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Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

¢ Although available from a variety of vendors, it was rarely possible to find a
single vendor that could provide an implementation for all of the environ-
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ments in a heterogeneous network. Despite much standardization effort, lack
of interoperability between different CORBA implementations continued to
cause problems, and source code compatibility for languages such as C or
C++ was never fully achieved, usually due to vendor-specific extensions and
CORBA’s lack of a specification for multi-threaded environments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:
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SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

Choose .NET
The most serious drawback is that non-Microsoft platforms are not supported.
Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can either choose a
platform that won’t run on anything but Microsoft architectures, or you can
choose a platform that is complex and suffering from gradual abandonment, or
you can choose a platform that is inefficient and, due to the lack of standardiza-
tion, proprietary.
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1.2

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

* Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.
* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.
To be more simplistic, the Ice design goals could be stated as “Let’s build a

middleware platform that is as powerful as CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* Part I, Ice Overview, provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, and Python.

* Part I, Slice, explains the Slice definition language. After reading this part,
you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

¢ Part III, Language Mappings, contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.
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* Part IV, Advanced Ice, presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

® Part V, Ice Services, covers the services provided with Ice, such as IceGrid (a
sophisticated deployment tool), Glacier2 (the Ice firewall solution), IceStorm
(the Ice messaging service), and IcePatch?2 (a software patching service).2

* The appendixes contain the Ice reference material.

1.4 Typographical Conventions

This book uses the following typographical conventions:
* Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
¢ File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that
software developers are still inveterate punsters.
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1.5

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

1.7

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.

Ice Support

ZeroC maintains a discussion and support forum at
http://www.zeroc.com/support.html. You can use this forum for any questions or
suggestions you may have about the Ice platform, as well as to get support for
specific problems you encounter.


mailto:icebook@zeroc.com
http://www.zeroc.com/support.html
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Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate
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using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

2.2.2 Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:
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* An Ice object is an entity in the local or a remote address space that can
respond to client requests.

* A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

* Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

* An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific fype. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

* An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

* Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in XREF.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the
Ice object.! A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1. A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.
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ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN L B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
® Addressing information that allows the client-side run time to contact the
correct server

* An object identity that identifies which particular object in the server is the
target of a request

* An optional facet identifier that determines which particular facet of an object
the proxy refers to

Section 30.10 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)
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® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 30.17). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used for direct proxies, and
indirect binding is used for indirect proxies.
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The main advantage of indirect binding is that it allows us to move servers
around (that is, change their address) without invalidating existing proxies that are
held by clients. In other words, direct proxies avoid the extra lookup to locate the
server but no longer work if a server is moved to a different machine. On the other
hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of
containing addressing information or an adapter name, the proxy contains a
connection handle. The connection handle stays valid only for as long as the
connection stays open so, once the connection is closed, the proxy no longer
works (and will never work again). Fixed proxies cannot be marshaled, that is,
they cannot be passed as parameters on operation invocations. Fixed proxies are
used to allow bidirectional communication, so a server can make callbacks to a
client without having to open a new connection (see Section 34.7).

Replication

In Ice, replication involves making object adapters (and their objects) available at
multiple addresses. The goal of replication is usually to provide redundancy by
running the same server on several computers. If one of the computers should
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple
addresses for an object. The Ice run time selects one of the addresses at random
for its initial connection attempt (see Section 30.10) and tries all of them in the
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 1000l:tcp -h server2 -p 10002

The proxy states that the object with identity SimplePrinter is available
using TCP at two addresses, one on the host serverl and another on the host
server2. The burden falls to users or system administrators to ensure that the
servers are actually running on these computers at the specified ports.
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Replica Groups

In addition to the proxy-based replication described above, Ice supports a more
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 30.17).

A replica group has a unique identifier and consists of any number of object
adapters. An object adapter may be a member of at most one replica group; such
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.”
The behavior of the location service when resolving an indirect proxy containing a
replica group id is an implementation detail. For example, the location service
could decide to return the addresses of all object adapters in the group, in which
case the client’s Ice run time would select one of the addresses at random using
the limited form of replication discussed earlier. Another possibility is for the
location service to return only one address, which it decided upon using some
heuristic.

