Remove an object from the object registry. Only objects added with this interface 
can be removed with this operation. Objects added with deployment descriptors 
should be removed with the deployment mechanism.

Parameters

id

The identity of the object to be removed from the registry.

Exceptions

ObjectNotRegisteredException

Raised if the object isn't registered with the registry.

DeploymentException

Raised if the object can't be removed. This might happen if the object was 
added with a deployment descriptor.

getObjectInfo

[ "nonmutating", "cpp:const" ] ObjectInfo 
getObjectInfo(::Ice::Identity id) throws 
ObjectNotRegisteredException;

Get the object info for the object with the given identity.

Parameters

id

The identity of the object.

Return Value

The object info.

Exceptions

ObjectNotRegisteredException

Raised if the object isn't registered with the registry.
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getObjectInfosByType

[ "nonmutating", "cpp:const" ] ObjectInfoSeq 
getObjectInfosByType(string type);

Get the object info of all the registered objects with the given type.

Parameters

type

The type of the object.

Return Value

The object infos.

getAllObjectInfos

[ "nonmutating", "cpp:const" ] ObjectInfoSeq 
getAllObjectInfos(string expr);

Get the object info of all the registered objects whose stringified identities match 
the given expression.

Parameters

expr

The expression to match against the stringified identities of registered objects. 
The expression may contain a trailing wildcard (*) character.

Return Value

All the object infos with a stringified identity matching the given expression.

pingNode

[ "nonmutating", "cpp:const" ] bool pingNode(string name) throws 
NodeNotExistException;

Ping an IceGrid node to see if it is active.
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Parameters

name

The node name.

Return Value

true if the node ping succeeded, false otherwise.

Exceptions

NodeNotExistException

Raised if the node doesn't exist.

getNodeLoad

[ "ami", "nonmutating", "cpp:const" ] LoadInfo getNodeLoad(string 
name) throws NodeNotExistException, NodeUnreachableException;

Get the load averages of the node.

Parameters

name

The node name.

Return Value

The node load information.

Exceptions

NodeNotExistException

Raised if the node doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

getNodeInfo

[ "nonmutating", "cpp:const" ] NodeInfo getNodeInfo(string name) 
throws NodeNotExistException, NodeUnreachableException;

Get the node information for the node with the given name.
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Parameters

name

The node name.

Return Value

The node information.

Exceptions

NodeNotExistException

Raised if the node doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

shutdownNode

[ "ami" ] void shutdownNode(string name) throws 
NodeNotExistException, NodeUnreachableException;

Shutdown an IceGrid node.

Parameters

name

The node name.

Exceptions

NodeNotExistException

Raised if the node doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

getNodeHostname

[ "nonmutating", "cpp:const" ] string getNodeHostname(string name) 
throws NodeNotExistException, NodeUnreachableException;

Get the hostname of this node.
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Parameters

name

The node name.

Return Value

The node hostname.

Exceptions

NodeNotExistException

Raised if the node doesn't exist.

NodeUnreachableException

Raised if the node could not be reached.

getAllNodeNames

[ "nonmutating", "cpp:const" ] ::Ice::StringSeq getAllNodeNames();

Get all the IceGrid nodes currently registered.

Return Value

The node names.

pingRegistry

[ "nonmutating", "cpp:const" ] bool pingRegistry(string name) 
throws RegistryNotExistException;

Ping an IceGrid registry to see if it is active.

Parameters

name

The registry name.

Return Value

true if the registry ping succeeded, false otherwise.
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Exceptions

RegistryNotExistException

Raised if the registry doesn't exist.

getRegistryInfo

[ "nonmutating", "cpp:const" ] RegistryInfo getRegistryInfo(string 
name) throws RegistryNotExistException, 
RegistryUnreachableException;

Get the registry information for the registry with the given name.

Parameters

name

The registry name.

Return Value

The registry information.

Exceptions

RegistryNotExistException

Raised if the registry doesn't exist.

RegistryUnreachableException

Raised if the registry could not be reached.

shutdownRegistry

[ "ami" ] void shutdownRegistry(string name) throws 
RegistryNotExistException, RegistryUnreachableException;

Shutdown an IceGrid registry.

Parameters

name

The registry name.
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Exceptions

RegistryNotExistException

Raised if the registry doesn't exist.

RegistryUnreachableException

Raised if the registry could not be reached.

getAllRegistryNames

[ "nonmutating", "cpp:const" ] ::Ice::StringSeq 
getAllRegistryNames();

Get all the IceGrid registrys currently registered.

Return Value

The registry names.

shutdown

void shutdown();

Shut down the IceGrid registry.

getSliceChecksums

[ "nonmutating", "cpp:const" ] ::Ice::SliceChecksumDict 
getSliceChecksums();

Returns the checksums for the IceGrid Slice definitions.

Return Value

A dictionary mapping Slice type ids to their checksums.

B.137 IceGrid::AdminSession

Overview

interface AdminSession extends ::Glacier2::Session
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An admin session object used by administrative clients to view, update and receive 
observer updates from the IceGrid registry. Admin sessions are created either with 
the Registry object or the registry admin ::Glacier2::SessionManager object.

See Also

Registry, ::Glacier2::SessionManager.

keepAlive

void keepAlive();

Keep the session alive. Clients should call this operation regularly to prevent the 
server from reaping the session.

See Also

Registry::getSessionTimeout.

getAdmin

[ "nonmutating", "cpp:const" ] Admin* getAdmin();

Get the admin interface. The admin object returned by this operation can only be 
accessed by the session.

Return Value

The admin interface proxy.

setObservers

void setObservers(RegistryObserver* registryObs, NodeObserver* 
nodeObs, ApplicationObserver* appObs, AdapterObserver* adptObs, 
ObjectObserver* objObs);

Set the proxies of the observer objects that will receive notifications from the 
servers when the state of the registry or nodes changes.

Parameters

registryObs

The registry observer.
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nodeObs

The node observer.

appObs

The application observer.

adapterObs

The adapter observer.

objObs

The object observer.

setObserversByIdentity

void setObserversByIdentity(::Ice::Identity registryObs, 
::Ice::Identity nodeObs, ::Ice::Identity appObs, ::Ice::Identity 
adptObs, ::Ice::Identity objObs);

Set the identities of the observer objects that will receive notifications from the 
servers when the state of the registry or nodes changes. This operation should be 
used by clients that are using a bidirectional connection to communicate with the 
session.

Parameters

registryObs

The registry observer identity.

nodeObs

The node observer identity.

appObs

The application observer.

adptObs

The adapter observer.

objObs

The object observer.

startUpdate

int startUpdate() throws AccessDeniedException;
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Acquires an exclusive lock to start updating the registry applications.

Return Value

The current serial.

Exceptions

AccessDeniedException

Raised if the exclusive lock can't be acquired. This might happen if the lock is 
currently acquired by another session.

finishUpdate

void finishUpdate() throws AccessDeniedException;

Finish updating the registry and release the exclusive lock.

Exceptions

AccessDeniedException

Raised if the session doesn't hold the exclusive lock.

B.138 IceGrid::AllocationException

Overview

exception AllocationException

This exception is raised if the allocation of an object failed.

Derived Exceptions

AllocationTimeoutException.

Used By

Session::allocateObjectById, Session::allocateObjectByType, 

Session::releaseObject.
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reason

string reason;

The reason why the object couldn't be allocated.

B.139 IceGrid::AllocationTimeoutException

Overview

exception AllocationTimeoutException extends AllocationException

This exception is raised if the request to allocate an object times out.

B.140 IceGrid::ApplicationDescriptor

Overview

struct ApplicationDescriptor

An application descriptor.

Used By

Admin::addApplication, Admin::syncApplication, ApplicationDescrip-

torSeq, ApplicationInfo::descriptor, FileParser::parse, Admin::getDe-

faultApplicationDescriptor.

name

string name;

The application name.

variables

[ "java:type:{java.util.TreeMap}" ] StringStringDict variables;

The variables defined in the application descriptor.
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replicaGroups

ReplicaGroupDescriptorSeq replicaGroups;

The replica groups.

serverTemplates

TemplateDescriptorDict serverTemplates;

The server templates.

serviceTemplates

TemplateDescriptorDict serviceTemplates;

The service templates.

nodes

NodeDescriptorDict nodes;

The application nodes.

distrib

DistributionDescriptor distrib;

The application distribution.

description

string description;

The description of this application.

propertySets

PropertySetDescriptorDict propertySets;

Property set descriptors.
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B.141 IceGrid::ApplicationInfo

Overview

struct ApplicationInfo

Used By

Admin::getApplicationInfo, ApplicationInfoSeq, ApplicationOb-

server::applicationAdded.

uuid

string uuid;

Unique application identifier.

createTime

long createTime;

The creation time.

createUser

string createUser;

The user who created the application.

updateTime

long updateTime;

The update time.

updateUser

string updateUser;
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The user who updated the application.

revision

int revision;

The application revision number.

descriptor

ApplicationDescriptor descriptor;

The application descriptor

B.142 IceGrid::ApplicationNotExistException

Overview

exception ApplicationNotExistException

This exception is raised if an application does not exist.

Used By

Admin::getApplicationInfo, Admin::instantiateServer, Admin::patchAp-

plication, Admin::removeApplication, Admin::syncApplication, 

Admin::updateApplication.

name

string name;
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B.143 IceGrid::ApplicationObserver

Overview

interface ApplicationObserver

The database observer interface. Observers should implement this interface to 
receive information about the state of the IceGrid registry database.

applicationInit

[ "ami" ] void applicationInit(int serial, ApplicationInfoSeq 
applications);

The applicationInit operation is called after the registration of the observer to 
communicate the current state of the registry to the observer implementation.

Parameters

serial

The current serial number of the registry database. This serial number allows 
observers to make sure that their internal state is synchronized with the 
registry.

applications

The applications currently registered with the registry.

applicationAdded

void applicationAdded(int serial, ApplicationInfo desc);

The applicationAdded operation is called to notify the observer that an application 
was added.

Parameters

serial

The new serial number of the registry database.

desc

The descriptor of the new application.
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applicationRemoved

void applicationRemoved(int serial, string name);

The applicationRemoved operation is called to notify the observer that an applica-
tion was removed.

Parameters

serial

The new serial number of the registry database.

name

The name of the application that was removed.

applicationUpdated

void applicationUpdated(int serial, ApplicationUpdateInfo desc);

The applicationUpdated operation is called to notify the observer that an applica-
tion was updated.

Parameters

serial

The new serial number of the registry database.

desc

The descriptor of the update.

B.144 IceGrid::ApplicationUpdateDescriptor

Overview

struct ApplicationUpdateDescriptor

An application update descriptor to describe the updates to apply to a deployed 
application.

Used By

Admin::updateApplication, ApplicationUpdateInfo::descriptor.
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name

string name;

The name of the application to update.

description

BoxedString description;

The updated description (or null if the description wasn't updated.)

distrib

BoxedDistributionDescriptor distrib;

The updated distribution application descriptor.

variables

[ "java:type:{java.util.TreeMap}" ] StringStringDict variables;

The variables to update.

removeVariables

::Ice::StringSeq removeVariables;

The variables to remove.

propertySets

PropertySetDescriptorDict propertySets;

The property sets to update.

removePropertySets

::Ice::StringSeq removePropertySets;

The property sets to remove.
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replicaGroups

ReplicaGroupDescriptorSeq replicaGroups;

The replica groups to update.

removeReplicaGroups

::Ice::StringSeq removeReplicaGroups;

The replica groups to remove.

serverTemplates

TemplateDescriptorDict serverTemplates;

The server templates to update.

removeServerTemplates

::Ice::StringSeq removeServerTemplates;

The ids of the server template to remove.

serviceTemplates

TemplateDescriptorDict serviceTemplates;

The service templates to update.

removeServiceTemplates

::Ice::StringSeq removeServiceTemplates;

The ids of the service template to remove.

nodes

NodeUpdateDescriptorSeq nodes;

The application nodes to update.
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removeNodes

::Ice::StringSeq removeNodes;

The nodes to remove.

B.145 IceGrid::ApplicationUpdateInfo

Overview

struct ApplicationUpdateInfo

Used By

ApplicationObserver::applicationUpdated.

updateTime

long updateTime;

The update time.

updateUser

string updateUser;

The user who updated the application.

revision

int revision;

The application revision number.

descriptor

ApplicationUpdateDescriptor descriptor;

The update descriptor.
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B.146 IceGrid::BadSignalException

Overview

exception BadSignalException

This exception is raised if an unknown signal was sent to to a server.

Used By

Admin::sendSignal.

reason

string reason;

B.147 IceGrid::BoxedDistributionDescriptor

Overview

class BoxedDistributionDescriptor

A "boxed" distribution descriptor.

Used By

ApplicationUpdateDescriptor::distrib.

value

DistributionDescriptor value;

The value of the boxed distribution descriptor.
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B.148 IceGrid::BoxedString

Overview

class BoxedString

A "boxed" string.

Used By

ApplicationUpdateDescriptor::description, NodeUpdateDe-

scriptor::description, NodeUpdateDescriptor::loadFactor.

value

string value;

The value of the boxed string.

B.149 IceGrid::CommunicatorDescriptor

Overview

class CommunicatorDescriptor

A communicator descriptor.

Derived Classes and Interfaces

ServerDescriptor, ServiceDescriptor.

Used By

TemplateDescriptor::descriptor.

adapters

AdapterDescriptorSeq adapters;

The object adapters.



 1595

propertySet

PropertySetDescriptor propertySet;

The property set.

dbEnvs

DbEnvDescriptorSeq dbEnvs;

The database environments.

description

string description;

A description of this descriptor.

B.150 IceGrid::DbEnvDescriptor

Overview

struct DbEnvDescriptor

A Freeze database environment descriptor.

Used By

DbEnvDescriptorSeq.

name

string name;

The name of the database environment.

description

string description;

The description of this database environment.
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dbHome

string dbHome;

The home of the database environment (i.e., the directory where the database files 
will be stored). If empty, the node will provide a default database directory, other-
wise the directory must exist.

properties

PropertyDescriptorSeq properties;

The configuration properties of the database environment.

B.151 IceGrid::DeploymentException

Overview

exception DeploymentException

An exception for deployment failure errors.

Used By

Admin::addApplication, Admin::addObject, Admin::addObjectWithType, 

Admin::enableServer, Admin::getDefaultApplicationDescriptor, 

Admin::getServerPid, Admin::getServerState, Admin::instantiateServer, 

Admin::isServerEnabled, Admin::patchServer, Admin::removeAdapter, 

Admin::removeApplication, Admin::removeObject, Admin::sendSignal, 

Admin::startServer, Admin::stopServer, Admin::syncApplication, 

Admin::updateApplication, Admin::updateObject, Admin::writeMessage.

reason

string reason;

The reason for the failure.
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B.152 IceGrid::DistributionDescriptor

Overview

struct DistributionDescriptor

A distribution descriptor defines an IcePatch2 server and the directories to retrieve 
from the patch server.

Used By

ApplicationDescriptor::distrib, BoxedDistributionDescriptor::value, 

ServerDescriptor::distrib.

icepatch

string icepatch;

The proxy of the IcePatch2 server.

directories

[ "java:type:{java.util.LinkedList}" ] ::Ice::StringSeq 
directories;

The source directories.

B.153 IceGrid::FileParser

Overview

interface FileParser

The icegridadmin command line tool provides a FileParser object to transform 
XML files into ApplicationDescriptor objects (structs).
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parse

ApplicationDescriptor parse(string xmlFile, Admin* adminProxy) 
throws ParseException;

Parse a file.

Parameters

xmlFile

Full pathname to the file.

adminProxy

An Admin proxy, used only to retrieve default templates when needed. May 
be null.

Return Value

s The application descriptor.

Exceptions

ParseException

Raised if an error occurred during parsing.

B.154 IceGrid::IceBoxDescriptor

Overview

class IceBoxDescriptor extends ServerDescriptor

An IceBox server descriptor.

services

ServiceInstanceDescriptorSeq services;

The service instances.
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B.155 IceGrid::LoadBalancingPolicy

Overview

class LoadBalancingPolicy

A base class for load balancing policies.

Derived Classes and Interfaces

AdaptiveLoadBalancingPolicy, RandomLoadBalancingPolicy, RoundRobin-

LoadBalancingPolicy.

Used By

ReplicaGroupDescriptor::loadBalancing.

nReplicas

string nReplicas;

The number of replicas that will be used to gather the endpoints of a replica group.

B.156 IceGrid::LoadInfo

Overview

struct LoadInfo

Information about the load of a node.

Used By

Admin::getNodeLoad.

avg1

float avg1;

The load average over the past minute.
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avg5

float avg5;

The load average over the past 5 minutes.

avg15

float avg15;

The load average over the past 15 minutes.

B.157 IceGrid::LoadSample

Overview

enum LoadSample

Determines which load sampling interval to use.

Used By

Query::findObjectByTypeOnLeastLoadedNode.

LoadSample1

LoadSample1

LoadSample5

LoadSample5

LoadSample15

LoadSample15
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B.158 IceGrid::NodeDescriptor

Overview

struct NodeDescriptor

A node descriptor.

Used By

NodeDescriptorDict.

variables

[ "java:type:{java.util.TreeMap}" ] StringStringDict variables;

The variables defined for the node.

serverInstances

ServerInstanceDescriptorSeq serverInstances;

The server instances.

servers

ServerDescriptorSeq servers;

Servers (which are not template instances).

loadFactor

string loadFactor;

Load factor of the node.

description

string description;

The description of this node.
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propertySets

PropertySetDescriptorDict propertySets;

Property set descriptors.

B.159 IceGrid::NodeDynamicInfo

Overview

struct NodeDynamicInfo

Dynamic information about the state of a node.

Used By

NodeDynamicInfoSeq, NodeObserver::nodeUp.

info

NodeInfo info;

Some static information about the node.

servers

ServerDynamicInfoSeq servers;

The dynamic information of the servers deployed on this node.

adapters

AdapterDynamicInfoSeq adapters;

The dynamic information of the adapters deployed on this node.
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B.160 IceGrid::NodeInfo

Overview

struct NodeInfo

Information about an IceGrid node.

Used By

Admin::getNodeInfo, NodeDynamicInfo::info.

name

string name;

The name of the node.

os

string os;

The operating system name.

hostname

string hostname;

The network name of the host running this node (as defined in uname()).

release

string release;

The operation system release level (as defined in uname()).

version

string version;

The operation system version (as defined in uname()).
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machine

string machine;

The machine hardware type (as defined in uname()).

nProcessors

int nProcessors;

The number of processors.

dataDir

string dataDir;

The path to the node data directory.

B.161 IceGrid::NodeNotExistException

Overview

exception NodeNotExistException

This exception is raised if a node does not exist.

Used By

Admin::getNodeHostname, Admin::getNodeInfo, Admin::getNodeLoad, 

Admin::pingNode, Admin::shutdownNode.

name

string name;
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B.162 IceGrid::NodeObserver

Overview

interface NodeObserver

The node observer interface. Observers should implement this interface to receive 
information about the state of the IceGrid nodes.

nodeInit

[ "ami" ] void nodeInit(NodeDynamicInfoSeq nodes);

The nodeInit operation is called after the registration of the observer to communi-
cate the current state of the nodes to the observer implementation.

Parameters

nodes

The current state of the nodes.

nodeUp

void nodeUp(NodeDynamicInfo node);

The nodeUp operation is called to notify the observer that a node came up.