Regardless of the way in which a location service resolves a replica group, the
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 10, an Ice object is a conceptual entity that has a type,
identity, and addressing information. However, client requests ultimately must end
up with a concrete server-side processing entity that can provide the behavior for
an operation invocation. To put this differently, a client request must ultimately
end up executing code inside the server, with that code written in a specific
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is
known as a servant. A servant provides substance for (or incarnates) one or more
Ice objects. In practice, a servant is simply an instance of a class that is written by
the server developer and that is registered with the server-side run time as the
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.
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A single servant can incarnate a single Ice object at a time or several Ice
objects simultaneously. If the former, the identity of the Ice object incarnated by
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we
might choose to create a proxy for an Ice object with two different addresses for
different machines. In that case, we will have two servers, with each server
containing a servant for the same Ice object. When a client invokes an operation
on such an Ice object, the client-side run time sends the request to exactly one
server. In other words, multiple servants for a single Ice object allow you to build
redundant systems: the client-side run time attempts to send the request to one
server and, if that attempt fails, sends the request to the second server. Only if the
second attempt fails is an error reported back to the client-side application code.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver
a request to the correct destination and, depending on the exact circumstances,
may retry a failed request. Ice guarantees that it will either deliver the request, or,
if it cannot deliver the request, inform the client with an appropriate exception;
under no circumstances is a request delivered twice, that is, retries are attempted
only if it is known that a previous attempt definitely failed.”

At-most-once semantics are important because they guarantee that operations
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example,
x = 1; is an idempotent operation: if we execute the operation twice, the end
result is the same as if we had executed it once. On the other hand, x++ ; is not
idempotent: if we execute the operation twice, the end result is not the same as if
we had executed it once.

Without at-most-once semantics, we can build distributed systems that are
more robust in the presence of network failures. However, realistic systems
require non-idempotent operations, so at-most-once semantics are a necessity,
even though they make the system less robust in the presence of network failures.
Ice permits you to mark individual operations as idempotent. For such operations,

2. One exception to this rule are datagram invocations over UDP transports. For these, duplicated
UDP packets can lead to a violation of at-most-once semantics.
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the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the
client thread is suspended for the duration of the call and resumes when the call
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback
object and the client invocation returns immediately. Once the operation
completes, the client-side run time invokes a method on the callback object passed
initially, passing the results of the operation to the callback object (or, in case of
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous
one—either way, the server simply sees that a client has invoked an operation on
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is
informed of the arrival of an operation invocation. However, instead of being
forced to process the request immediately, the server-side application can choose
to delay processing of the request and, in doing so, releases the execution thread
for the request. The server-side application code is now free to do whatever it
likes. Eventually, once the results of the operation are available, the server-side
application code makes an API call to inform the server-side Ice run time that a
request that was dispatched previously is now complete; at that point, the results
of the operation are returned to the client.
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Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available.
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen
clients. With asynchronous dispatch, hundreds or thousands of clients can be
blocked in the same operation invocation without tying up any threads in the
Server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This
allows you to continue processing after results have been returned to the client, for
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client,
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has
“best effort” semantics. For a oneway invocation, the client-side run time hands
the invocation to the local transport, and the invocation completes on the client
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not
reply to oneway invocations, that is, traffic flows only from client to server, but not
vice versa.

Oneway invocations are unreliable. For example, the target object may not
exist, in which case the invocation is simply lost. Similarly, the operation may be
dispatched to a servant in the server, but the operation may fail (for example,
because parameter values are invalid); if so, the client receives no notification that
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return
value, do not have out-parameters, and do not throw user exceptions (see
Chapter 4).

To the application code on the server-side, oneway invocations are transparent,
that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.
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Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented
transport, they may be processed out of order in the server. This can happen
because each invocation may be dispatched in its own thread: even though the
invocations are initiated in the order in which the invocations arrive at the server,
this does not mean that they will be processed in that order—the vagaries of
thread scheduling can result in a oneway invocation to complete before other
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the
oneway invocations you want to send, you make a separate API call to send all the
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single
message. This avoids the overhead of repeatedly trapping into the kernel for both
client and server, and is much easier on the network between them because one
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in
order in the server.

Batched oneway invocations are particularly useful for messaging services,
such as IceStorm (see Chapter 42), and for fine-grained interfaces that offer set
operations for small attributes.

Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations.
However, datagram invocations require the object to offer UDP as a transport
(whereas oneway invocations require TCP/IP).
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Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A data-
gram invocation uses UDP to invoke the operation. The operation returns as soon
as the local UDP stack has accepted the message; the actual operation invocation
is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not
exist in the server, the server may not be running, or the operation may be invoked
in the server but fail due to invalid parameters sent by the client. As for oneway
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of
additional error scenarios:

¢ Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you
invoke three operations in sequence, the middle invocation may be lost. (The
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be
lost.)