Parameters

node

The node state.

nodeDown

void nodeDown(string name);

The nodeDown operation is called to notify the observer that a node went down.
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Parameters

name

The node name.

updateServer

void updateServer(string node, ServerDynamicInfo updatedInfo);

The updateServer operation is called to notify the observer that the state of a 
server changed.

Parameters

node

The node hosting the server.

updatedInfo

The new server state.

updateAdapter

void updateAdapter(string node, AdapterDynamicInfo updatedInfo);

The updateAdapter operation is called to notify the observer that the state of an 
adapter changed.

Parameters

node

The node hosting the adapter.

updatedInfo

The new adapter state.

B.163 IceGrid::NodeUnreachableException

Overview

exception NodeUnreachableException
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This exception is raised if a node could not be reached.

Used By

Admin::enableServer, Admin::getNodeHostname, Admin::getNodeInfo, 

Admin::getNodeLoad, Admin::getServerPid, Admin::getServerState, 

Admin::isServerEnabled, Admin::patchServer, Admin::sendSignal, 

Admin::shutdownNode, Admin::startServer, Admin::stopServer, 

Admin::writeMessage.

name

string name;

The name of the node that is not reachable.

reason

string reason;

The reason why the node couldn't be reached.

B.164 IceGrid::NodeUpdateDescriptor

Overview

struct NodeUpdateDescriptor

A node update descriptor to describe the updates to apply to a node of a deployed 
application.

Used By

NodeUpdateDescriptorSeq.

name

string name;

The name of the node to update.
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description

BoxedString description;

The updated description (or null if the description wasn't updated.)

variables

[ "java:type:{java.util.TreeMap}" ] StringStringDict variables;

The variables to update.

removeVariables

::Ice::StringSeq removeVariables;

The variables to remove.

propertySets

PropertySetDescriptorDict propertySets;

The property sets to update.

removePropertySets

::Ice::StringSeq removePropertySets;

The property sets to remove.

serverInstances

ServerInstanceDescriptorSeq serverInstances;

The server instances to update.

servers

ServerDescriptorSeq servers;

The servers which are not template instances to update.
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removeServers

::Ice::StringSeq removeServers;

The ids of the servers to remove.

loadFactor

BoxedString loadFactor;

The updated load factor of the node (or null if the load factor wasn't updated.)

B.165 IceGrid::ObjectDescriptor

Overview

struct ObjectDescriptor

An Ice object descriptor.

Used By

ObjectDescriptorSeq.

id

::Ice::Identity id;

The identity of the object.

type

string type;

The object type.
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B.166 IceGrid::ObjectExistsException

Overview

exception ObjectExistsException

This exception is raised if an object already exists.

Used By

Admin::addObject, Admin::addObjectWithType.

id

::Ice::Identity id;

B.167 IceGrid::ObjectInfo

Overview

struct ObjectInfo

Information about an Ice object.

Used By

Admin::getObjectInfo, ObjectInfoSeq, ObjectObserver::objectAdded, 

ObjectObserver::objectUpdated.

proxy

Object* proxy;

The proxy of the object.

type

string type;
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The type of the object.

B.168 IceGrid::ObjectNotRegisteredException

Overview

exception ObjectNotRegisteredException

This exception is raised if an object is not registered.

Used By

Admin::getObjectInfo, Admin::removeObject, Admin::updateObject, 

Session::allocateObjectById, Session::releaseObject.

id

::Ice::Identity id;

B.169 IceGrid::ObjectObserver

Overview

interface ObjectObserver

objectInit

[ "ami" ] void objectInit(ObjectInfoSeq objects);

The objectInit operation is called after the registration of the observer to commu-
nicate the current state of the registry to the observer implementation.
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Parameters

serial

The current serial number of the registry database. This serial number allows 
observers to make sure that their internal state is synchronized with the 
registry.

objects

The objects registered with the Admin interface (not through the deployment 
mechanism).

objectAdded

void objectAdded(ObjectInfo info);

The objectAdded operation is called to notify the observer when an object was 
added through the Admin interface.

objectUpdated

void objectUpdated(ObjectInfo info);

The objectUpdated operation is called to notify the observer when an object regis-
tered through the Admin interface was updated.

objectRemoved

void objectRemoved(::Ice::Identity id);

The objectRemoved operation is called to notify the observer when an object 
registered through the Admin interface was removed.

B.170 IceGrid::ParseException

Overview

exception ParseException

This exception is raised if an error occurs during parsing.
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Used By

FileParser::parse.

reason

string reason;

The reason for the failure.

B.171 IceGrid::PatchException

Overview

exception PatchException

This exception is raised if a patch failed.

Used By

Admin::patchApplication, Admin::patchServer.

reasons

::Ice::StringSeq reasons;

The reasons why the patch failed.

B.172 IceGrid::PermissionDeniedException

Overview

exception PermissionDeniedException

This exception is raised if a client is denied the ability to create a session with 
IceGrid.
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Used By

Registry::createAdminSession, Registry::createAdminSessionFromSe-

cureConnection, Registry::createSession, Registry::createSession-

FromSecureConnection.

See Also

SessionFactory::createSession.

reason

string reason;

The reason why permission was denied.

B.173 IceGrid::PropertyDescriptor

Overview

struct PropertyDescriptor

Property descriptor.

Used By

PropertyDescriptorSeq.

name

string name;

value

string value;
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B.174 IceGrid::PropertySetDescriptor

Overview

struct PropertySetDescriptor

A property set descriptor.

Used By

CommunicatorDescriptor::propertySet, PropertySetDescriptorDict, 

ServerInstanceDescriptor::propertySet, ServiceInstanceDe-

scriptor::propertySet.

references

::Ice::StringSeq references;

References to named property sets.

properties

PropertyDescriptorSeq properties;

The property set properties.

B.175 IceGrid::Query

Overview

[ "ami", "amd" ] interface Query

The IceGrid query interface. This interface is accessible to Ice clients who wish to 
lookup well-known objects.

findObjectById

[ "nonmutating", "cpp:const" ] Object* 
findObjectById(::Ice::Identity id);
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Find a well-known object by identity.

Parameters

id

The identity.

Return Value

The proxy or null if no such object has been found.

findObjectByType

[ "nonmutating", "cpp:const" ] Object* findObjectByType(string 
type);

Find a well-known object by type. If there are several objects registered for the 
given type, the object will be randomly selected.

Parameters

type

The object type.

Return Value

The proxy or null if no such object has been found.

findObjectByTypeOnLeastLoadedNode

[ "nonmutating", "cpp:const" ] Object* 
findObjectByTypeOnLeastLoadedNode(string type, LoadSample sample);

Find a well-known object by type on the least loaded node. If the registry can't 
figure out the node that hosts the object (e.g., if the object was registered with a 
direct proxy), the registry assumes the object is hosted on a node that has a load 
average of 1.0.

Parameters

type

The object type.
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Return Value

The proxy or null if no such object has been found.

findAllObjectsByType

[ "nonmutating", "cpp:const" ] ::Ice::ObjectProxySeq 
findAllObjectsByType(string type);

Find all the well-known objects with the given type.

Parameters

type

The object type.

Return Value

The proxies or an empty sequence if no such objects have been found.

B.176 IceGrid::RandomLoadBalancingPolicy

Overview

class RandomLoadBalancingPolicy extends LoadBalancingPolicy

Random load balancing policy.

B.177 IceGrid::Registry

Overview

interface Registry

The IceGrid registry provides a registry object to allow clients or administrative 
clients to create sessions directly with the registry.

See Also

Session, AdminSession.
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createSession

Session* createSession(string userId, string password) throws 
PermissionDeniedException;

Create a client session.

Parameters

userId

The user id.

password

The password for the given user id.

Return Value

A proxy for the newly created session.

Exceptions

PermissionDeniedException

Raised if the password for the given user id is not correct, or if the user is not 
allowed access.

See Also

Session, ::Glacier2::PermissionsVerifier.

createAdminSession

AdminSession* createAdminSession(string userId, string password) 
throws PermissionDeniedException;

Create an administrative session.

Parameters

userId

The user id.

password

The password for the given user id.
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Return Value

A proxy for the newly created session.

Exceptions

PermissionDeniedException

Raised if the password for the given user id is not correct, or if the user is not 
allowed access.

See Also

Session, ::Glacier2::PermissionsVerifier.

createSessionFromSecureConnection

Session* createSessionFromSecureConnection() throws 
PermissionDeniedException;

Create a client session from a secure connection.

Parameters

userId

The user id.

password

The password for the given user id.

Return Value

A proxy for the newly created session.

Exceptions

PermissionDeniedException

Raised if the password for the given user id is not correct, or if the user is not 
allowed access.

See Also

Session, ::Glacier2::SSLPermissionsVerifier.
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createAdminSessionFromSecureConnection

AdminSession* createAdminSessionFromSecureConnection() throws 
PermissionDeniedException;

Create an administrative session from a secure connection.

Return Value

A proxy for the newly created session.

Exceptions

PermissionDeniedException

Raised if the password for the given user id is not correct, or if the user is not 
allowed access.

See Also

Session, ::Glacier2::SSLPermissionsVerifier.

getSessionTimeout

[ "nonmutating", "cpp:const" ] int getSessionTimeout();

Get the session timeout. If a client or administrative client doesn't call the session 
keepAlive method in the time interval defined by this timeout, IceGrid might reap 
the session.

Return Value

The timeout in milliseconds.

See Also

Session::keepAlive, AdminSession::keepAlive.

B.178 IceGrid::RegistryInfo

Overview

struct RegistryInfo
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Information about an IceGrid registry replica.

Used By

Admin::getRegistryInfo, RegistryInfoSeq, RegistryObserver::regis-

tryUp.

name

string name;

The name of the registry.

hostname

string hostname;

The network name of the host running this registry (as defined in uname()).

endpoints

string endpoints;

The client endpoints of the registry.

B.179 IceGrid::RegistryNotExistException

Overview

exception RegistryNotExistException

This exception is raised if a registry does not exist.

Used By

Admin::getRegistryInfo, Admin::pingRegistry, Admin::shutdownRegistry.

name

string name;
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B.180 IceGrid::RegistryObserver

Overview

interface RegistryObserver

registryInit

[ "ami" ] void registryInit(RegistryInfoSeq registries);

The registryInit operation is called after the registration of the observer to commu-
nicate the current state of the registries to the observer implementation.

Parameters

registries

The current state of the registries.

registryUp

void registryUp(RegistryInfo node);

The nodeUp operation is called to notify the observer that a node came up.

Parameters

node

The node state.

registryDown

void registryDown(string name);

The nodeDown operation is called to notify the observer that a node went down.
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Parameters

name

The node name.

B.181 IceGrid::RegistryUnreachableException

Overview

exception RegistryUnreachableException

This exception is raised if a registry could not be reached.

Used By

Admin::getRegistryInfo, Admin::shutdownRegistry.

name

string name;

The name of the registry that is not reachable.

reason

string reason;

The reason why the registry couldn't be reached.

B.182 IceGrid::ReplicaGroupDescriptor

Overview

struct ReplicaGroupDescriptor

A replica group descriptor.
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Used By

ReplicaGroupDescriptorSeq.

id

string id;

The id of the replica group.

loadBalancing

LoadBalancingPolicy loadBalancing;

The load balancing policy.

objects

ObjectDescriptorSeq objects;

The object descriptors associated with this object adapter.

description

string description;

The description of this replica group.

B.183 IceGrid::RoundRobinLoadBalancingPolicy

Overview

class RoundRobinLoadBalancingPolicy extends LoadBalancingPolicy

Round robin load balancing policy.
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B.184 IceGrid::ServerDescriptor

Overview

class ServerDescriptor extends CommunicatorDescriptor

An Ice server descriptor.

Derived Classes and Interfaces

IceBoxDescriptor.

Used By

ServerDescriptorSeq, ServerInfo::descriptor.

id

string id;

The server id.

exe

string exe;

The path of the server executable.

pwd

string pwd;

The path to the server working directory.

options

[ "java:type:{java.util.LinkedList}" ] ::Ice::StringSeq options;

The command line options to pass to the server executable.
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envs

[ "java:type:{java.util.LinkedList}" ] ::Ice::StringSeq envs;

The server environment variables.

activation

string activation;

The server activation mode (possible values are "on-demand" or "manual").

activationTimeout

string activationTimeout;

The activation timeout (an integer value representing the number of seconds to 
wait for activation).

deactivationTimeout

string deactivationTimeout;

The deactivation timeout (an integer value representing the number of seconds to 
wait for deactivation).

applicationDistrib

bool applicationDistrib;

Specifies if the server depends on the application distribution.

distrib

DistributionDescriptor distrib;

The distribution descriptor.

allocatable

bool allocatable;
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Specifies if the server is allocatable.

user

string user;

The user account used to run the server.

B.185 IceGrid::ServerDynamicInfo

Overview

struct ServerDynamicInfo

Dynamic information about the state of a server.

Used By

NodeObserver::updateServer, ServerDynamicInfoSeq.

id

string id;

The id of the server.

state

ServerState state;

The state of the server.

pid

int pid;

The process id of the server.



1628 Slice Documentation

enabled

bool enabled;

Indicates whether the server is enabled.

B.186 IceGrid::ServerInfo

Overview

struct ServerInfo

Information about a server managed by an IceGrid node.

Used By

Admin::getServerInfo.

application

string application;

The server application.

uuid

string uuid;

The application uuid.

revision

int revision;

The application revision.

node

string node;

The server node.
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descriptor

ServerDescriptor descriptor;

The server descriptor.

sessionId

string sessionId;

The id of the session which allocated the server.

B.187 IceGrid::ServerInstanceDescriptor

Overview

struct ServerInstanceDescriptor

A server template instance descriptor.

Used By

Admin::instantiateServer, ServerInstanceDescriptorSeq.

template

string template;

The template used by this instance.

parameterValues

StringStringDict parameterValues;

The template parameter values.

propertySet

PropertySetDescriptor propertySet;

The property set.
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B.188 IceGrid::ServerNotExistException

Overview

exception ServerNotExistException

This exception is raised if a server does not exist.

Used By

Admin::enableServer, Admin::getServerInfo, Admin::getServerPid, 

Admin::getServerState, Admin::isServerEnabled, Admin::patchServer, 

Admin::sendSignal, Admin::startServer, Admin::stopServer, 

Admin::writeMessage.

id

string id;

The identifier of the server.

B.189 IceGrid::ServerStartException

Overview

exception ServerStartException

This exception is raised if a server failed to start.

Used By

Admin::startServer.

id

string id;

The identifier of the server.
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reason

string reason;

The reason for the failure.

B.190 IceGrid::ServerState

Overview

enum ServerState

An enumeration representing the state of the server.

Used By

Admin::getServerState, ServerDynamicInfo::state.

Inactive

Inactive

The server is not running.

Activating

Activating

The server is being activated and will change to the active state when the regis-
tered server object adapters are activated.

Active

Active

The server is running.

Deactivating

Deactivating
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The server is being deactivated.

Destroying

Destroying

The server is being destroyed.

Destroyed

Destroyed

The server is destroyed.

B.191 IceGrid::ServerStopException

Overview

exception ServerStopException

This exception is raised if a server failed to stop.

Used By

Admin::stopServer.

id

string id;

The identifier of the server.

reason

string reason;

The reason for the failure.
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B.192 IceGrid::ServiceDescriptor

Overview

class ServiceDescriptor extends CommunicatorDescriptor

An IceBox service descriptor.

Used By

ServiceDescriptorSeq, ServiceInstanceDescriptor::descriptor.

name

string name;

The service name.

entry

string entry;

The entry point of the IceBox service.

B.193 IceGrid::ServiceInstanceDescriptor

Overview

struct ServiceInstanceDescriptor

A service template instance descriptor.

Used By

ServiceInstanceDescriptorSeq.

template

string template;
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The template used by this instance.

parameterValues

StringStringDict parameterValues;

The template parameter values.

descriptor

ServiceDescriptor descriptor;

The service definition if the instance isn't a template instance (i.e.: if the template 
attribute is empty).

propertySet

PropertySetDescriptor propertySet;

The property set.

B.194 IceGrid::Session

Overview

interface Session extends ::Glacier2::Session

A session object is used by IceGrid clients to allocate and release objects. Client 
sessions are either created with the Registry object or the registry client 
::Glacier2::SessionManager object.

See Also

Registry, ::Glacier2::SessionManager.

keepAlive

void keepAlive();



 1635

Keep the session alive. Clients should call this operation regularly to prevent the 
server from reaping the session.

See Also

Registry::getSessionTimeout.

allocateObjectById

[ "ami", "amd" ] Object* allocateObjectById(::Ice::Identity id) 
throws ObjectNotRegisteredException, AllocationException;

Allocate an object. Depending on the allocation timeout, this operation might 
hang until the object is available or until the timeout is reached.

Parameters

id

The identity of the object to allocate.

Return Value

The proxy of the allocated object.

Exceptions

ObjectNotRegisteredException

Raised if the object with the given identity is not registered with the registry.

AllocationException

Raised if the object can't be allocated.

See Also

setAllocationTimeout, releaseObject.

allocateObjectByType

[ "ami", "amd" ] Object* allocateObjectByType(string type) throws 
AllocationException;

Allocate an object with the given type. Depending on the allocation timeout, this 
operation might hang until an object becomes available or until the timeout is 
reached.
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Parameters

type

The type of the object.

Return Value

The proxy of the allocated object.

Exceptions

Raised

if no objects with the given type can be allocated.

See Also

setAllocationTimeout, releaseObject.

releaseObject

void releaseObject(::Ice::Identity id) throws 
ObjectNotRegisteredException, AllocationException;

Release an object.

Parameters

id

The identity of the object to release.

Exceptions

ObjectNotRegisteredException

Raised if the object with the given identity is not registered with the registry.

AllocationException

Raised if the given object can't be released. This might happen if the object 
isn't allocatable or isn't allocated by the session.

See Also

allocateObjectById, allocateObjectByType.
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setAllocationTimeout

void setAllocationTimeout(int timeout);

Set the allocation timeout. If no objects are available for an allocation request, the 
request will hang for the duration of this timeout.

Parameters

timeout

The timeout in milliseconds.

See Also

allocateObjectById, allocateObjectByType.

B.195 IceGrid::TemplateDescriptor

Overview

struct TemplateDescriptor

A template descriptor for server or service templates.

Used By

TemplateDescriptorDict.

descriptor

CommunicatorDescriptor descriptor;

The template.

parameters

[ "java:type:{java.util.LinkedList}" ] ::Ice::StringSeq 
parameters;

The parameters required to instantiate the template.
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parameterDefaults

StringStringDict parameterDefaults;

The parameters default values.

B.196 IceGrid::UserAccountMapper

Overview

interface UserAccountMapper

A user account mapper object is used by IceGrid nodes to map session identifiers 
to user accounts.

getUserAccount

string getUserAccount(string user) throws 
UserAccountNotFoundException;

Get the name of the user account for the given user. This is used by IceGrid nodes 
to figure out the user account to use to run servers.

Parameters

user

The value of the server descriptor's user attribute. If this attribute is not 
defined, and the server's activation mode is session, the default value of 
getUserAccount is the session identifier.

Return Value

The user account name.

Exceptions

UserAccountNotFoundException

Raised if no user account is found for the given user.
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B.197 IceGrid::UserAccountNotFoundException

Overview

exception UserAccountNotFoundException

This exception is raised if a user account for a given session identifier can't be 
found.

Used By

UserAccountMapper::getUserAccount.

B.198 IceStorm

Overview

module IceStorm

A messaging service with support for federation. In contrast to most other 
messaging or event services, IceStorm supports typed events, meaning that broad-
casting a message over a federation is as easy as invoking a method on an inter-
face.

LinkInfoSeq

sequence<LinkInfo> LinkInfoSeq;

A sequence of LinkInfo objects.

Used By

Topic::getLinkInfoSeq.

QoS

dictionary<string, string> QoS;

This dictionary represents Quality of service parameters.
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Used By

Topic::subscribe.

See Also

Topic::subscribe.

TopicDict

dictionary<string, Topic*> TopicDict;

Mapping of topic name to topic proxy.

Used By

TopicManager::retrieveAll.

B.199 IceStorm::LinkExists

Overview

exception LinkExists

This exception indicates that an attempt was made to create a link that already 
exists.

Used By

Topic::link.

name

string name;

The name of the linked topic.
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B.200 IceStorm::LinkInfo

Overview

struct LinkInfo

Information on the topic links.

Used By

LinkInfoSeq.

theTopic

Topic* theTopic;

The linked topic.

name

string name;

The name of the linked topic.

cost

int cost;

The cost of traversing this link.

B.201 IceStorm::NoSuchLink

Overview

exception NoSuchLink

This exception indicates that an attempt was made to remove a link that does not 
exist.
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Used By

Topic::unlink.

name

string name;

The name of the link that does not exist.

B.202 IceStorm::NoSuchTopic

Overview

exception NoSuchTopic

This exception indicates that an attempt was made to retrieve a topic that does not 
exist.

Used By

TopicManager::retrieve.

name

string name;

The name of the topic that does not exist.

B.203 IceStorm::Topic

Overview

interface Topic

Publishers publish information on a particular topic. A topic logically represents a 
type.
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See Also

TopicManager.

getName

[ "nonmutating", "cpp:const" ] string getName();

Get the name of this topic.

Return Value

The name of the topic.

See Also

TopicManager::create.

getPublisher

[ "nonmutating", "cpp:const" ] Object* getPublisher();

Get a proxy to a publisher object for this topic. To publish data to a topic, the 
publisher calls getPublisher and then casts to the topic type. An unchecked cast 
must be used on this proxy.

Return Value

A proxy to publish data on this topic.

subscribe

Object* subscribe(QoS theQoS, Object* subscriber);

Subscribe with the given QoS to this topic. If the given subscribe proxy has 
already been registered, it will be replaced.

Parameters

qos

The quality of service parameters for this subscription.

subscriber

The subscriber's proxy.
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Return Value

The per-subscriber publisher object.

See Also

unsubscribe.

unsubscribe

void unsubscribe(Object* subscriber);

Unsubscribe the given unsubscribe.

Parameters

subscriber

The proxy of an existing subscriber.

See Also

subscribe.

link

void link(Topic* linkTo, int cost) throws LinkExists;

Create a link to the given topic. All events originating on this topic will also be 
sent to link.

Parameters

linkTo

The topic to link to.

cost

The cost to the linked topic.

Exceptions

LinkExists

Raised if a link to the same topic already exists.
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unlink

void unlink(Topic* linkTo) throws NoSuchLink;

Destroy the link from this topic to the given topic unlink.

Parameters

link

The topic to destroy the link to.

Exceptions

NoSuchLink

Raised if a link to the topic does not exist.

getLinkInfoSeq

[ "nonmutating", "cpp:const" ] LinkInfoSeq getLinkInfoSeq();

Retrieve information on the current links.

Return Value

A sequence of LinkInfo objects.

destroy

void destroy();

Destroy the topic.

B.204 IceStorm::TopicExists

Overview

exception TopicExists

This exception indicates that an attempt was made to create a topic that already 
exists.



1646 Slice Documentation

Used By

TopicManager::create.

name

string name;

The name of the topic that already exists.

B.205 IceStorm::TopicManager

Overview

interface TopicManager

A topic manager manages topics, and subscribers to topics.

See Also

Topic.

create

Topic* create(string name) throws TopicExists;

Create a new topic. The topic name must be unique, otherwise TopicExists is 
raised.

Parameters

name

The name of the topic.

Return Value

A proxy to the topic instance.

Exceptions

TopicExists

Raised if a topic with the same name already exists.
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retrieve

[ "nonmutating", "cpp:const" ] Topic* retrieve(string name) throws 
NoSuchTopic;

Retrieve a topic by name.

Parameters

name

The name of the topic.

Return Value

A proxy to the topic instance.

Exceptions

NoSuchTopic

Raised if the topic does not exist.

retrieveAll

[ "nonmutating", "cpp:const" ] TopicDict retrieveAll();

Retrieve all topics managed by this topic manager.

Return Value

A dictionary of string, topic proxy pairs.

getSliceChecksums

[ "nonmutating", "cpp:const" ] ::Ice::SliceChecksumDict 
getSliceChecksums();

Returns the checksums for the IceStorm Slice definitions.

Return Value

A dictionary mapping Slice type ids to their checksums.



1648 Slice Documentation

B.206 IcePatch2

Overview

module IcePatch2

IcePatch2 can be used to update file hiearchies in a simple and efficient manner. 
Checksums ensure file integrity, and data is compressed before download.

ByteSeqSeq

sequence<::Ice::ByteSeq> ByteSeqSeq;

A sequence of byte sequences. Each element is the checksum for a partition.

Used By

FileServer::getChecksumSeq.

FileInfoSeq

sequence<FileInfo> FileInfoSeq;

A sequence with information about many files.

Used By

FileServer::getFileInfoSeq.

B.207 IcePatch2::Admin

Overview

interface Admin

The IcePatch2 administrative interface. This must only be accessible from inside 
the firewall.
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shutdown

void shutdown();

Shut down the IcePatch2 server.

B.208 IcePatch2::FileAccessException

Overview

exception FileAccessException

This exception is raised if getFileCompressed cannot read the contents of a file.

Used By

FileServer::getFileCompressed.

reason

string reason;

An explanation of the reason for the failure.

B.209 IcePatch2::FileInfo

Overview

struct FileInfo

Basic information about a single file.

Used By

FileInfoSeq.

path

string path;
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The pathname.

checksum

::Ice::ByteSeq checksum;

The SHA-1 checksum of the file.

size

int size;

The size of the compressed file in number of bytes.

executable

bool executable;

The executable flag.

B.210 IcePatch2::FileServer

Overview

interface FileServer

getFileInfoSeq

[ "ami", "nonmutating", "cpp:const" ] FileInfoSeq 
getFileInfoSeq(int partition) throws PartitionOutOfRangeException;

Return the FileInfoSeq for the specified partition. If the partion number is out of 
range, the operation throws PartitionOutOfRangException.

Parameters

partition

The partition number in the range 0-255.
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Return Value

A sequence containing the FileInfo structures for files in the specified partition.

getChecksumSeq

[ "nonmutating", "cpp:const" ] ByteSeqSeq getChecksumSeq();

Return the checksums for all partitions.

Return Value

A sequence containing 256 checksums. Partitions with a checksum that differs 
from the previous checksum for the same partition contain updated files. Parti-
tions with a checksum that is identical to the previous checksum do not contain 
updated files.

getChecksum

[ "nonmutating", "cpp:const" ] ::Ice::ByteSeq getChecksum();

Return the master checksum for all partitions. If this checksum is the same as for a 
previous run, the entire file set is up-to-date.

Return Value

The master checksum for the file set.

getFileCompressed

[ "ami", "amd", "nonmutating", "cpp:const", "cpp:array" ] 
::Ice::ByteSeq getFileCompressed(string path, int pos, int num) 
throws FileAccessException;

Read the specified file. If the read operation fails, the operation throws FileAc-
cessException. This operation may only return fewer bytes than requested in 
case there was an end-of-file condition.

Parameters

path

The pathname (relative to the data directory) for the file to be read.
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pos

The file offset at which to begin reading.

num

The number of bytes to be read.

Return Value

A sequence containing the compressed file contents.

B.211 IcePatch2::PartitionOutOfRangeException

Overview

exception PartitionOutOfRangeException

This exception is raised if the partition argument for getFileInfoSeq is not in 
the range 0-255.

Used By

FileServer::getFileInfoSeq.
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Appendix C 
Properties

If not stated otherwise in the description of the individual properties, the default 
value for all properties is the empty string. If the property takes a numeric value, 
the empty string is interpreted as zero.

C.1 Ice Configuration Property

Ice.Config

Synopsis

--Ice.Config --Ice.Config=1 --Ice.Config=config_file

Description

This property must be set from the command line with the --Ice.Config, --
Ice.Config=1, or --Ice.Config=config_file option.

If the Ice.Config property is empty or set to 1, the Ice run time examines the 
contents of the ICE_CONFIG environment variable to retrieve the pathname of a 
configuration file. Otherwise, Ice.Config must be set to the pathname of a 
configuration file. (Pathnames can be relative or absolute.) Further property values 
are read from the configuration file thus specified.
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Configuration File Syntax

A configuration file contains a number of property settings, one setting per line. 
Property settings have one of the forms

property_name= # Set property to the empty string or zero

property_name=value # Assign value to property

The # character indicates a comment: the # character and anything following the # 
character on the same line are ignored. A line that has the # character as its first 
non-white space character is ignored in its entirety.

A configuration file is free-form: blank, tab, and newline characters serve as 
token delimiters and are otherwise ignored.

Any setting of the Ice.Config property inside the configuration file itself is 
ignored.

C.2 Ice Trace Properties

Ice.Trace.GC

Synopsis

Ice.Trace.GC=num

Description

The garbage collector trace level: 

0 No garbage collector trace. (default)

1 Show the total number of instances collected, the total 
number of instances examined, the time spent in the 
collector in milliseconds, and the total number of runs of 
the collector.

2 Like 1, but also produces a trace message for each run of 
the collector.
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Ice.Trace.Network

Synopsis

Ice.Trace.Network=num

Description

The network trace level: 

Ice.Trace.Location

Synopsis

Ice.Trace.Location=num

Description

The location trace level: 

Ice.Trace.Protocol

Synopsis

Ice.Trace.Protocol=num

0 No network trace. (default)

1 Trace successful connection establishment and closure.

2 Like 1, but also traces attempts to bind, connect, and 
disconnect sockets.

3 Like 2, but also trace data transfer.

0 No location trace. (default)

1 Trace Ice locator requests.

2 Like 1, but also trace the removal of endpoints from the 
cache.
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Description

The protocol trace level: 

Ice.Trace.Retry

Synopsis

Ice.Trace.Retry=num

Description

The request retry trace level: 

Ice.Trace.Slicing

Synopsis

Ice.Trace.Slicing=num

Description

The slicing trace level: 

0 No protocol trace. (default)

1 Trace Ice protocol messages.

0 No request retry trace. (default)

1 Trace Ice operation call retries.

2 Also trace Ice endpoint usage.

0 No trace of slicing activity. (default)

1 Trace all exception and class types that are unknown to the 
receiver and therefore sliced.
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C.3 Ice Warning Properties

Ice.Warn.Connections

Synopsis

Ice.Warn.Connections=num

Description

If num is set to a value larger than zero, Ice applications print warning messages 
for certain exceptional conditions in connections. The default value is 0.

Ice.Warn.Datagrams

Synopsis

Ice.Warn.Datagrams=num

Description

If num is set to a value larger than zero, servers print a warning message if they 
receive a datagram that exceeds the servers' receive buffer size. (Note that this 
condition is not detected by all UDP implementations -- some implementations 
silently drop received datagrams that are too large.) The default value is 0.

Ice.Warn.Dispatch

Synopsis

Ice.Warn.Dispatch=num

Description

If num is set to a value larger than zero, Ice applications print warning messages 
for certain exceptions that are raised while an incoming request is dispatched. 

0 No warnings.
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Ice.Warn.Endpoints

Synopsis

Ice.Warn.Endpoints=num

Description

If num is set to a value larger than zero, a warning is printed if a stringified proxy 
contains an endpoint that cannot be parsed. (For example, on versions of Ice that 
do not support SSL, stringified proxies containing SSL endpoints cause this 
warning.) The default value is 1.

Ice.Warn.AMICallback

Synopsis

Ice.Warn.AMICallback=num

Description

If num is set to a value larger than zero, warnings are printed if an AMI callback 
raises an exception. The default value is 1.

1 Print warnings for unexpected Ice::LocalException, 
Ice::UserException, C++ exceptions, and Java runtime 
exceptions. (default)

2 Like 1, but also issue warnings for 
Ice::ObjectNotExistException, 
Ice::FacetNotExistException, and 
Ice::OperationNotExistException.
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C.4 Ice Object Adapter Properties

name.AdapterId

Synopsis

name.AdapterId=id

Description

Specifies an identifier for the object adapter with the name name. This identifier 
must be unique among all object adapters using the same locator instance. If a 
locator proxy is defined using name.Locator or Ice.Default.Locator, this object 
adapter sets its endpoints with the locator registry upon activation.

name.ReplicaGroupId

Synopsis

name.ReplicaGroupId=id

Description

Identifies the group of replicated object adapters to which this adapter belongs. 
The replica group is treated as a virtual object adapter, so that an indirect proxy of 
the form identity@id refers to the object adapters in the group. During binding, a 
client will attempt to establish a connection to an endpoint of one of the partici-
pating object adapters, and automatically try others until a connection is success-
fully established or all attempts have failed. Similarly, an outstanding request will, 
when permitted, automatically fail over to another object adapter of the replica 
group upon connection failure. The set of endpoints actually used by the client 
during binding is determined by the locator's configuration policies.

Defining a value for this property has no effect unless name.AdapterId is also 
defined. Furthermore, the locator registry may require replica groups to be defined 
in advance (see IceGrid.Registry.DynamicRegistration), otherwise Ice.NotReg-
isteredException is raised upon adapter activation. Regardless of whether an 
object adapter is replicated, it can always be addressed individually in an indirect 
proxy if it defines a value for name.AdapterId.
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name.Endpoints

Synopsis

name.Endpoints=endpoints

Description

Sets the endpoints for the object adapter name to endpoints. These endpoints 
specify the network interfaces on which the object adapter receives requests. 
Proxies created by the object adapter contain these endpoints, unless the 
name.PublishedEndpoints property is also specified.

name.PublishedEndpoints

Synopsis

name.PublishedEndpoints=endpoints

Description

When creating a proxy, the object adapter name normally includes the endpoints 
defined by name.Endpoints. If name.PublishedEndpoints is defined, the object 
adapter uses these endpoints instead. This is useful in many situations, such as 
when a server resides behind a port-forwarding firewall, in which case the object 
adapter's public endpoints must specify the address and port of the firewall.

name.Locator

Synopsis

name.Locator=locator

Description

Specifies a locator for the object adapter with the name name. The value is a 
stringified proxy to the Ice locator interface.
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name.RegisterProcess

Synopsis

name.RegisterProcess=num

Description

If num is set to a value larger than zero, the object adapter with the name name 
registers the server with the locator registry. Registration occurs upon the object 
adapter's initial activation, during which the object adapter creates a servant 
implementing the Ice::Process interface, adds the servant using a UUID, and 
registers its proxy with the locator registry using the value of the Ice.ServerId 
property for the server id. The servant implements the shutdown operation by 
invoking shutdown on the object adapter's communicator. 

It is important for a server to be registered with the locator registry so that 
services such as IceGrid can request a graceful shutdown when necessary. If a 
server is not registered, then platform-specific techniques are used to request a 
shutdown, and these techniques are not always effective (especially on Windows 
platforms). 
Only one object adapter in a server should register with a locator registry. 
The Ice::Process servant represents a potential target for denial-of-service 
attacks. The object adapter uses a UUID to make the proxy more difficult to guess, 
but the object adapter should be configured with secure endpoints if the server 
operates in a potentially hostile environment. Alternatively, a dedicated object 
adapter can be created specifically to provide a restricted access point for services 
such as IceGrid.

name.Router

Synopsis

name.Router=router

Description

Specifies a router for the object adapter with the name name. The value is a string-
ified proxy to the Ice router control interface. Defining a router allows the object 
adapter to receive callbacks from the router over outgoing connections from this 
process to the router, thereby avoiding the need for the router to establish a 
connection back to the object adapter. 
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A router can only be assigned to one object adapter. Specifying the same router 
for more than one object adapter results in undefined behavior. The default value 
is no router. 

name.ThreadPool.Size

Synopsis

name.ThreadPool.Size=num

Description

A communicator creates a default server thread pool that dispatches requests to its 
object adapters. An object adapter can also be configured with its own thread pool. 
This is useful in avoiding deadlocks due to thread starvation by ensuring that a 
minimum number of threads is available for dispatching requests to certain Ice 
objects.

num is the initial and also minimum number of threads in the thread pool. The 
default value is zero, meaning that an object adapter by default uses the communi-
cator's server thread pool. See Ice.ThreadPool.Server.Size for more information.

name.ThreadPool.SizeMax

Synopsis

name.ThreadPool.SizeMax=num

Description

num is the maximum number of threads for the thread pool. Thread pools in Ice 
can grow and shrink dynamically, based on an average load factor. This thread 
pool will not grow larger than num, and does not shrink to a number of threads 
smaller than the value specified by name.ThreadPool.Size.

The default value is the value of name.ThreadPool.Size, meaning that by 
default, this thread pool does not grow dynamically.

name.ThreadPool.SizeWarn

Synopsis

name.ThreadPool.SizeWarn=num
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Description

Whenever num threads are active in a thread pool, a "low on threads" warning is 
printed. The default value for is 80% of the value specified by name.Thread-
Pool.SizeMax.

name.ThreadPool.StackSize

Synopsis

name.ThreadPool.StackSize=num

Description

num is the stack size (in bytes) of threads in the thread pool. The default value is 
zero, meaning the operating system's default is used.

Ice.PrintAdapterReady

Synopsis

Ice.PrintAdapterReady=num

Description

If num is set to a value larger than zero, an object adapter prints "adapter_name 
ready" on standard output after initialization is complete. This is useful for scripts 
that need to wait until an object adapter is ready to be used.

C.5 Ice Plugin Properties

Ice.Plugin.name

Synopsis

Ice.Plugin.name=entry_point [args]

Description

Defines a plugin to be installed during communicator initialization.
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Platform Notes

C++

The value of entry_point has the form basename[,version]:function. The 
basename and optional version components are used to construct the name of 
a DLL or shared library. If no version is supplied, the Ice version is used. The 
function component is the name of a function with C linkage. For example, 
the entry point MyPlugin,3.1:create would imply a shared library name of 
libMyPlugin.so.3.1 on Unix and MyPlugin31.dll on Windows. Further-
more, if Ice is built on Windows with debugging, a d is automatically 
appended to the version (e.g., MyPlugin31d.dll).

Java

The value of entry_point is the name of a class that must implement the 
Ice.PluginFactory interface. Any arguments that follow the class name are 
passed to the create method.

.NET

The value of entry_point has the form assembly:class. The assembly can be 
the full assembly name, such as myplugin, Version=0.0.0.0, 
Culture=neutral, or an assembly DLL name such as myplugin.dll. The 
specified class must implement the Ice.PluginFactory interface. Any argu-
ments that follow the class name are passed to the create method.