¢ Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is
sent as a separate datagram, and individual datagrams can take different paths
through the network, it can happen that invocations arrive in an order that
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the
likelihood of loss is small. They are also suited to situations in which low latency
is more important than reliability, such as for fast, interactive internet applications.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to
accumulate a number of invocations in a buffer and then send the entire buffer as a
single datagram by making an API call to flush the buffer. Batched datagrams
reduce the overhead of repeated system calls and allow the underlying network to
operate more efficiently. However, batched datagram invocations are useful only
for batched messages whose total size does not substantially exceed the PDU limit
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the
loss of the entire batched message. However, you are guaranteed that either all
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invocations in a batch will be delivered, or none will be delivered. It is impossible
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual
invocations in a batch. This guarantees that the invocations are made in the order
in which they were queued—invocations cannot appear to be reordered in the
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are
pre-defined by the Ice run time and cover common error conditions, such as
connection failure, connection timeout, or resource allocation failure. Run-time
exceptions are presented to the application as proper C++, Java, or C# exceptions
and so integrate neatly with the native exception handling capabilities of these
languages.

User Exceptions

User exceptions are used to indicate application-specific error conditions to
clients. User exceptions can carry an arbitrary amount of complex data and can be
arranged into inheritance hierarchies, which makes it easy for clients to handle
categories of errors generically, by catching an exception that is further up the
inheritance hierarchy. Like run-time exceptions, user exceptions map to native
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name—value
pairs, such as Ice.Default.Protocol=tcp. Properties are typically stored
in text files and parsed by the Ice run time to configure various options, such as the
thread pool size, the level of tracing, and various other configuration parameters.

Slice (Specification Language for Ice)

As mentioned on page 11, each Ice object has an interface with a number of oper-
ations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define
the client-server contract in a way that is independent of a specific programming
language, such as C++, Java, or C#. The Slice definitions are compiled by a
compiler into an API for a specific programming language, that is, the part of the
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API that is specific to the interfaces and types you have defined consists of gener-
ated code.

2.2.4 Language Mappings

The rules that govern how each Slice construct is translated into a specific
programming language are known as language mappings. For example, for the
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector,
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks
like, you only need the Slice definition and knowledge of the language mapping
rules. The rules are simple and regular enough to make it unnecessary to read the
generated code to work out how to use the generated APL

Of course, you are free to peruse the generated code. However, as a rule, that is
inefficient because the generated code is not necessarily suitable for human
consumption. We recommend that you familiarize yourself with the language
mapping rules; that way, you can mostly ignore the generated code and need to
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Visual Basic
.NET, Python, and, for the client side, PHP (see Chapter 26).

3. The C# implementation of Ice is affectionately known as Icicle.
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2.2.5 Client and Server Structure

Ice clients and servers have the logical internal structure shown in Figure 2.1

Client Application Server Application
A A A A A
y A \ \ \
Proxy Ice API Ice API Skeleton Object
Code Adapter
Client Ice Core ‘/\ Server Ice Core
Network

Ice API
£Z] Generated Code

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and
code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote
communication. Much of this code is concerned with the details of
networking, threading, byte ordering, and many other networking-related
issues that we want to keep away from application code. The Ice core is
provided as a number of libraries that client and server link with.

® The generic part of the Ice core (that is, the part that is independent of the
specific types you have defined in Slice) is accessed through the Ice API. You
use the Ice API to take care of administrative chores, such as initializing and
finalizing the Ice run time. The Ice API is identical for clients and servers
(although servers use a larger part of the API than clients).

* The proxy code is generated from your Slice definitions and, therefore,
specific to the types of objects and data you have defined in Slice. The proxy
code has two major functions:

* It provides a down-call interface for the client. Calling a function in the
generated proxy API ultimately ends up sending an RPC message to the
server that invokes a corresponding function on the target object.
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* It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that
arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

* The skeleton code is also generated from your Slice definition and, therefore,
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it
provides an up-call interface that permits the Ice run time to transfer the thread
of control to the application code you write. The skeleton also contains
marshaling and unmarshaling code, so the server can receive parameters sent
by the client, and return parameters and exceptions to the client.

* The object adapter is a part of the Ice API that is specific to the server side:
only servers use object adapters. An object adapter has several functions:

* The object adapter maps incoming requests from clients to specific methods
on programming-language objects. In other words, the object adapter tracks
which servants with what object identity are in memory.

* The object adapter is associated with one or more transport endpoints. If
more than one transport endpoint is associated with an adapter, the servants
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint
with an adapter, to provide alternate quality-of-service and performance
characteristics.

* The object adapter is responsible for the creation of proxies that can be
passed to clients. The object adapter knows about the type, identity, and
transport details of each of its objects and embeds the correct details when
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve
proxies to transport endpoints.)
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2.2.6

2.2.7

The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server are encrypted.

The Ice protocol defines:

* a number of message types, such as request and reply message types,

* a protocol state machine that determines in what sequence different message
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

* encoding rules that determine how each type of data is represented on the
wire,

* a header for each message type that contains details such as the message type,
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter,
you can arrange for all network traffic to be compressed to conserve bandwidth.
This is useful if your application exchanges large amounts of data between client
and server.