Ice.PluginLoadOrder

Synopsis

Ice.PluginLoadOrder=names

Description

Determines the order in which plugins are loaded. The Ice run time loads the 
plugins in the order they appear in names, where each plugin name is separated by 
a comma or whitespace. Any plugins not mentioned in names are loaded after-
ward, in an undefined order.
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Ice.InitPlugins

Synopsis

Ice.InitPlugins=num

Description

If num is a value greater than zero, the Ice run time automatically initializes the 
plugins it has loaded. The order in which plugins are loaded and initialized is 
determined by Ice.PluginLoadOrder. An application may need to set this property 
to zero in order to interact directly with a plugin after it has been loaded but before 
it is initialized. In this case, the application must invoke initializePlugins on 
the plugin manager to complete the initialization process. If not defined, the 
default value is 1.

C.6 Ice Thread Pool Properties

Ice.ThreadPool.Client.Size, Ice.ThreadPool.Server.Size

Synopsis

Ice.ThreadPool.Client.Size=num Ice.ThreadPool.Server.Size=num

Description

A communicator creates two thread pools: the client thread pool dispatches AMI 
callbacks and incoming requests on bidirectional connections, and the server 
thread pool dispatches requests to object adapters. num is the initial and also 
minimum number of threads in the thread pool. The default value is one for both 
properties.

An object adapter can also be configured with its own thread pool. See the 
object adapter properties for more information.

Multiple threads for the client thread pool are only required for nested AMI invo-
cations. If AMI is not used, or AMI calls are not nested (i.e., AMI callbacks do not 
invoke any other operations on Ice objects), then there is no need to set the number 
of threads in the client thread pool to a value larger than one.
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Ice.ThreadPool.Client.SizeMax, Ice.ThreadPool.Server.SizeMax

Synopsis

Ice.ThreadPool.Client.SizeMax=num 
Ice.ThreadPool.Server.SizeMax=num

Description

num is the maximum number of threads for the thread pool. Thread pools in Ice 
can grow and shrink dynamically, based on an average load factor. Thread pools 
do not grow larger than the number specified by SizeMax, and they do not shrink 
to a number of threads smaller than the value specified by Size.

The default value for SizeMax is the value of Size, meaning that by default, 
thread pools do not grow dynamically.

Ice.ThreadPool.Client.SizeWarn, 
Ice.ThreadPool.Server.SizeWarn

Synopsis

Ice.ThreadPool.Client.SizeWarn=num 
Ice.ThreadPool.Server.SizeWarn=num

Description

Whenever num threads are active in a thread pool, a "low on threads" warning is 
printed. The default value for SizeWarn is 80% of the value specified by SizeMax.

Ice.ThreadPool.Client.StackSize, 
Ice.ThreadPool.Server.StackSize

Synopsis

Ice.ThreadPool.Client.StackSize=num 
Ice.ThreadPool.Server.StackSize=num

Description

num is the stack size (in bytes) of threads in the thread pool. The default value is 
zero meaning the operating system's default is used.



 1667

C.7 Ice Default and Override Properties

Ice.Default.Protocol

Synopsis

Ice.Default.Protocol=protocol

Description

Sets the protocol that is being used if an endpoint uses default as the protocol 
specification. The default value is tcp.

Ice.Default.Host

Synopsis

Ice.Default.Host=host

Description

If an endpoint is specified without a host name (i.e., without a -h host option), 
the host value from this property is used instead. The property has no default 
value.

Ice.Default.Router

Synopsis

Ice.Default.Router=router

Description

Specifies the default router for all proxies. The value is a stringified proxy to the 
Glacier2 router control interface. The default router can be overridden on a proxy 
using the ice_router() operation. The default value is no router.
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Ice.Default.Locator

Synopsis

Ice.Default.Locator=locator

Description

Specifies a default locator for all proxies and object adapters. The value is a 
stringified proxy to the IceGrid locator interface. The default locator can be over-
ridden on a proxy using the ice_locator() operation. The default value is no 
locator.
The default identity of the IceGrid locator object is IceGrid/Locator (see 
IceGrid.InstanceName). It is listening on the IceGrid client endpoints. For 
example, if IceGrid.Registry.Client.Endpoints is set to tcp -p 12000 -h 
localhost, the stringified proxy for the IceGrid locator is IceGrid/Locator:tcp 
-p 12000 -h localhost.

Ice.Default.LocatorCacheTimeout

Synopsis

Ice.Default.LocatorCacheTimeout=num

Description

Specifies the default locator cache timeout for indirect proxies. If num is set to a 
value larger than zero, locator cache entries older than num seconds will be 
ignored. If set to 0, the locator cache won't be used. If set to -1, locator cache 
entries won't expire.

Ice.Default.CollocationOptmization

Synopsis

Ice.Default.CollocationOptmization=num

Description

Specifies whether proxy invocations use collocation optimization by default. 
When enabled, proxy invocations on a collocated servant (i.e., a servant whose 
object adapter was created by the same communicator as the proxy) are made as a 
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direct method call if possible. Collocated invocations are more efficient because 
they avoid the overhead of marshaling parameters and sending requests over the 
network.

Collocation optimization is not supported for asynchronous or Dynamic Ice 
invocations, nor is it supported in Ice for Python.

If not specified, the default value is 1. Set the property to 0 to disable colloca-
tion optimization by default.

Ice.Override.Timeout

Synopsis

Ice.Override.Timeout=num

Description

If set, this property overrides timeout settings in all endpoints. num is the timeout 
value in milliseconds, or -1 for no timeout.

Ice.Override.ConnectTimeout

Synopsis

Ice.Override.ConnectTimeout=num

Description

This property overrides timeout settings used to establish connections. num is the 
timeout value in milliseconds, or -1 for no timeout. If this property is not set, then 
Ice.Override.Timeout is used.

Ice.Override.Compress

Synopsis

Ice.Override.Compress=num

Description

If set, this property overrides compression settings in all proxies. If num is set to a 
value larger than zero, compression is enabled. If zero, compression is disabled.
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The setting of this property is ignored in the server role.

Note that, if a client sets Ice.Override.Compress=1 and sends a compressed 
request to a server that does not support compression, the server will close the 
connection and the client will receive ConnectionLostException.

If a client does not support compression and Ice.Override.Compress=1, the 
setting is ignored and a warning message is printed on stderr.

Regardless of the setting of this property, requests smaller than 100 bytes are 
never compressed.

C.8 Ice Miscellaneous Properties

Ice.ThreadPerConnection

Synopsis

Ice.ThreadPerConnection=num

Description

If num is set to a value larger than zero, the Ice run time uses a thread-per-connec-
tion concurrency model instead of the default thread pool. As its name implies, 
this concurrency model creates a new thread for each outgoing and incoming 
connection. Unlike the thread pool concurrency model, thread-per-connection 
supports at most one level of nested callbacks.

Ice.GC.Interval

Synopsis

Ice.GC.Interval=num

Description

This property determines the frequency with which the class garbage collector 
runs. If the interval is set to zero (the default), no collector thread is created. 
Otherwise, the collector thread runs every num seconds.
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Ice.RetryIntervals

Synopsis

Ice.RetryIntervals=num [num ...]

Description

This property defines the number of times an operation is re-tried and the delay 
between each retry. For example, if the property is set to 0 100 500, the operation 
is re-tried 3 times: immediately upon the first failure, again after waiting 100 (ms) 
upon the second failure, and again after waiting 500 (ms) upon the third failure. 
The default value is to retry once immediately (0). If set to -1, no retry occurs.

Ice.MessageSizeMax

Synopsis

Ice.MessageSizeMax=num

Description

This property controls the maximum size (in kilobytes) of a protocol message that 
is accepted or sent by the Ice run time. The size includes the size of the Ice 
protocol header. Messages larger than this size cause a [MemoryLimitException]. 
The default size is 1024 (1 Megabyte). Settings with a value less than 1 are 
ignored.

This property adjusts the value of Ice.UDP.RcvSize and Ice.UDP.SndSize, 
that is, if Ice.UDP.RcvSize or Ice.UDP.SndSize are larger than Ice.Message-
SizeMax * 1024 + 28, they are adjusted to Ice.MessageSizeMax * 1024 + 28.

Ice.ChangeUser

Synopsis

Ice.ChangeUser=user

Description

If set, Ice changes the user and group id to the respective ids of user in /etc/
passwd. This only works if the Ice application is executed by the super-user. (Unix 
only.)
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Ice.ACM.Client

Synopsis

Ice.ACM.Client=num

Description

If num is set to a value larger than zero, client-side Active Connection Manage-
ment (ACM) is enabled. This means that connections are automatically closed by 
the client after they have been idle for num seconds. This is transparent to applica-
tions because connections closed by ACM are automatically reestablished if they 
are needed again. The default value is 60, meaning that idle connections are auto-
matically closed after one minute.

Ice.ACM.Server

Synopsis

Ice.ACM.Server=num

Description

This property is the server-side equivalent of Ice.ACM.Client. If num is set to a 
value larger than zero, server-side Active Connection Management (ACM) is 
enabled, in which the server automatically closes an incoming connection after it 
has been idle for num seconds. The default value is 0, meaning that server-side 
ACM is disabled by default.
Server-side ACM can cause incoming oneway requests to be silently discarded. 
See the Ice manual for more information.

Ice.MonitorConnections

Synopsis

Ice.MonitorConnections=num

Description

If num is set to a value larger than zero, Ice starts a thread that monitors connec-
tions. Approximately each num seconds, this thread shuts down idle connections 
and enforces AMI timeouts. The default value is the smaller of Ice.ACM.Client or 
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Ice.ACM.Server. If neither property is defined with a non-zero value, the moni-
toring thread is disabled.

It is important to understand the relationship between this thread and the timeouts 
it is responsible for enforcing. It is legal to define Ice.ACM.Client or 
Ice.ACM.Server with a value smaller than num, but idle connections will only be 
closed every num seconds. Similarly, AMI timeouts cannot happen faster than 
num seconds.

Ice.PrintProcessId

Synopsis

Ice.PrintProcessId=num

Description

If num is set to a value larger than zero, the process ID is printed on standard 
output upon startup.

Ice.ProgramName

Synopsis

Ice.ProgramName=name

Description

name is the program name, which is set automatically from argv[0] (C++) and 
from AppDomain.CurrentDomain.FriendlyName (C#) during initialization. (For 
Java, Ice.ProgramName is initialized to the empty string.) For all languages, the 
default name can be overridden by setting this property.

Ice.ServerId

Synopsis

Ice.ServerId=id
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Description

The value id is used as the server id when an object adapter registers the server 
with the locator registry. Refer to the description of the object adapter property 
adapter.RegisterProcess for more information.

Ice.ServerIdleTime

Synopsis

Ice.ServerIdleTime=num

Description

If num is set to a value larger than zero, Ice automatically calls Communi-
cator::shutdown once the Communicator has been idle for num seconds. This 
shuts down the Communicator's server side and causes all threads waiting in 
Communicator::waitForShutdown to return. After that, a server will typically do 
some cleanup work before exiting. The default value is zero, meaning that the 
server will not shut down automatically.

Ice.StdErr

Synopsis

Ice.StdErr=filename

Description

If filename is not empty, the standard error stream of this process is redirected to 
this file, in append mode. This property is checked only for the first Communi-
cator created in a given process.

Ice.StdOut

Synopsis

Ice.StdOut=filename
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Description

If filename is not empty, the standard output stream of this process is redirected to 
this file, in append mode. This property is checked only for the first Communi-
cator created in a given process.

Ice.UseEventLog

Synopsis

Ice.UseEventLog=num

Description

If num is set to a value larger than zero, a special logger is installed that logs to the 
Windows Event Log instead of standard error. The event source name is the value 
of Ice.ProgramName. (Windows 2000/XP only.)

Ice.UseSyslog

Synopsis

Ice.UseSyslog=num

Description

If num is set to a value larger than zero, a special logger is installed that logs to the 
syslog facility instead of standard error. The identifier for syslog is the value of 
Ice.ProgramName. (Unix only.)

Ice.Logger.Timestamp

Synopsis

Ice.Logger.Timestamp=num

Description

If num is set to a value larger than zero, the output of the default logger includes 
timestamps.
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Ice.NullHandleAbort

Synopsis

Ice.NullHandleAbort=num

Description

If num is set to a value larger than zero, invoking an operation using a null smart 
pointer (i.e., a handle) causes the program to abort immediately instead of raising 
IceUtil::NullHandleException. (C++ only.)

Ice.Nohup

Synopsis

Ice.Nohup=num

Description

If num is set to a value larger than zero, the C++ classes Ice::Application and 
Ice::Service ignore SIGHUP (for UNIX) and CTRL_LOGOFF_EVENT (for 
Windows). As a result, an application that sets Ice.Nohup continues to run if the 
user that started the application logs off. The default value for Ice::Application 
is 0, and the default value for Ice::Service is 1 (C++ only.)

Ice.UDP.RcvSize, Ice.UDP.SndSize

Synopsis

Ice.UDP.RcvSize=num Ice.UDP.SndSize=num

Description

These properties set the UDP receive and send buffer sizes to the specified value 
in bytes. Ice messages larger than num - 28 bytes cause a DatagramLimitExcep-
tion. The default value depends on the configuration of the local UDP stack. 
(Common default values are 65535 and 8192 bytes.)

The OS may impose lower and upper limits on the receive and send buffer 
sizes or otherwise adjust the buffer sizes. If a limit is requested that is lower than 
the OS-imposed minimum, the value is silently adjusted to the OS-imposed 
minimum. If a limit is requested that is larger than the OS-imposed maximum, the 
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value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning 
showing the requested size and the adjusted size.

Settings of these properties less than 28 are ignored.
Note that, on many operating systems, it is possible to set buffer sizes greater 

than 65535. Such settings do not change the hard limit of 65507 bytes for the 
payload of a UDP packet, but merely affect how much data can be buffered by the 
kernel.

Settings less than 65535 limit the size of Ice datagrams as well as adjust the 
kernel buffer sizes.

If Ice.MessageSizeMax is set and Ice.MessageSizeMax * 1024 + 28 is 
smaller than the UDP receive or send buffer size, the corresponding UDP buffer 
size is reduced to Ice.MessageSizeMax * 1024 + 28.

Ice.Package.module

Synopsis

Ice.Package.module=package

Description

Associates a top-level Slice module with a Java package. If global metadata is 
used to enclose generated Java classes in a user-defined package, the Ice run time 
must be configured in order to successfully unmarshal exceptions and concrete 
class types. If all top-level modules are generated into the same user-defined 
package, it is easier to use Ice.Default.Package instead.

Ice.Default.Package

Synopsis

Ice.Default.Package=package

Description

Specifies a default package to use if other attempts by the Ice run time to dynami-
cally load a generated class have failed. If global metadata is used to enclose 
generated Java classes in a user-defined package, the Ice run time must be config-
ured in order to successfully unmarshal exceptions and concrete class types. Also 
see Ice.Package.module.
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Ice.Compression.Level

Synopsis

Ice.Compression.Level=num

Description

Specifies the bzip2 compression level. Legal values for num are 1 to 9, where 1 
represents the fastest compression and 9 represents the best compression. Note 
that higher levels cause the bzip2 algorithm to devote more resources to the 
compression effort, and may not result in a significant improvement over lower 
levels. If not specified, the default value is 1.

C.9 IceSSL Properties

IceSSL.Alias

Synopsis

IceSSL.Alias=alias (Java)

Description

Selects a particular certificate from the keystore specified by IceSSL.Keystore. 
The certificate identified by alias is presented to the peer upon request during 
authentication.

IceSSL.CertAuthDir

Synopsis

IceSSL.CertAuthDir=path (C++)

Description

Specifies the directory containing the certificates of trusted Certificate Authori-
ties. The directory must be prepared in advance using the OpenSSL utility 
c_rehash. The pathname may be specified relative to the default directory defined 
by IceSSL.DefaultDir.
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IceSSL.CertAuthFile

Synopsis

IceSSL.CertAuthFile=file (C++)

Description

Specifies a file containing the certificate of a trusted Certificate Authority. The 
filename may be specified relative to the default directory defined by 
IceSSL.DefaultDir. The certificate must be encoded using the PEM format.

IceSSL.CertFile

Synopsis

IceSSL.CertFile=file (C++, .NET)

Description

Specifies a file that contains the program's certificate, and may also contain the 
corresponding private key. The filename may be specified relative to the default 
directory defined by IceSSL.DefaultDir. 

Platform Notes

C++

The private key is optional; if not present, the file containing the private key 
must be identified by IceSSL.KeyFile. If a password is required, OpenSSL 
will prompt the user at the terminal unless the application has installed a pass-
word handler or supplied the password using IceSSL.Password. The certifi-
cate must be encoded using the PEM format.

.NET

The file must use the PFX (PKCS#12) format and contain the certificate and 
its private key. The password for the file must be supplied using IceSSL.Pass-
word.
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IceSSL.CheckCertName

Synopsis

IceSSL.CheckCertName=num

Description

If num is a value greater than zero, IceSSL compares the server's hostname as 
specified in the proxy against the DNS or IP address fields of the server's certifi-
cate. If no match is found, IceSSL aborts the connection attempt and raises an 
exception. If not defined, the default value is zero.

IceSSL.CheckCRL

Synopsis

IceSSL.CheckCRL=num (.NET)

Description

If num is a value greater than zero, IceSSL checks the certificate revocation list to 
determine if the peer's certificate has been revoked. If so, IceSSL aborts the 
connection and raises an exception.

IceSSL.Ciphers

Synopsis

IceSSL.Ciphers=ciphers (C++, Java)

Description

Specifies the ciphersuites that IceSSL is allowed to negotiate. A ciphersuite is a 
set of algorithms that satisfies the four requirements for establishing a secure 
connection: signing and authentication, key exchange, secure hashing, and 
encryption. Some algorithms satisfy more than one requirement, and there are 
many possible combinations. 
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Platform Notes

C++

The value of this attribute is given directly to the OpenSSL library and is 
dependent on how OpenSSL was compiled. You can obtain a complete list of 
the supported cipher suites using the command openssl ciphers. This 
command will likely generate a long list. To simplify the selection process, 
OpenSSL supports several classes of ciphers:  Classes and ciphers can be 

excluded by prefixing them with an exclamation point. The special keyword 
@STRENGTH sorts the cipher list in order of their strength, so that SSL gives 
preference to the more secure ciphers when negotiating a ciphersuite. The 
@STRENGTH keyword must be the last element in the list. For example, here is a 
good value for the property:

ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

This value excludes the ciphers with low bit-strength and known problems, 
and orders the remaining ciphers according to their strength. Note that no 
warning is given if an unrecognized cipher is specified.

ALL Enables all supported ciphersuites. This class should be 
used with caution, as it may enable low-security 
ciphersuites.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.
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Java

The property value is interpreted as a list of tokens delimited by whitespace. 
The plugin executes the tokens in the order of appearance in order to assemble 
the list of enabled ciphersuites. The table below describes the tokens: 

If not specified, the plugin uses the security provider's default ciphersuites. Set 
IceSSL.Trace.Security=1 to determine which ciphersuites are enabled by 
default, or to verify your ciphersuite configuration.

IceSSL.DefaultDir

Synopsis

IceSSL.DefaultDir=path

Description

Specifies the default directory in which to look for certificate, key, and keystore 
files. See the descriptions of the relevant properties for more information.

NONE Disables all ciphersuites. If specified, it must be the first 
token in the list.

ALL Enables all supported ciphersuites. If specified, it must be 
the first token in the list. This token should be used with 
caution, as it may enable low-security ciphersuites.

NAME Enables the ciphersuite matching the given name.

!NAME Disables the ciphersuite matching the given name.

(EXP) Enables ciphersuites whose names contain the regular 
expression EXP. For example, the value NONE 
(.*DH_anon.*) selects only ciphersuites that use 
anonymous Diffie-Hellman authentication.

!(EXP

)

Disables ciphersuites whose names contain the regular 
expression EXP. For example, the value ALL 
!(.*DH_anon.*) enables all ciphersuites except those that 
use anonymous Diffie-Hellman authentication.
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IceSSL.DH.bits

Synopsis

IceSSL.DH.bits=file (C++)

Description

Specifies a file containing Diffie Hellman parameters whose key length is bits, as 
shown in the following example:

IceSSL.DH.1024=dhparams1024.pem

IceSSL supplies default parameters for key lengths of 512, 1024, 2048 and 
4096 bits, which are used if no user-defined parameters of the desired key length 
are specified. The filename may be specified relative to the default directory 
defined by IceSSL.DefaultDir. The parameters must be encoded using the PEM 
format.

IceSSL.EntropyDaemon

Synopsis

IceSSL.EntropyDaemon=file (C++)

Description

Specifies a Unix domain socket for the Entropy Gathering Daemon, from which 
OpenSSL gathers entropy data to initialize its random number generator.

IceSSL.FindCert.location.name

Synopsis

IceSSL.FindCert.location.name=criteria (.NET)

Description

Queries the certificate repository for matching certificates and adds them to the 
application's collection of certificates that are used for authentication. The value 
for location must be LocalMachine or CurrentUser. The name corresponds to 
the .NET enumeration StoreName and may be one of the following values: 
AddressBook, AuthRoot, CertificateAuthority, Disallowed, My, Root, 
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TrustedPeople, TrustedPublisher. It is also possible to use an arbitrary value 
for name.

The value for criteria may be *, in which case all of the certificates in the store 
are selected. Otherwise, criteria must be one or more field:value pairs separated by 
whitespace. The valid field names are described below: 
Issuer

Matches a substring of the issuer's name.

IssuerDN

Matches the issuer's entire distinguished name.

Serial

Matches the certificate's serial number.

Subject

Matches a substring of the subject's name.

SubjectDN

Matches the subject's entire distinguished name.

SubjectKeyId

Matches the certificate's subject key identifier.

Thumbprint

Matches the certificate's thumbprint.

The field names are case-insensitive. If multiple criteria are specified, only 
certificates that match all criteria are selected. Values must be enclosed in single 
or double quotes to preserve whitespace.

Multiple occurrences of the property are allowed, but only one query is 
possible for each location/name combination. The certificates from all queries are 
combined to form the certificate collection, including a certificate loaded using 
IceSSL.CertFile.

Some sample queries are shown below: 

• IceSSL.FindCert.LocalMachine.My=issuer:verisign serial:219336

• IceSSL.FindCert.CurrentUser.Root=subject:"Joe's Certificate"

A server requires a certificate for authentication purposes, therefore IceSSL 
selects the first certificate in the accumulated collection. This is normally the 
certificate loaded via IceSSL.CertFile, if that property was defined. Otherwise, 
one of the certificates from IceSSL.FindCert is selected. Since IceSSL does not 
guarantee the order in which it evaluates IceSSL.FindCert properties, it is 
recommended that the criteria select only one certificate.
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IceSSL.ImportCert.location.name

Synopsis

IceSSL.ImportCert.location.name=file[;password] (.NET)

Description

Imports the certificate in file into the specified certificate store. The value for loca-
tion must be LocalMachine or CurrentUser. The name corresponds to the .NET 
enumeration StoreName and may be one of the following values: AddressBook, 
AuthRoot, CertificateAuthority, Disallowed, My, Root, TrustedPeople, 
TrustedPublisher. It is also possible to use an arbitrary value for name, which 
adds a new store to the repository. If you are importing a trusted CA certificate, it 
must be added to AuthRoot or Root.

The password is optional; it is only necessary if the certificate file also 
contains a private key or uses a secure storage format such as PFX.

The filename and password may be enclosed in single or double quotes if 
necessary. The filename may be specified relative to the default directory defined 
by IceSSL.DefaultDir.

Importing a certificate into LocalMachine requires administrator privileges, while 
importing into CurrentUser may cause the platform to prompt the user for confir-
mation.

IceSSL.KeyFile

Synopsis

IceSSL.KeyFile=file (C++)

Description

Specifies a file containing the private key associated with the certificate identified 
by IceSSL.CertFile. The filename may be specified relative to the default direc-
tory defined by IceSSL.DefaultDir. The key must be encoded using the PEM 
format.
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IceSSL.Keystore

Synopsis

IceSSL.Keystore=file (Java)

Description

Specifies a keystore file containing certificates and their private keys. If the 
keystore contains multiple certificates, you should specify a particular one to use 
for authentication using IceSSL.Alias. The filename may be specified relative to 
the default directory defined by IceSSL.DefaultDir. The format of the file is deter-
mined by IceSSL.KeystoreType.

If this property is not defined, the application will not be able to supply a 
certificate during SSL handshaking. As a result, the application may not be able to 
negotiate a secure connection, or might be required to use an anonymous cipher-
suite.

IceSSL.KeystorePassword

Synopsis

IceSSL.KeystorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the keystore defined by 
IceSSL.Keystore. The integrity check is skipped if this property is not defined.
It is a security risk to use a plain-text password in a configuration file.

IceSSL.KeystoreType

Synopsis

IceSSL.KeystoreType=type (Java)

Description

Specifies the format of the keystore file defined by IceSSL.Keystore. Legal values 
are JKS and PKCS12. If not defined, the JVM's default value is used (normally 
JKS).
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IceSSL.Password

Synopsis

IceSSL.Password=password

Description

Specifies the password necessary to decrypt the private key. 

Platform Notes

C++

This property supplies the password that was used to secure the private key 
contained in the file defined by IceSSL.CertFile or IceSSL.KeyFile. If this 
property is not defined and you have not installed a password callback object, 
OpenSSL will prompt the user for a password if one is necessary.

Java

This property supplies the password that was used to secure the private key 
contained in the keystore defined by IceSSL.Keystore. All of the keys in the 
keystore must use the same password.

.NET

This property supplies the password that was used to secure the file defined by 
IceSSL.CertFile.

It is a security risk to use a plain-text password in a configuration file.

IceSSL.PasswordRetryMax

Synopsis

IceSSL.PasswordRetryMax=num (C++)

Description

Specifies the number of attempts IceSSL should allow the user to make when 
entering a password. If not defined, the default value is 3.
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IceSSL.Protocols

Synopsis

IceSSL.Protocols=list

Description

Specifies the protocols to allow during SSL handshaking. Legal values are SSL3 
and TLS1. You may also specify both values, separate by commas or whitespace. If 
this property is not defined, the platform's default is used.

IceSSL.Random

Synopsis

IceSSL.Random=filelist (C++, Java)

Description

Specifies one or more files containing data to use when seeding the random 
number generator. The filenames should be separated using the platform's path 
separator (a colon on Unix and a semicolon on Windows). The filenames may be 
specified relative to the default directory defined by IceSSL.DefaultDir.

IceSSL.Trace.Security

Synopsis

IceSSL.Trace.Security=num

Description

The SSL plugin trace level: 

0 No security tracing. (default)

1 Display diagnostic information about SSL connections.
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IceSSL.TrustOnly

Synopsis

IceSSL.TrustOnly=ENTRY[;ENTRY;...]

Description

Identifies trusted peers. This family of properties provides an additional level of 
authentication by restricting connections to trusted peers. After the SSL engine 
has successfully completed its authentication process, IceSSL compares the peer's 
distinguished name (DN) with each ENTRY in the property value and allows the 
connection to succeed if the peer's DN matches any of the entries. ENTRY must 
contain only those relative distinguished name (RDN) components that a peer is 
required to have in its DN. IceSSL rejects a connection if no match is found for 
the peer's DN, or if the peer did not supply a certificate.

For example, you can limit access to people in the sales and marketing depart-
ments using the following configuration:

IceSSL.TrustOnly=O="Acme, Inc.",OU="Sales"; O="Acme, 

Inc.",OU="Marketing"

The peer's DN must match one of these entries in order to establish a connec-
tion.

An entry may contain as many RDN components as you wish, depending on 
how narrowly you need to restrict access. The order of the RDN components is 
not important.

To specify more than one entry, separate them using semicolons. IceSSL 
expects each entry to be formatted according to the rules defined by RFC2253.

While testing your trust configuration, you may find it helpful to set the 
IceSSL.Trace.Security property to a nonzero value, which causes IceSSL to 
display the DN of each peer during connection establishment.

This property affects incoming and outgoing connections. IceSSL also 
supports similar properties that affect only incoming connections or only outgoing 
connections.

IceSSL.TrustOnly.Client

Synopsis

IceSSL.TrustOnly.Client=ENTRY[;ENTRY;...]
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Description

Identifies trusted peers for outgoing ("client") connections. For a connection to 
succeed, the peer's distinguished name (DN) must match an entry in this property 
or in IceSSL.TrustOnly. See the description of IceSSL.TrustOnly for more infor-
mation.

IceSSL.TrustOnly.Server

Synopsis

IceSSL.TrustOnly.Server=ENTRY[;ENTRY;...]

Description

Identifies trusted peers for incoming ("server") connections. For a connection to 
succeed, the peer's distinguished name (DN) must match an entry in this property 
or in IceSSL.TrustOnly. See the description of IceSSL.TrustOnly for more infor-
mation. To configure trusted peers for a particular object adapter, use 
IceSSL.TrustOnly.Server.AdapterName.

IceSSL.TrustOnly.Server.AdapterName

Synopsis

IceSSL.TrustOnly.Server.AdapterName=ENTRY[;ENTRY;...]

Description

Identifies trusted peers for incoming ("server") connections to the object adapter 
AdapterName. For a connection to succeed, the peer's distinguished name (DN) 
must match an entry in this property, an entry in IceSSL.TrustOnly.Server, or an 
entry in IceSSL.TrustOnly. See the description of IceSSL.TrustOnly for more 
information.

IceSSL.Truststore

Synopsis

IceSSL.Truststore=file (Java)
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Description

Specifies a keystore file containing the certificates of trusted certificate authori-
ties. The filename may be specified relative to the default directory defined by 
IceSSL.DefaultDir. The format of the file is determined by IceSSL.Truststore-
Type.

If this property is not defined, the application will not be able to authenticate 
the peer's certificate during SSL handshaking. As a result, the application may not 
be able to negotiate a secure connection, or might be required to use an anony-
mous ciphersuite.

IceSSL.TruststorePassword

Synopsis

IceSSL.TruststorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the keystore defined by 
IceSSL.Truststore. The integrity check is skipped if this property is not defined.
It is a security risk to use a plain-text password in a configuration file.

IceSSL.TruststoreType

Synopsis

IceSSL.TruststoreType=type (Java)

Description

Specifies the format of the keystore file defined by IceSSL.Truststore. Legal 
values are JKS and PKCS12. If not defined, the default value is JKS.

IceSSL.VerifyDepthMax

Synopsis

IceSSL.VerifyDepthMax=num
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Description

Specifies the maximum depth of a trusted peer's certificate chain, including the 
peer's certificate. A value of zero accepts chains of any length. If not defined, the 
default value is 2.

IceSSL.VerifyPeer

Synopsis

IceSSL.VerifyPeer=num

Description

Specifies the verification requirements to use during SSL handshaking. The legal 
values are shown in the table below:  If this property is not defined, the default 

value is 2. 

0 For an outgoing connection, the client verifies the server's 
certificate (if an anonymous cipher is not used) but does 
not abort the connection if verification fails. For an 
incoming connection, the server does not request a 
certificate from the client.

1 For an outgoing connection, the client verifies the server's 
certificate and aborts the connection if verification fails. 
For an incoming connection, the server requests a 
certificate from the client and verifies it if one is provided, 
aborting the connection if verification fails.

2 For an outgoing connection, the semantics are the same as 
for value 1. For an incoming connection, the server 
requires a certificate from the client and aborts the 
connection if verification fails.
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Platform Notes

.NET

This property has no effect on outgoing connections, since .NET always uses 
the semantics of value 2. For an incoming connection, value 0 has the same 
semantics as value 1.

C.10 IceBox Properties

IceBox.InstanceName

Synopsis

IceBox.InstanceName=name

Description

Specifies an alternate identity category for the IceBox service manager object. If 
defined, the identity of the object becomes name/ServiceManager. If not speci-
fied, the default identity category is IceBox.

IceBox.ServiceManager.AdapterId

Synopsis

IceBox.ServiceManager.AdapterId=id

Description

Defines the value of the property adapter.AdapterId for the object adapter named 
IceBox.ServiceManager.

IceBox.ServiceManager.ReplicaGroupId

Synopsis

IceBox.ServiceManager.ReplicaGroupId=id
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Description

Defines the value of the property adapter.ReplicaGroupId for the object adapter 
named IceBox.ServiceManager.

IceBox.ServiceManager.Endpoints

Synopsis

IceBox.ServiceManager.Endpoints=endpoints

Description

Defines the endpoints of the IceBox service manager interface. The service 
manager endpoints must be accessible to the IceBox administration tool to shut-
down the IceBox server.

IceBox.ServiceManager.PublishedEndpoints

Synopsis

IceBox.ServiceManager.PublishedEndpoints=endpoints

Description

Defines the published endpoints of the IceBox service manager interface. The 
service manager endpoints must be accessible to the IceBox administration tool to 
shutdown the IceBox server. Refer to the description of the object adapter prop-
erty adapter.PublishedEndpoints for more information.

IceBox.ServiceManager.RegisterProcess

Synopsis

IceBox.ServiceManager.RegisterProcess=num

Description

Defines the value of the property adapter.RegisterProcess for the object adapter 
named IceBox.ServiceManager.



 1695

IceBox.ServiceManager.ThreadPool.Size

Synopsis

IceBox.ServiceManager.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceBox.ServiceManager.

IceBox.ServiceManager.ThreadPool.SizeMax

Synopsis

IceBox.ServiceManager.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceBox.ServiceManager.

IceBox.ServiceManager.ThreadPool.SizeWarn

Synopsis

IceBox.ServiceManager.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceBox.ServiceManager.

IceBox.LoadOrder

Synopsis

IceBox.LoadOrder=names

Description

Determines the order in which services are loaded. The service manager loads the 
services in the order they appear in names, where each service name is separated 
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by a comma or whitespace. Any services not mentioned in names are loaded after-
ward, in an undefined order.

IceBox.PrintServicesReady

Synopsis

IceBox.PrintServicesReady=token

Description

If this property is set to a value greater than zero, the service manager prints 
"token ready" on standard output once initialization of all the services is complete. 
This is useful for scripts that wish to wait until all services are ready to be used.

IceBox.Service.name

Synopsis

IceBox.Service.name=entry_point[,version] [args]

Description

Defines a service to be loaded during IceBox initialization.
In C++, entry_point has the form basename[,version]:symbol. The base-

name and optional version components are used to construct the name of a DLL 
or shared library. If no version is supplied, the version is the empty string. The 
symbol component is the name of a function with C linkage. For example, the 
entry point icestormservice,31:createIceStorm implies a shared library 
name of libIceStormService.so.31 on Unix and IceStormService31.dll on 
Windows. Furthermore, if IceBox is built on Windows with debugging, a d is 
automatically appended to the version (e.g., IceStormService31d.dll).

In Java, entry_point is the name of the service implementation class.

IceBox.UseSharedCommunicator.name

Synopsis

IceBox.UseSharedCommunicator.name=num
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Description

If num is set to a value larger than zero, the service manager supplies the service 
with the name name of a communicator that might be shared by other services.

C.11 IceGrid Properties

IceGrid.InstanceName

Synopsis

IceGrid.InstanceName=name

Description

Specifies an alternate identity category for the IceGrid objects. If defined, the 
identities of the IceGrid objects become 

• name/Admin

• name/AdminSessionManager

• name/AdminSSLSessionManager

• name/NullPermissionsVerifier

• name/Locator

• name/Query

• name/Registry

• name/RegistryUserAccountMapper

• name/SessionManager

• name/SSLSessionManager

 If not specified, the default identity category is IceGrid.

IceGrid.Registry.Admin.Endpoints

Synopsis

IceGrid.Registry.Admin.Endpoints=endpoints
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Description

Defines the optional administrative endpoints of the IceGrid admin interface. The 
administrative endpoints must be accessible to clients which are using the IceGrid 
administrative interface, such as the IceGrid administrative tools. It should also be 
accessible to Glacier2 routers using the IceGrid client or admin session manager 
objects.

Allowing access to the IceGrid admin interface is a security risk! If this property 
is not defined, the admin interface is disabled.

IceGrid.Registry.Admin.PublishedEndpoints

Synopsis

IceGrid.Registry.Admin.PublishedEndpoints=endpoints

Description

Defines the optional administrative published endpoints of the IceGrid admin 
interface. The administrative endpoints must be accessible to clients which are 
using the IceGrid administrative interface, such as the IceGrid administrative tool. 
It should also be accessible to Glacier2 routers using the IceGrid client or admin 
session manager objects. Refer to the description of the object adapter property 
adapter.PublishedEndpoints for more information.

Allowing access to the IceGrid admin interface is a security risk!

IceGrid.Registry.Admin.ThreadPool.Size

Synopsis

IceGrid.Registry.Admin.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceGrid.Registry.Admin.
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IceGrid.Registry.Admin.ThreadPool.SizeMax

Synopsis

IceGrid.Registry.Admin.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceGrid.Registry.Admin.

IceGrid.Registry.Admin.ThreadPool.SizeWarn

Synopsis

IceGrid.Registry.Admin.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceGrid.Registry.Admin.

IceGrid.Registry.AdminCryptPasswords

Synopsis

IceGrid.Registry.AdminCryptPasswords=file

Description

Specifies the filename of an IceGrid registry access control list for admin clients. 
Each line of the file must contain a username and a password, separated by 
whitespace. The password must be a 13-character, crypt-encoded string. If this 
property is not defined, the default value is admin-passwords. This property is 
ignored if IceGrid.Registry.AdminPermissionsVerifier is defined.

IceGrid.Registry.AdminPermissionsVerifier

Synopsis

IceGrid.Registry.AdminPermissionsVerifier=proxy
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Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface. The IceGrid registry invokes this proxy to validate each new 
admin session created by a client with the IceGrid::Registry interface.

IceGrid.Registry.AdminSSLPermissionsVerifier

Synopsis

IceGrid.Registry.AdminSSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface. The IceGrid registry invokes this proxy to validate each 
new admin session created by a client from a secure connection with the 
IceGrid::Registry interface.

IceGrid.Registry.Client.Endpoints

Synopsis

IceGrid.Registry.Client.Endpoints=endpoints

Description

Defines the endpoints of the IceGrid client interface. The client endpoints must be 
accessible to Ice clients that are using IceGrid to locate objects (see 
Ice.Default.Locator). This property must be defined.

IceGrid.Registry.Client.PublishedEndpoints

Synopsis

IceGrid.Registry.Client.PublishedEndpoints=endpoints

Description

Defines the published endpoints of the IceGrid client interface. The client 
endpoints must be accessible to Ice clients that are using IceGrid to locate objects 
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(see Ice.Default.Locator). Refer to the description of the object adapter property 
adapter.PublishedEndpoints for more information.

IceGrid.Registry.Client.ThreadPool.Size

Synopsis

IceGrid.Registry.Client.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceGrid.Registry.Client.

IceGrid.Registry.Client.ThreadPool.SizeMax

Synopsis

IceGrid.Registry.Client.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceGrid.Registry.Client.

IceGrid.Registry.Client.ThreadPool.SizeWarn

Synopsis

IceGrid.Registry.Client.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceGrid.Registry.Client.

IceGrid.Registry.CryptPasswords

Synopsis

IceGrid.Registry.CryptPasswords=file
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Description

Specifies the filename of an IceGrid registry access control list. Each line of the 
file must contain a username and a password, separated by whitespace. The pass-
word must be a 13-character, crypt-encoded string. If this property is not defined, 
the default value is passwords. This property is ignored if 
IceGrid.Registry.PermissionsVerifier is defined.

IceGrid.Registry.Data

Synopsis

IceGrid.Registry.Data=path

Description

Defines the path of the IceGrid registry data directory. This property must be 
defined, and path must already exist.

IceGrid.Registry.DefaultTemplates

Synopsis

IceGrid.Registry.DefaultTemplates=path

Description

Defines the pathname of an XML file containing default template descriptors. A 
sample file is provided in the Ice distribution named config/templates.xml that 
contains convenient server templates for Ice services.

IceGrid.Registry.DynamicRegistration

Synopsis

IceGrid.Registry.DynamicRegistration=num

Description

If num is set to a value larger than zero, the locator registry does not require Ice 
servers to preregister object adapters and replica groups, but rather creates them 
automatically if they do not exist. If this property is not defined, or num is set to 
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zero, an attempt to register an unknown object adapter or replica group causes 
adapter activation to fail with Ice.NotRegisteredException. An object adapter 
registers itself when the adapter.AdapterId property is defined. The 
adapter.ReplicaGroupId property identifies the replica group.

IceGrid.Registry.Internal.Endpoints

Synopsis

IceGrid.Registry.Internal.Endpoints=endpoints

Description

Defines the endpoints of the IceGrid internal interface. The internal endpoints 
must be accessible to IceGrid nodes. Nodes use this interface to communicate 
with the registry. This property must be defined.

IceGrid.Registry.Internal.PublishedEndpoints

Synopsis

IceGrid.Registry.Internal.PublishedEndpoints=endpoints

Description

Defines the published endpoints of the IceGrid internal interface. The internal 
endpoints must be accessible to IceGrid nodes. Nodes use this interface to 
communicate with the registry. Refer to the description of the object adapter prop-
erty adapter.PublishedEndpoints for more information.

IceGrid.Registry.Internal.ThreadPool.Size

Synopsis

IceGrid.Registry.Internal.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceGrid.Registry.Internal.
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IceGrid.Registry.Internal.ThreadPool.SizeMax

Synopsis

IceGrid.Registry.Internal.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceGrid.Registry.Internal.

IceGrid.Registry.Internal.ThreadPool.SizeWarn

Synopsis

IceGrid.Registry.Internal.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceGrid.Registry.Internal.

IceGrid.Registry.NodeSessionTimeout

Synopsis

IceGrid.Registry.NodeSessionTimeout=num

Description

Each IceGrid node establishes a session with the registry that must be refreshed 
periodically. If a node does not refresh its session within num seconds, the node's 
session is destroyed and the servers deployed on that node become unavailable to 
new clients. If not specified, the default value is 30 seconds.

IceGrid.Registry.ReplicaSessionTimeout

Synopsis

IceGrid.Registry.ReplicaSessionTimeout=num
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Description

Each IceGrid registry replica establishes a session with the master registry that 
must be refreshed periodically. If a replica does not refresh its session within num 
seconds, the replica's session is destroyed and the replica doesn't receive anymore 
replication information from the master registry. If not specified, the default value 
is 30 seconds.

IceGrid.Registry.PermissionsVerifier

Synopsis

IceGrid.Registry.PermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface. The IceGrid registry invokes this proxy to validate each new 
client session created by a client with the IceGrid::Registry interface.

IceGrid.Registry.Server.Endpoints

Synopsis

IceGrid.Registry.Server.Endpoints=endpoints

Description

Defines the endpoints of the IceGrid server interface. The server endpoints must 
be accessible to Ice servers that are using IceGrid to register their object adapter 
endpoints. This property must be defined.

IceGrid.Registry.Server.PublishedEndpoints

Synopsis

IceGrid.Registry.Server.PublishedEndpoints=endpoints

Description

Defines the published endpoints of the IceGrid server interface. The server 
endpoints must be accessible to Ice servers that are using IceGrid to register their 
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object adapter endpoints. Refer to the description of the object adapter property 
adapter.PublishedEndpoints for more information.

IceGrid.Registry.Server.ThreadPool.Size

Synopsis

IceGrid.Registry.Server.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceGrid.Registry.Server.

IceGrid.Registry.Server.ThreadPool.SizeMax

Synopsis

IceGrid.Registry.Server.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceGrid.Registry.Server.

IceGrid.Registry.Server.ThreadPool.SizeWarn

Synopsis

IceGrid.Registry.Server.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceGrid.Registry.Server.

IceGrid.Registry.SessionTimeout

Synopsis

IceGrid.Registry.SessionTimeout=num
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Description

IceGrid clients or administrative clients might establish a session with the registry. 
This session must be refreshed periodically. If the client does not refresh its 
session within num seconds, the session is destroyed. If not specified, the default 
value is 30 seconds.

IceGrid.Registry.SSLPermissionsVerifier

Synopsis

IceGrid.Registry.SSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface. The IceGrid registry invokes this proxy to validate each 
new client session created by a client from a secure connection with the 
IceGrid::Registry interface.

IceGrid.Registry.Trace.Adapter

Synopsis

IceGrid.Registry.Trace.Adapter=num

Description

The object adapter trace level: 

IceGrid.Registry.Trace.Application

Synopsis

IceGrid.Registry.Trace.Adapter=num

0 No object adapter trace. (default)

1 Trace object adapter registration, removal, and replication.
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Description

The application trace level: 

IceGrid.Registry.Trace.Locator

Synopsis

IceGrid.Registry.Trace.Locator=num

Description

The locator and locator registry trace level: 

IceGrid.Registry.Trace.Node

Synopsis

IceGrid.Registry.Trace.Node=num

Description

The node trace level: 

0 No application trace. (default)

1 Trace application addition, update and removal.

0 No locator trace. (default)

1 Trace failures to locate an adapter or object, and failures to 
register adapter endpoints.

2 Like 1, but more verbose, including registration of adapter 
endpoints.

0 No node trace. (default)

1 Trace node registration, removal.

2 Like 1, but more verbose, including load statistics.
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IceGrid.Registry.Trace.Object

Synopsis

IceGrid.Registry.Trace.Object=num

Description

The object trace level: 

IceGrid.Registry.Trace.Patch

Synopsis

IceGrid.Registry.Trace.Patch=num

Description

The patch trace level: 

IceGrid.Registry.Trace.Server

Synopsis

IceGrid.Registry.Trace.Server=num

Description

The server trace level: 

0 No object trace. (default)

1 Trace object registration, removal.

0 No patching trace. (default)

1 Show summary of patch progress.

0 No server trace. (default)

1 Trace server registration, removal.
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IceGrid.Registry.Trace.Session

Synopsis

IceGrid.Registry.Trace.Session=num

Description

The session trace level: 

IceGrid.Registry.UserAccounts

Synopsis

IceGrid.Registry.UserAccounts=file

Description

Specifies the filename of an IceGrid registry user account map file. Each line of 
the file must contain an identifier and a user account, separated by whitespace. 
The identifier will be matched against the client session identifier (the user id for 
sessions created with a user/password or the distinguished name for sessions 
created from a secure connection). This user account map file is used by IceGrid 
nodes to map session identifiers to user accounts if the node 
IceGrid.Node.UserAccountMapper property is set to the proxy IceGrid/Regis-
tryUserAccountMapper.

IceGrid.Node.CollocateRegistry

Synopsis

IceGrid.Node.CollocateRegistry=num

Description

If num is set to a value larger than zero, the node collocates the IceGrid registry.

0 No client or admin session trace. (default)

1 Trace client or admin session registration, removal.

2 Like 1, but more verbose, includes keep alive messages.
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The collocated registry is configured with the same properties as the standalone 
IceGrid registry.

IceGrid.Node.Data

Synopsis

IceGrid.Node.Data=path

Description

Defines the path of the IceGrid node data directory. The node creates distrib, 
servers and tmp subdirectories in this directory if they do not already exist. The 
distrib directory contains distribution files downloaded by the node from an 
IcePatch2 server. The servers directory contains configuration data for each 
deployed server. The tmp directory holds temporary files.

IceGrid.Node.DisableOnFailure

Synopsis

IceGrid.Node.DisableOnFailure=num

Description

The node considers a server to have terminated improperly if it has a non-zero exit 
code or if it exits due to one of the signals SIGABRT, SIGBUS, SIGILL, SIGFPE 
or SIGSEGV. The node marks such a server as disabled if num is a non-zero 
value; a disabled server cannot be activated on demand. For values of num greater 
than zero, the server is disabled for num seconds. If num is a negative value, the 
server is disabled indefinitely, or until it is explicitly enabled or started via an 
administrative action. The default value is zero, meaning the node does not disable 
servers in this situation.

IceGrid.Node.Endpoints

Synopsis

IceGrid.Node.Endpoints=endpoints
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Description

Defines the endpoints of the IceGrid node interface. The node endpoints must be 
accessible to the IceGrid registry. The registry uses this interface to communicate 
with the node.

IceGrid.Node.PublishedEndpoints

Synopsis

IceGrid.Node.PublishedEndpoints=endpoints

Description

Defines the published endpoints of the IceGrid node interface. The node endpoints 
must be accessible to the IceGrid registry. The registry uses this interface to 
communicate with the node. Refer to the description of the object adapter prop-
erty adapter.PublishedEndpoints for more information.

IceGrid.Node.Name

Synopsis

IceGrid.Node.Name=name

Description

Defines the name of the IceGrid node. All nodes using the same registry must 
have unique names; a node refuses to start if there is a node with the same name 
running already.
The default value is the hostname as returned by gethostname().

IceGrid.Node.Output

Synopsis

IceGrid.Node.Output=path

Description

Defines the path of the IceGrid node output directory. If set, the node redirects the 
stdout and stderr output of the started servers to files named server.out and 
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server.err in this directory. Otherwise, the started servers share the stdout and 
stderr of the node's process.

IceGrid.Node.PrintServersReady

Synopsis

IceGrid.Node.PrintServersReady=token

Description

The IceGrid node prints "token ready" on standard output after all the servers 
managed by the node are ready. This is useful for scripts that wish to wait until all 
servers have been started and are ready for use.

IceGrid.Node.PropertiesOverride

Synopsis

IceGrid.Node.PropertiesOverride=overrides

Description

Defines a list of properties which override the properties defined in server deploy-
ment descriptors. For example, in some cases it is desirable to set the property 
Ice.Default.Host for servers, but not in server deployment descriptors. The 
property definitions should be separated by white space.

IceGrid.Node.RedirectErrToOut

Synopsis

IceGrid.Node.RedirectErrToOut=num

Description

If num is set to a value larger than zero, the stderr of each started server is redi-
rected to the server's stdout.



1714 Properties

IceGrid.Node.UserAccountMapper

Synopsis

IceGrid.Node.UserAccountMapper=proxy

Description

Specifies the proxy of an object that implements the IceGrid::UserAccount-
Mapper interface. The IceGrid node invokes this proxy to map session identifiers 
(the user id for sessions created with a user/password or the distinguished name 
for sessions created from a secure connection) to user accounts.

IceGrid.Node.UserAccounts

Synopsis

IceGrid.Node.UserAccounts=file

Description

Specifies the filename of an IceGrid node user account map file. Each line of the 
file must contain an identifier and a user account, separated by whitespace. The 
identifier will be matched against the client session identifier (the user id for 
sessions created with a user/password or the distinguished name for sessions 
created from a secure connection). This user account map file is used by the node 
to map session identifiers to user accounts. This property is ignored if 
IceGrid.Node.UserAccountMapper is defined.

IceGrid.Node.WaitTime

Synopsis

IceGrid.Node.WaitTime=num

Description

Defines the interval in seconds that IceGrid waits for server activation and deacti-
vation.

If a server is automatically activated and does not register its object adapter 
endpoints within this time interval, the node assumes there is a problem with the 
server and return an empty set of endpoints to the client.
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If a server is being gracefully deactivated and IceGrid does not detect the 
server deactivation during this time interval, IceGrid kills the server.
The default value is 60 seconds.

IceGrid.Node.ThreadPool.Size

Synopsis

IceGrid.Node.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceGrid.Node.

IceGrid.Node.ThreadPool.SizeMax

Synopsis

IceGrid.Node.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceGrid.Node.

IceGrid.Node.ThreadPool.SizeWarn

Synopsis

IceGrid.Node.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceGrid.Node.

IceGrid.Node.Trace.Activator

Synopsis

IceGrid.Node.Trace.Activator=num
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Description

The activator trace level: 

IceGrid.Node.Trace.Adapter

Synopsis

IceGrid.Node.Trace.Adapter=num

Description

The object adapter trace level: 

IceGrid.Node.Trace.Patch

Synopsis

IceGrid.Node.Trace.Patch=num

0 No activator trace. (default)

1 Trace process activation, termination.

2 Like 1, but more verbose, including process signaling and 
more diagnostic messages on process activation.

3 Like 2, but more verbose, including more diagnostic 
messages on process activation (e.g., path, working 
directory and arguments of the activated process).

0 No object adapter trace. (default)

1 Trace object adapter addition, removal.

2 Like 1, but more verbose, including object adapter 
activation and deactivation and more diagnostic messages.

3 Like 2, but more verbose, including object adapter 
transitional state change (e.g., `waiting for activation').
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Description

The patch trace level: 

IceGrid.Node.Trace.Server

Synopsis

IceGrid.Node.Trace.Server=num

Description

The server trace level: 

0 No patching trace. (default)

1 Show summary of patch progress.

2 Like 1, but more verbose, including download statistics.

3 Like 2, but more verbose, including checksum 
information.

0 No server trace. (default)

1 Trace server addition, removal.

2 Like 1, but more verbose, including server activation and 
deactivation and more diagnostic messages.

3 Like 2, but more verbose, including server transitional 
state change (activating and deactivating).
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C.12 IceStorm Properties

IceStorm.InstanceName

Synopsis

IceStorm.InstanceName=name

Description

Specifies an alternate identity category for the IceStorm topic manager object. If 
defined, the identity of the object becomes name/TopicManager. If not specified, 
the default identity category is IceStorm.

IceStorm.TopicManager.AdapterId

Synopsis

IceStorm.TopicManager.AdapterId=id

Description

Defines the value of the property adapter.AdapterId for the object adapter named 
IceStorm.TopicManager.

IceStorm.TopicManager.ReplicaGroupId

Synopsis

IceStorm.TopicManager.ReplicaGroupId=id

Description

Defines the value of the property adapter.ReplicaGroupId for the object adapter 
named IceStorm.TopicManager.

IceStorm.TopicManager.Endpoints

Synopsis

IceStorm.TopicManager.Endpoints=endpoints
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Description

Defines the endpoints for the IceStorm topic manager and topic objects.

IceStorm.TopicManager.PublishedEndpoints

Synopsis

IceStorm.TopicManager.PublishedEndpoints=endpoints

Description

Defines the published endpoints for the IceStorm topic manager and topic objects. 
Refer to the description of the object adapter property adapter.PublishedEnd-
points for more information.

IceStorm.TopicManager.RegisterProcess

Synopsis

IceStorm.TopicManager.RegisterProcess=num

Description

Defines the value of the property adapter.RegisterProcess for the object adapter 
named IceStorm.TopicManager.

IceStorm.TopicManager.ThreadPool.Size

Synopsis

IceStorm.TopicManager.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceStorm.TopicManager.
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IceStorm.TopicManager.ThreadPool.SizeMax

Synopsis

IceStorm.TopicManager.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceStorm.TopicManager.

IceStorm.TopicManager.ThreadPool.SizeWarn

Synopsis

IceStorm.TopicManager.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceStorm.TopicManager.

IceStorm.Publish.AdapterId

Synopsis

IceStorm.Publish.AdapterId=id

Description

Defines the value of the property adapter.AdapterId for the object adapter named 
IceStorm.Publish.

IceStorm.Publish.ReplicaGroupId

Synopsis

IceStorm.Publish.ReplicaGroupId=id

Description

Defines the value of the property adapter.ReplicaGroupId for the object adapter 
named IceStorm.Publish.
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IceStorm.Publish.Endpoints

Synopsis

IceStorm.Publish.Endpoints=endpoints

Description

Defines the endpoints for the IceStorm publisher objects.

IceStorm.Publish.PublishedEndpoints

Synopsis

IceStorm.Publish.PublishedEndpoints=endpoints

Description

Defines the published endpoints for the IceStorm publisher objects. Refer to the 
description of the object adapter property adapter.PublishedEndpoints for more 
information.

IceStorm.Publish.RegisterProcess

Synopsis

IceStorm.Publish.RegisterProcess=num

Description

Defines the value of the property adapter.RegisterProcess for the object adapter 
named IceStorm.Publish.

IceStorm.Publish.ThreadPool.Size

Synopsis

IceStorm.Publish.ThreadPool.Size=num

Description

Defines the value of the property adapter.ThreadPool.Size for the object adapter 
named IceStorm.Publish.
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IceStorm.Publish.ThreadPool.SizeMax

Synopsis

IceStorm.Publish.ThreadPool.SizeMax=num

Description

Defines the value of the property adapter.ThreadPool.SizeMax for the object 
adapter named IceStorm.Publish.

IceStorm.Publish.ThreadPool.SizeWarn

Synopsis

IceStorm.Publish.ThreadPool.SizeWarn=num

Description

Defines the value of the property adapter.ThreadPool.SizeWarn for the object 
adapter named IceStorm.Publish.

IceStorm.Trace.TopicManager

Synopsis

IceStorm.Trace.TopicManager=num

Description

The topic manager trace level: 

IceStorm.Trace.Topic

Synopsis

IceStorm.Trace.Topic=num

0 No topic manager trace. (default)

1 Trace topic creation.
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Description

The topic trace level: 

IceStorm.Trace.Flush

Synopsis

IceStorm.Trace.Flush=num

Description

Trace information on the thread that flushes batch reliability events to subscribers: 

IceStorm.Trace.Subscriber

Synopsis

IceStorm.Trace.Subscriber=num

Description

The subscriber trace level: 

0 No topic trace. (default)

1 Trace topic links, subscription, and unsubscription.

2 Like 1, but more verbose, including QoS information, and 
other diagnostic information.

0 No flush trace. (default)

1 Trace each flush.

0 No subscriber trace. (default)

1 Trace topic diagnostic information on subscription and 
unsubscription.
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IceStorm.Flush.Timeout

Synopsis

IceStorm.Flush.Timeout=num

Description

Defines the interval in milliseconds that batch reliability events are sent to 
subscribers. The default is 1000 ms. The minimum value of this property is 100 
ms.

IceStorm.TopicManager.Proxy

Synopsis

IceStorm.TopicManager.Proxy=proxy

Description

Defines the proxy for the IceStorm topic manager. This property is used by the 
IceStorm administration tool, and may also be used by applications.

C.13 Glacier2 Properties

Glacier2.AddUserToAllowCategories

Synopsis

Glacier2.AddUserToAllowCategories=num

Description

Specifies whether to add an authenticated user id to the Glacier2.AllowCatego-
ries property upon the creation of a new session. The legal values are shown 
below: 

0 Do not add the user id. (default)

1 Add the user id.
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Glacier2.Admin.Endpoints

Synopsis

Glacier2.Admin.Endpoints=endpoints

Description

Defines the optional administrative endpoints of the Glacier2 admin interface. The 
administrative endpoints must be accessible to clients that are using the Glacier2 
admin interface.
Allowing access to the Glacier2 admin interface is a security risk! If this property 
is not defined, the admin interface is disabled.

Glacier2.Admin.PublishedEndpoints

Synopsis

Glacier2.Admin.PublishedEndpoints=endpoints

Description

Defines the optional administrative published endpoints of the Glacier2 admin 
interface. The administrative endpoints must be accessible to clients that are using 
the Glacier2 administrative interface. Refer to the description of the object adapter 
property adapter.PublishedEndpoints for more information.
Allowing access to the Glacier2 admin interface is a security risk!

Glacier2.AllowCategories

Synopsis

Glacier2.AllowCategories=list

Description

Specifies a whitespace-separated list of identity categories. If this property is 
defined, then the Glacier2 router only allows requests to Ice objects with an iden-
tity that matches one of the categories from this list. If Glacier2.AddUserToAl-

2 Add the user id with a leading underscore.
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lowCategories is defined with a non-zero value, the router automatically adds 
the user id of each session to this list.
This property is deprecated and supported only for backward-compatibility. New 
applications should use Glacier2.Filter.Category.Accept.

Glacier2.Client.AlwaysBatch

Synopsis

Glacier2.Client.AlwaysBatch=num

Description

If num is set to a value larger than zero, the Glacier2 router always batches queued 
oneway requests from clients to servers regardless of the value of their _fwd 
contexts. This property is only relevant when Glacier2.Client.Buffered=1. 
The default value is 0.

Glacier2.Client.Endpoints

Synopsis

Glacier2.Client.Endpoints=endpoints

Description

Defines the client endpoints of the Glacier2 router. These endpoints must be 
accessible to router clients. Use of a secure transport is highly recommended.

Glacier2.Client.PublishedEndpoints

Synopsis

Glacier2.Client.PublishedEndpoints=endpoints

Description

Defines the published client endpoints of the Glacier2 router. These endpoints 
must be accessible to router clients. Use of a secure transport is highly recom-
mended. Refer to the description of the object adapter property adapter.Publishe-
dEndpoints for more information.
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Glacier2.Client.ForwardContext

Synopsis

Glacier2.Client.ForwardContext=num

Description

If num is set to a value larger than zero, the Glacier2 router includes the context in 
forwarded requests from clients to servers. The default value is 0.

Glacier2.Client.SleepTime

Synopsis

Glacier2.Client.SleepTime=num

Description

If num is set to a value larger than zero, the Glacier2 router sleeps for the specified 
number of milliseconds after forwarding all queued requests from a client. This 
prevents the client from flooding the router with requests. This property is only 
relevant when Glacier2.Client.Buffered=1. The default value is 0.

Glacier2.Client.Trace.Override

Synopsis

Glacier2.Client.Trace.Override=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever a request was overridden. The default value is 0.

Glacier2.Client.Trace.Reject

Synopsis

Glacier2.Client.Trace.Reject=num



1728 Properties

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever the router's configured filters reject a client's request. The default value 
is 0.

Glacier2.Client.Trace.Request

Synopsis

Glacier2.Client.Trace.Request=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
for each request that is forwarded from a client. The default value is 0.

Glacier2.Client.Buffered

Synopsis

Glacier2.Client.Buffered=num

Description

If num is set to a value larger than zero, the Glacier2 router queues incoming 
requests from clients and creates an extra thread for each client connection that 
processes the queued requests. If num is set to zero, the router operates in unbuf-
fered mode in which a request is forwarded in the same thread that received it. The 
default value is 1.

In unbuffered mode, twoway requests from a client are serialized, and nested 
twoway requests are not supported.

Glacier2.CryptPasswords

Synopsis

Glacier2.CryptPasswords=file
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Description

Specifies the filename of a Glacier2 access control list. Each line of the file must 
contain a username and a password, separated by whitespace. The password must 
be a 13-character, crypt-encoded string. This property is ignored if 
Glacier2.PermissionsVerifier is defined.

Glacier2.Filter.AdapterId.Accept

Synopsis

Glacier2.Filter.AdapterId.Accept=string

Description

Specifies a space-separated list of adapter identifiers. If defined, the Glacier2 
router only allows requests to Ice objects with an adapter identifier that matches 
one of the entries in this list. 

Identifiers that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within an identifier must be escaped with a 
leading backslash.

Glacier2.Filter.Address.Accept

Synopsis

Glacier2.Filter.Address.Accept=string

Description

Specifies a space-separated list of address-port pairs. When defined, the Glacier2 
router only allows requests to Ice objects through proxies that contain network 
endpoint information that matches an address-port pair listed in this property. If 
not defined, the value defaults to *, which indicates that any network address is 
permitted. Requests accepted by this property may be rejected by the 
Glacier2.Filter.Address.Reject property.

Each pair is of the form address:port. The address or port number portion can 
include wildcards ('*') or value ranges or groups. Ranges and groups are in the 
form of [value1, value2, value3...] and/or [value1-value2]. Wildcards, ranges and 
groups may appear anywhere in the address-port pair string. 
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Glacier2.Filter.Address.Reject

Synopsis

Glacier2.Filter.Address.Reject=string

Description

Specifies a space-separated list of address-port pairs. When defined, the Glacier2 
router rejects requests to Ice objects through proxies that contain network 
endpoint information that matches an address-port pair listed in this property. If 
not set, the Glacier2 router allows requests to any network address unless the 
Glacier2.Filter.Address.Accept property is set, in which case requests will be 
accepted or rejected based on the Glacier2.Filter.Address.Accept property. If both 
the Glacier2.Filter.Address.Accept and Glacier2.Filter.Address.Reject 
properties are defined, the Glacier2.Filter.Address.Reject property takes 
precedence.

Each pair is of the form address:port. The address or port number portion can 
include wildcards ('*') or value ranges or groups. Ranges and groups are in the 
form of [value1, value2, value3...] and/or [value1-value2]. Wildcards, ranges and 
groups may appear anywhere in the address-port pair string. 

Glacier2.Filter.Category.Accept

Synopsis

Glacier2.Filter.Category.Accept=string

Description

Specifies a space-separated list of identity categories. If defined, the Glacier2 
router only allows requests to Ice objects with an identity that matches one of the 
categories in this list. If Glacier2.AddUserToAllowCategories is defined with a 
non-zero value, the router automatically adds the username of each session to this 
list.

Categories that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within a category must be escaped with a 
leading backslash.
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Glacier2.Filter.Identity.Accept

Synopsis

Glacier2.Filter.Identity.Accept=string

Description

Specifies a space-separated list of identities. If defined, the Glacier2 router only 
allows requests to Ice objects with an identity that matches one of the entries in 
this list. 

Identities that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within an identity must be escaped with a 
leading backslash.

Glacier2.Filter.ProxySizeMax

Synopsis

Glacier2.Filter.ProxySizeMax=num

Description

If set, the Glacier2 router rejects requests whose stringified proxies are longer than 
num. This helps secure the system against attack. If unset, Glacier2 will accept 
requests using proxies of any length. 

Glacier2.InstanceName

Synopsis

Glacier2.InstanceName=name

Description

Specifies a default identity category for the Glacier2 objects. If defined, the iden-
tity of the Glacier2 admin interface becomes name/admin and the identity of the 
Glacier2 router interface becomes name/router.

If not defined, the default value is Glacier2.



1732 Properties

Glacier2.PermissionsVerifier

Synopsis

Glacier2.PermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface. The router invokes this proxy to validate the username and 
password of each new session. Sessions created from a secure connection are veri-
fied by the object specified in Glacier2.SSLPermissionsVerifier. For simple 
configurations, you can specify the name of a password file using Glacier2.Crypt-
Passwords.

Glacier2.RoutingTable.MaxSize

Synopsis

Glacier2.RoutingTable.MaxSize=num

Description

This property sets the size of the router's routing table to num entries. If more 
proxies are added to the table than this value, proxies are evicted from the table on 
a least-recently used basis.

Clients based on Ice version 3.1 and later automatically retry operation calls 
on evicted proxies and transparently re-add such proxies to the table. Clients 
based on Ice versions earlier than 3.1 receive an ObjectNotExistException for 
invocations on evicted proxies. For such older clients, num must be set to a suffi-
ciently large value to prevent these clients from failing.

The default size of the routing table is 1000.

Glacier2.Server.AlwaysBatch

Synopsis

Glacier2.Server.AlwaysBatch=num
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Description

If num is set to a value larger than zero, the Glacier2 router always batches queued 
oneway requests from servers to clients regardless of the value of their _fwd 
contexts. This property is only relevant when Glacier2.Server.Buffered=1. 
The default value is 0.

Glacier2.Server.Endpoints

Synopsis

Glacier2.Server.Endpoints=endpoints

Description

Defines the server endpoints of the Glacier2 router. These endpoints must be 
accessible to back end servers.

Glacier2.Server.PublishedEndpoints

Synopsis

Glacier2.Server.PublishedEndpoints=endpoints

Description

Defines the published server endpoints of the Glacier2 router. These endpoints 
must be accessible to back end servers. Refer to the description of the object 
adapter property adapter.PublishedEndpoints for more information.

Glacier2.Server.ForwardContext

Synopsis

Glacier2.Server.ForwardContext=num

Description

If num is set to a value larger than zero, the Glacier2 router includes the context in 
forwarded requests from servers to clients. The default value is 0.
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Glacier2.Server.SleepTime

Synopsis

Glacier2.Server.SleepTime=num

Description

If num is set to a value larger than zero, the Glacier2 router sleeps for the specified 
number of milliseconds after forwarding all queued requests from a server. This 
prevents the server from flooding the router with requests. This property is only 
relevant when Glacier2.Server.Buffered=1. The default value is 0.

Glacier2.Server.Trace.Override

Synopsis

Glacier2.Server.Trace.Override=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever a request was overridden. The default value is 0.

Glacier2.Server.Trace.Request

Synopsis

Glacier2.Server.Trace.Request=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
for each request that is forwarded from a server. The default value is 0.

Glacier2.Server.Buffered

Synopsis

Glacier2.Server.Buffered=num
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Description

If num is set to a value larger than zero, the Glacier2 router queues incoming 
requests from servers and creates an extra thread for each servers connection that 
processes the queued requests. If num is set to zero, the router operates in unbuf-
fered mode in which a request is forwarded in the same thread that received it. The 
default value is 1.
In unbuffered mode, twoway requests from a server are serialized, and nested 
twoway requests are not supported.
Unbuffered mode for server requests is susceptible to a denial-of-service attack 
from hostile clients. Use caution!

Glacier2.SessionManager

Synopsis

Glacier2.SessionManager=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SessionManager 
interface. The router invokes this proxy to create a new session for a client, but 
only after the router validates the client's username and password.

Glacier2.SSLSessionManager

Synopsis

Glacier2.SSLSessionManager=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLSessionMan-
ager interface. The router invokes this proxy to create a new session for a client 
that has called createSessionFromSecureConnection.

Glacier2.SSLPermissionsVerifier

Synopsis

Glacier2.SSLPermissionsVerifier=proxy
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Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface. The router invokes this proxy to verify the credentials 
of clients that attempt to create a session from a secure connection. Sessions 
created with a username and password are verified by the object specified in 
Glacier2.PermissionsVerifier.

Glacier2.SessionTimeout

Synopsis

Glacier2.SessionTimeout=num

Description

If num is set to a value larger than zero, a client's session with the Glacier2 router 
expires after the specified num seconds of inactivity. The default value is 0, 
meaning sessions do not expire due to inactivity.
It is important that num be chosen so that client sessions do not expire prema-
turely.

Glacier2.Trace.RoutingTable

Synopsis

Glacier2.Trace.RoutingTable=num

Description

The routing table trace level: 

0 No routing table trace. (default)

1 Logs a message for each proxy that is added to the routing 
table.

2 Logs a message for each proxy that is evicted from the 
routing table (see Glacier2.RoutingTable.MaxSize).

3 Combines the output for trace levels 1 and 2.
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Glacier2.Trace.Session

Synopsis

Glacier2.Trace.Session=num

Description

If num is set to a value larger than zero, the Glacier2 router logs trace messages 
about session-related activities. The default value is 0.

C.14 Freeze Properties

Freeze.DbEnv.env-name.CheckpointPeriod

Synopsis

Freeze.DbEnv.env-name.CheckpointPeriod=num

Description

Every Berkeley DB environment created by Freeze has an associated thread that 
checkpoints this environment every num seconds. If num is less than 0, no check-
point is performed. Defaults to 120 seconds.

Freeze.DbEnv.env-name.DbHome

Synopsis

Freeze.DbEnv.env-name.DbHome=db-home

Description

Defines the home directory of this Freeze database environment. Defaults to env-
name.

Freeze.DbEnv.env-name.DbPrivate

Synopsis

Freeze.DbEnv.env-name.DbPrivate=num
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Description

If num is set to a value larger than zero, Freeze instructs Berkeley DB to use 
process private memory instead of shared memory. The default value is 1. Set it to 
0 in order to run db_archive (or another Berkeley DB utility) on a running envi-
ronment.

Freeze.DbEnv.env-name.DbRecoverFatal

Synopsis

Freeze.DbEnv.env-name.DbRecoverFatal=num

Description

If num is set to a value larger than zero, "fatal" recovery is performed when the 
environment is opened. The default value is 0.

Freeze.DbEnv.env-name.OldLogsAutoDelete

Synopsis

Freeze.DbEnv.env-name.OldLogsAutoDelete=num

Description

If num is set to a value larger than zero, old transactional logs no longer in use are 
deleted after each periodic checkpoint (see Freeze.DbEnv.env-name.Check-
pointPeriod). The default value is 1.

Freeze.DbEnv.env-name.PeriodicCheckpointMinSize

Synopsis

Freeze.DbEnv.env-name.PeriodicCheckpointMinSize=num

Description

num is the minimum size in kbytes for the periodic checkpoint (see 
Freeze.DbEnv.env-name.CheckpointPeriod). This value is passed to Berkeley 
DB's checkpoint function. Defaults to 0 (which means no minimum).
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Freeze.Evictor.env-name.filename.MaxTxSize

Synopsis

Freeze.Evictor.env-name.filename.MaxTxSize=num

Description

Freeze uses a background thread to save updates to the database. Transactions are 
used to save many facets together. num defines the maximum number of facets 
saved per transaction. Defaults to 10 * SaveSizeTrigger (see 
Freeze.Evictor.env-name.filename.SaveSizeTrigger); if this value is nega-
tive, the actual value is set to 100.

Freeze.Evictor.env-name.filename.PopulateEmptyIndices

Synopsis

Freeze.Evictor.env-name.filename.PopulateEmptyIndices=num

Description

When num is not 0 and you create an evictor with one or more empty indices, the 
createEvictor() call will populate these indices by iterating over all the corre-
sponding facets. This is particularly useful after transforming a Freeze Evictor 
with FreezeScript, since FreezeScript does not transform indices; however this can 
significantly slow down createEvictor() if you have an empty index because none 
of the facets currently in your database match the type of this index. The default 
value for this property is 0.

Freeze.Evictor.env-name.filename.SavePeriod

Synopsis

Freeze.Evictor.env-name.filename.SavePeriod=num

Description

Freeze uses a background thread to save updates to the database. After num milli-
seconds without saving, if there is any facet created, modified or destroyed, this 
background thread wakes up to save these facets. When num is 0, there is no peri-
odic saving. Defaults to 60,000.
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Freeze.Evictor.env-name.filename.SaveSizeTrigger

Synopsis

Freeze.Evictor.env-name.filename.SaveSizeTrigger=num

Description

Freeze uses a background thread to save updates to the database. When num is 0 
or positive, as soon as num or more facets have been created, modified or 
destroyed, this background thread wakes up to save them. When num is negative, 
there is no size trigger. Defaults to 10.

Freeze.Evictor.env-name.filename.StreamTimeout

Synopsis

Freeze.Evictor.env-name.filename.StreamTimeout=num

Description

When the saving thread saves an object, it needs to lock this object in order to get 
a consistent copy of the object's state. If the lock cannot be acquired within num 
seconds, a fatal error is generated. If a fatal error callback was registered by the 
appplication, this callback is called; otherwise the program is terminated immedi-
ately. When num is 0 or negative, there is no timeout. The default value is 0.

Freeze.Trace.DbEnv

Synopsis

Freeze.Trace.DbEnv=num

Description

The Freeze database environment activity trace level: 

0 No database environment activity trace. (default)

1 Trace database open and close.

2 Also trace checkpoints and the removal of old log files.
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Freeze.Trace.Evictor

Synopsis

Freeze.Trace.Evictor=num

Description

The Freeze evictor activity trace level: 

Freeze.Trace.Map

Synopsis

Freeze.Trace.Map=num

Description

The Freeze map activity trace level: 

0 No evictor activity trace. (default)

1 Trace Ice object and facet creation and destruction, facet 
streaming time, facet saving time, object eviction (every 50 
objects) and evictor deactivation.

2 Also trace object lookups, and all object evictions.

3 Also trace object retrieval from the database.

0 No map activity trace. (default)

1 Trace database open and close.

2 Also trace iterator and transaction operations, and 
reference counting of the underlying database.
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Freeze.Warn.Deadlocks

Synopsis

Freeze.Warn.Deadlocks=num

Description

If num is set to a value larger than zero, Freeze logs a warning message when a 
deadlock occur. The default value is 0.

Freeze.Warn.CloseInFinalize

Synopsis

Freeze.Warn.CloseInFinalize=num

Description

If num is set to a value larger than zero, Freeze logs a warning message when an 
application neglects to explicitly close a map iterator. The default value is 1. (Java 
only)

C.15 IcePatch2 Properties

IcePatch2.Admin.Endpoints

Synopsis

IcePatch2.Admin.Endpoints=endpoints

Description

If this property is set, the IcePatch2 server creates an additional object of type 
IcePatch2::Admin. The shutdown operation on this interface can be used to 
remotely shut down the server. The endpoints specified by this property should be 
secured against access from potentially hostile clients.
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IcePatch2.ChunkSize

Synopsis

IcePatch2.ChunkSize=kilobytes

Description

The IcePatch2 client uses this property to determine how many kilobytes are 
retrieved with each call to getFileCompressed.

The default value is 100.

IcePatch2.Directory

Synopsis

IcePatch2.Directory=dir

Description

The IcePatch2 server uses this property to determine the data directory if no data 
directory is specified on the command line.

This property is also read by the IcePatch2::Patcher utility class to deter-
mine the data directory. The property must be set before the class is instantiated.

IcePatch2.Endpoints

Synopsis

IcePatch2.Endpoints=endpoints

Description

Specifies the endpoints of the IcePatch2 server. This property is required by both 
the IcePatch2 server and client.

IcePatch2.InstanceName

Synopsis

IcePatch2.InstanceName=name
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Description

Specifies a default identity category for the IcePatch2 objects. If defined, the iden-
tity of the IcePatch2 admin interface becomes name/admin and the identity of the 
IcePatch2 file server interface becomes name/server.

If not defined, the default value is IcePatch2.

IcePatch2.Remove

Synopsis

IcePatch2.Remove=num

Description

This property determines whether the IcePatch2 client deletes files that exist 
locally, but not on the server. A negative or zero value prevents removal of files. A 
value of 1 enables removal and causes the client to halt with an error if removal of 
a file fails. A value of 2 or greater also enables removal, but causes the client to 
silently ignore errors during removal.

This property is also read by the IcePatch2::Patcher utility class. The prop-
erty must be set before the class is instantiated.

The default value is 1.

IcePatch2.Thorough

Synopsis

IcePatch2.Thorough=num

Description

This property determines whether IcePatch2::Patcher utility class recomputes 
checksums. Any value greater than zero is interpreted as true. The property must 
be set before the class is instantiated. The default value is 0 (false).
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Appendix D 
Proxies and Endpoints

D.1 Proxies

Synopsis

 identity -f facet -t -o -O -d -D -s  @ adapter_id  : 
endpoints

Description

A stringified proxy consists of an identity, proxy options, and an optional object 
adapter identifier or endpoint list. White space (the space, tab (\t), line feed (\n), 
and carriage return (\r) characters) act as token delimiters; if a white space char-
acter appears as part of a component of a stringified proxy (such as the identity), it 
must be quoted or escaped as described below.

A proxy containing an identity with no endpoints, or an identity with an object 
adapter identifier, represents an indirect proxy that will be resolved using the Ice 
locator (see the Ice.Default.Locator property).

Proxy options configure the invocation mode:
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The proxy options -t, -o, -O, -d, and -D are mutually exclusive.

The object identity identity is structured as [category/]name, where the cate-
gory component and slash separator are optional. If identity contains white space 
or either of the characters : or @, it must be enclosed in single or double quotes. 
The category and name components are UTF-8 strings that use the encoding 
described below. Any occurrence of a slash (/) in category or name must be 
escaped with a backslash (i.e., \/).

The facet argument of the -f option represents a facet name. If facet contains 
white space, it must be enclosed in single or double quotes. A facet name is a 
UTF-8 string that uses the encoding described below.

The object adapter identifier adapter_id is a UTF-8 string that uses the 
encoding described below. If adapter_id contains white space, it must be enclosed 
in single or double quotes.

Single quotes can be used to prevent white space characters from being inter-
preted as delimiters, and to escape the special meaning of the backslash (\) char-
acter. Within single quotes, the only character that retains its special meaning is 
the single quote itself; a backslash can be used to prevent interpretation of a single 
quote as a closing quote, for example: 'a string with a \' quote'.

Double quotes prevent interpretation of white space characters as delimiters 
and prevent interpretation of a single quote as an opening or closing quote. For 
example: "a string with a ' quote". However, escape sequences such as \b 
are interpreted within double quotes.

-f 
facet

Select a facet of the Ice object.

-t Configures the proxy for twoway invocations. (default)

-o Configures the proxy for oneway invocations.

-O Configures the proxy for batch oneway invocations.

-d Configures the proxy for datagram invocations.

-D Configures the proxy for batch datagram invocations.

-s Configures the proxy for secure invocations.



 1747

UTF-8 strings are encoded using ASCII characters for the ordinal range 32-
126 (inclusive). Characters outside this range must be encoded using escape 
sequences (\b, \f, \n, \r, \t) or octal notation (e.g., \007). A double quote can be 
escaped using a backslash, as can the backslash itself (\\).

If endpoints are specified, they must be separated with a colon (:) and 
formatted as described in Endpoints. The order of endpoints in the stringified 
proxy is not necessarily the order in which connections are attempted during 
binding: when a stringified proxy is converted into a proxy instance, the endpoint 
list is randomized as a form of load balancing.

If the -s option is specified, only those endpoints that support secure invoca-
tions are considered during binding. If no valid endpoints are found, the applica-
tion receives Ice::NoEndpointException.

Otherwise, if the -s option is not specified, the endpoint list is ordered so that 
non-secure endpoints have priority over secure endpoints during binding. In other 
words, connections are attempted on all non-secure endpoints before any secure 
endpoints are attempted.

If an unknown option is specified, or the stringified proxy is malformed, the 
application receives Ice::ProxyParseException. If an endpoint is malformed, 
the application receives Ice::EndpointParseException.

D.2 Endpoints

Synopsis

 endpoint  : endpoint

Description

An endpoint list comprises one or more endpoints separated by a colon (:). An 
endpoint has the following format:  protocol option The supported proto-
cols are tcp, udp, ssl, and default. If default is used, it is replaced by the value 
of the Ice.Default.Protocol property. If an endpoint is malformed, or an 
unknown protocol is specified, the application receives Ice::EndpointParseEx-
ception.

The ssl protocol is only available if the IceSSL plug-in is installed.
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The protocols and their supported options are described in the sections that 
follow.
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TCP Endpoint

Synopsis

tcp -h host -p port -t timeout -z

Description
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A tcp endpoint supports the following options: 

Option Description Client Semantics Server Semantics

-h host Specifies the 
host name or IP 
address of the 
endpoint. If not 
specified, the 
value of 
Ice.Default.Hos

t is used instead.

Determines the 
host name or IP 
address to which 
a connection 
attempt is made. 
If not specified, 
all network 
interfaces 
(including 
loopback) are 
tried to contact 
the server.

Determines the 
network 
interface on 
which the object 
adapter listens 
for connections. 
If not specified, 
(or specified as -
h * or -h 
0.0.0.0), the 
adapter listens on 
all network 
interfaces 
(including the 
loopback 
interface). The 
endpoints 
specified by -h 
are published in 
proxies. If not 
specified, all 
endpoints except 
loopback are 
published 
(except if 
loopback is the 
only available 
interface, in 
which case only 
loopback is 
published).
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-p port Specifies the port 
number of the 
endpoint.

Determines the 
port to which a 
connection 
attempt is made. 
(required)

The port will be 
selected by the 
operating system 
if this option is 
not specified or 
port is zero.

-t timeout Specifies the 
endpoint timeout 
in milliseconds.

If timeout is 
greater than zero, 
it sets a 
maximum delay 
for binding and 
proxy 
invocations. If a 
timeout occurs, 
the application 
receives 
Ice::TimeoutExc

eption.

Determines the 
default timeout 
that is advertised 
in proxies 
created by the 
object adapter.

-z Specifies bzip2 
compression.

Determines 
whether 
compressed 
requests are sent.

Determines 
whether 
compression is 
advertised in 
proxies created 
by the adapter.

Option Description Client Semantics Server Semantics
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UDP Endpoint

Synopsis

udp -v major.minor -e major.minor -h host -p port -c -z

Description

A udp endpoint supports the following options: 

Option Description Client Semantics Server Semantics

-v 
major.
minor

Specifies the 
protocol major 
and highest minor 
version number to 
be used for this 
endpoint. If not 
specified, the 
protocol major 
version and 
highest supported 
minor version of 
the client-side Ice 
run time is used.

Determines the 
protocol major 
version and 
highest minor 
version used by 
the client side 
when sending 
messages to this 
endpoint. The 
protocol major 
version number 
must match the 
protocol major 
version number of 
the server; the 
protocol minor 
version number 
must not be 
higher than the 
highest minor 
version number 
supported by the 
server.

Determines the 
protocol major 
version and 
highest minor 
version 
advertised by the 
server side for this 
endpoint. The 
protocol major 
version number 
must match the 
protocol major 
version number of 
the server; the 
protocol minor 
version number 
must not be 
higher than the 
highest minor 
version number 
supported by the 
server.
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-e 
major.
minor

Specifies the 
encoding major 
and highest minor 
version number to 
be used for this 
endpoint. If not 
specified, the 
encoding major 
version and 
highest supported 
minor version of 
the client-side Ice 
run time is used.

Determines the 
encoding major 
version and 
highest minor 
version used by 
the client side 
when sending 
messages to this 
endpoint. The 
encoding major 
version number 
must match the 
encoding major 
version number of 
the server; the 
encoding minor 
version number 
must not be 
higher than the 
highest minor 
version number 
supported by the 
server.

Determines the 
encoding version 
and highest minor 
version 
advertised by the 
server side for this 
endpoint. The 
protocol major 
version number 
must match the 
protocol major 
version number of 
the server; the 
protocol minor 
version number 
must not be 
higher than the 
highest minor 
version number 
supported by the 
server.

Option Description Client Semantics Server Semantics
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-h host Specifies the host 
name or IP 
address of the 
endpoint. If not 
specified, the 
value of 
Ice.Default.Host 
is used instead.

Determines the 
host name or IP 
address to which a 
datagrams are 
sent. If not 
specified, all 
network 
interfaces 
(including 
loopback) are 
tried to contact 
the server.

Determines the 
network interface 
on which the 
object adapter 
listens for 
datagrams. If not 
specified, (or 
specified as -h * 
or -h 0.0.0.0), 
the adapter listens 
on all network 
interfaces 
(including the 
loopback 
interface). The 
endpoints 
specified by -h 
are published in 
proxies. If not 
specified, all 
endpoints except 
loopback are 
published (except 
if loopback is the 
only available 
interface, in 
which case only 
loopback is 
published).

Option Description Client Semantics Server Semantics
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-p port Specifies the port 
number of the 
endpoint.

Determines the 
port to which 
datagrams are 
sent. (required)

The port will be 
selected by the 
operating system 
if this option is 
not specified or 
port is zero.

-c Specifies that a 
connected UDP 
socket should be 
used.

None. Causes the server 
to connect to the 
socket of the first 
peer that sends a 
datagram to this 
endpoint.

-z Specifies bzip2 
compression.

Determines 
whether 
compressed 
requests are sent.

Determines 
whether 
compression is 
advertised in 
proxies created by 
the adapter.

Option Description Client Semantics Server Semantics
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SSL Endpoint

Synopsis

ssl -h host -p port -t timeout -z

Description
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An ssl endpoint supports the following options: 

Option Description Client Semantics Server Semantics

-h host Specifies the host 
name or IP 
address of the 
endpoint. If not 
specified, the 
value of 
Ice.Default.Hos

t is used instead.

Determines the 
host name or IP 
address to which 
a connection 
attempt is made. 
If not specified, 
all network 
interfaces 
(including 
loopback) are 
tried to contact 
the server.

Determines the 
network interface 
on which the 
object adapter 
listens for 
connections. If 
not specified, (or 
specified as -h * 
or -h 0.0.0.0), 
the adapter listens 
on all network 
interfaces 
(including the 
loopback 
interface). The 
endpoints 
specified by -h 
are published in 
proxies. If not 
specified, all 
endpoints except 
loopback are 
published (except 
if loopback is the 
only available 
interface, in 
which case only 
loopback is 
published).
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-p port Specifies the port 
number of the 
endpoint.

Determines the 
port to which a 
connection 
attempt is made. 
(required)

The port will be 
selected by the 
operating system 
if this option is 
not specified or 
port is zero.

-t 
timeout

Specifies the 
endpoint timeout 
in milliseconds.

If timeout is 
greater than zero, 
it sets a maximum 
delay for binding 
and proxy 
invocations. If a 
timeout occurs, 
the application 
receives 
Ice::TimeoutExc

eption.

Determines the 
default timeout 
that is advertised 
in proxies created 
by the object 
adapter.

-z Specifies bzip2 
compression.

Determines 
whether 
compressed 
requests are sent.

Determines 
whether 
compression is 
advertised in 
proxies created 
by the adapter.

Option Description Client Semantics Server Semantics
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Appendix E
License Information

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS 
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS 
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE 
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS 
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND 
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS 
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF 
SUCH TERMS AND CONDITIONS.

E.1 Definitions

1. "Collective Work" means a work, such as a periodical issue, anthology or 
encyclopedia, in which the Work in its entirety in unmodified form, along with 
a number of other contributions, constituting separate and independent works 
in themselves, are assembled into a collective whole. A work that constitutes a 
Collective Work will not be considered a Derivative Work (as defined below) 
for the purposes of this License.

2. "Derivative Work" means a work based upon the Work or upon the Work 
and other pre-existing works, such as a translation, musical arrangement, 

http://creativecommons.org/licenses/by-nd/2.5/legalcode
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dramatization, fictionalization, motion picture version, sound recording, art 
reproduction, abridgment, condensation, or any other form in which the Work 
may be recast, transformed, or adapted, except that a work that constitutes a 
Collective Work will not be considered a Derivative Work for the purpose of 
this License. For the avoidance of doubt, where the Work is a musical compo-
sition or sound recording, the synchronization of the Work in timed-relation 
with a moving image ("synching") will be considered a Derivative Work for 
the purpose of this License.

3. "Licensor" means the individual or entity that offers the Work under the 
terms of this License.

4. "Original Author" means the individual or entity who created the Work.

5. "Work" means the copyrightable work of authorship offered under the terms 
of this License.

6. "You" means an individual or entity exercising rights under this License who 
has not previously violated the terms of this License with respect to the Work, 
or who has received express permission from the Licensor to exercise rights 
under this License despite a previous violation.

E.2 Fair Use Rights

Nothing in this License is intended to reduce, limit, or restrict any rights arising 
from fair use, first sale or other limitations on the exclusive rights of the copyright 
owner under copyright law or other applicable laws.

E.3 License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a 
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the appli-
cable copyright) license to exercise the rights in the Work as stated below:

1. to reproduce the Work, to incorporate the Work into one or more Collective 
Works, and to reproduce the Work as incorporated in the Collective Works;

2. to distribute copies or phonorecords of, display publicly, perform publicly, and 
perform publicly by means of a digital audio transmission the Work including 
as incorporated in Collective Works.
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3. For the avoidance of doubt, where the Work is a musical composition:

1.Performance Royalties Under Blanket Licenses

Licensor waives the exclusive right to collect, whether individually or via a 
performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the 
public performance or public digital performance (e.g. webcast) of the 
Work.

2.Mechanical Rights and Statutory Royalties

Licensor waives the exclusive right to collect, whether individually or via a 
music rights society or designated agent (e.g. Harry Fox Agency), royalties 
for any phonorecord You create from the Work ("cover version") and 
distribute, subject to the compulsory license created by 17 USC Section 115 
of the US Copyright Act (or the equivalent in other jurisdictions).

4. Webcasting Rights and Statutory Royalties

For the avoidance of doubt, where the Work is a sound recording, Licensor 
waives the exclusive right to collect, whether individually or via a perfor-
mance-rights society (e.g. SoundExchange), royalties for the public digital 
performance (e.g. webcast) of the Work, subject to the compulsory license 
created by 17 USC Section 114 of the US Copyright Act (or the equivalent in 
other jurisdictions).

The above rights may be exercised in all media and formats whether now known 
or hereafter devised. The above rights include the right to make such modifica-
tions as are technically necessary to exercise the rights in other media and formats, 
but otherwise You have no rights to make Derivative Works. All rights not 
expressly granted by Licensor are hereby reserved.

E.4 Restrictions

The license granted in Section E.3above is expressly made subject to and limited 
by the following restrictions:

1. You may distribute, publicly display, publicly perform, or publicly digitally 
perform the Work only under the terms of this License, and You must include 
a copy of, or the Uniform Resource Identifier for, this License with every copy 
or phonorecord of the Work You distribute, publicly display, publicly perform, 
or publicly digitally perform. You may not offer or impose any terms on the 
Work that alter or restrict the terms of this License or the recipients' exercise 
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of the rights granted hereunder. You may not sublicense the Work. You must 
keep intact all notices that refer to this License and to the disclaimer of 
warranties. You may not distribute, publicly display, publicly perform, or 
publicly digitally perform the Work with any technological measures that 
control access or use of the Work in a manner inconsistent with the terms of 
this License Agreement. The above applies to the Work as incorporated in a 
Collective Work, but this does not require the Collective Work apart from the 
Work itself to be made subject to the terms of this License. If You create a 
Collective Work, upon notice from any Licensor You must, to the extent prac-
ticable, remove from the Collective Work any credit as required by clause 
4(b), as requested.

2. If You distribute, publicly display, publicly perform, or publicly digitally 
perform the Work or Collective Works, You must keep intact all copyright 
notices for the Work and provide, reasonable to the medium or means You are 
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if 
supplied, and/or (ii) if the Original Author and/or Licensor designate another 
party or parties (e.g. a sponsor institute, publishing entity, journal) for attribu-
tion in Licensor's copyright notice, terms of service or by other reasonable 
means, the name of such party or parties; the title of the Work if supplied; and 
to the extent reasonably practicable, the Uniform Resource Identifier, if any, 
that Licensor specifies to be associated with the Work, unless such URI does 
not refer to the copyright notice or licensing information for the Work. Such 
credit may be implemented in any reasonable manner; provided, however, that 
in the case of a Collective Work, at a minimum such credit will appear where 
any other comparable authorship credit appears and in a manner at least as 
prominent as such other comparable authorship credit.

E.5 Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, 
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR 
WARRANTIES OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED, 
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF 
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGE-
MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRES-
ENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME 
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JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH 
EXCLUSION MAY NOT APPLY TO YOU.

E.6 Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL 
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF 
THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED 
OF THE POSSIBILITY OF SUCH DAMAGES.

E.7 Termination

1. This License and the rights granted hereunder will terminate automatically 
upon any breach by You of the terms of this License. Individuals or entities 
who have received Collective Works from You under this License, however, 
will not have their licenses terminated provided such individuals or entities 
remain in full compliance with those licenses. Sections E.1, E.2, E.5, E.6, E.7, 
and E.8 will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted here is perpetual 
(for the duration of the applicable copyright in the Work). Notwithstanding the 
above, Licensor reserves the right to release the Work under different license 
terms or to stop distributing the Work at any time; provided, however that any 
such election will not serve to withdraw this License (or any other license that 
has been, or is required to be, granted under the terms of this License), and this 
License will continue in full force and effect unless terminated as stated 
above.

E.8 Miscellaneous

1. Each time You distribute or publicly digitally perform the Work, the Licensor 
offers to the recipient a license to the Work on the same terms and conditions 
as the license granted to You under this License.
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2. If any provision of this License is invalid or unenforceable under applicable 
law, it shall not affect the validity or enforceability of the remainder of the 
terms of this License, and without further action by the parties to this agree-
ment, such provision shall be reformed to the minimum extent necessary to 
make such provision valid and enforceable.

3. No term or provision of this License shall be deemed waived and no breach 
consented to unless such waiver or consent shall be in writing and signed by 
the party to be charged with such waiver or consent.

4. This License constitutes the entire agreement between the parties with respect 
to the Work licensed here. There are no understandings, agreements or repre-
sentations with respect to the Work not specified here. Licensor shall not be 
bound by any additional provisions that may appear in any communication 
from You. This License may not be modified without the mutual written 
agreement of the Licensor and You.
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