The Ice protocol is suitable for building highly-efficient event forwarding
mechanisms because it permits forwarding of a message without knowledge of the
details of the information inside a message. This means that messaging switches
need not do any unmarshaling and remarshaling of messages—they can forward a
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to
send a message to a callback object provided by the client, the callback can be
made over the connection that was originally created by the client. This feature is
especially important when the client is behind a firewall that permits outgoing
connections, but not incoming connections.

Object Persistence

Ice has a built-in object persistence service, known as Freeze. Freeze makes it
easy to store object state in a database: you define the state stored by your objects
in Slice, and the Freeze compiler generates code that stores and retrieves object
state to and from a database. By default, Freeze uses Berkeley DB [18] as its data-
base. However, if you prefer to store object state in another database, you can do
so. We discuss Freeze in detail in Chapter 37.
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2.3

Ice also offers a number of tools that make it easier to maintain databases and
to migrate the contents of existing databases to a new schema if the type defini-
tions of objects change. We discuss these tools in Chapter 38.

Ice Services

2.3.1

The Ice core provides a sophisticated client—server platform for distributed appli-
cation development. However, realistic applications usually require more than just
a remoting capability: typically, you also need a way to start servers on demand,
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The
services are implemented as Ice servers to which your application acts as a client.
None of the services use Ice-internal features that are hidden from application
developers so, in theory, you could develop equivalent services yourself. However,
having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first.
Moreover, building such services is not a trivial effort, so it pays to know what is
available and use it instead of reinventing your own wheel.

lceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic
information in an indirect proxy to a protocol-address pair for indirect binding. A
location service is only the beginning of IceGrid’s capabilities:

* IceGrid allows you to register servers for automatic start-up: instead of
requiring a server to be running at the time a client issues a request, IceGrid
starts servers on demand, when the first client request arrives.

¢ IceGrid provides tools that make it easy to configure complex applications
containing several servers.

* IceGrid supports replication and load-balancing.

* JceGrid automates the distribution and patching of server executables and
dependent files.

* IceGrid provides a simple query service that allows clients to obtain proxies
for objects they are interested in.
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2.3.2
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lceBox

IceBox is a simple application server that can orchestrate the starting and stopping
of a number of application components. Application components can be deployed
as a dynamic library instead of as a process. This reduces overall system load, for
example, by allowing you to run several application components in a single Java
virtual machine instead of having multiple processes, each with its own virtual
machine.

lceStorm

IceStorm is a publish—subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events
to the service, which, in turn, passes the events to subscribers. In this way, a single
event published by a publisher can be sent to multiple subscribers. Events are cate-
gorized by topic, and subscribers specify the topics they are interested in. Only
events that match a subscriber’s topic are sent to that subscriber. The service
permits selection of a number of quality-of-service criteria to allow applications to
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to
large numbers of application components. (A typical example is a stock ticker
application with a large number of subscribers.) IceStorm decouples the
publishers of information from subscribers and takes care of the redistribution of
the published events. In addition, IceStorm can be run as a federated service, that
is, multiple instances of the service can be run on different machines to spread the
processing load over a number of CPUs.

IcePatch2

IcePatch2* is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch2 server and request
updates for a particular application. The service automatically checks the version
of the client’s software and downloads any updated application components in a
compressed format to conserve bandwidth. Software patches can be secured using
the Glacier2 service, so only authorized clients can download software updates.

4. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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Glacier2

Glacier2’ is the Ice firewall service: it allows clients and servers to securely
communicate through a firewall without compromising security. Client-server
traffic is fully encrypted using public key certificates and is bidirectional. Glacier2
offers support for mutual authentication as well as secure session management.

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:
* Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is
chosen depending on the actual run-time (not static) type of an object.

® Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and
dispatch, as well as publish—subscribe messaging via IceStorm. This allows
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

® Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining
a single object identity across these interfaces. This provides great flexibility,
particularly as an application evolves but needs to remain compatible with
older, already deployed clients.

® Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying
machine architecture. Issues such as byte ordering and padding are hidden
from application code.

* Language independence

Client and server can be developed independently and in different program-
ming languages (currently C++, Java, C#, and, for the client side, PHP). The

5. Glacier2 supersedes Glacier, which was a previous version of this service.
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Slice definition used by both client and server establishes the interface
contract between them and is the only thing they need to agree on.

* Implementation independence

Clients are unaware of how servers implement their objects. This means that
the implementation of a server can be changed after clients are deployed, for
example, to use a different persistence mechanism or even a different
programming language.

® QOperating system independence

The Ice APIs are fully portable, so the same source code compiles and runs
under both Windows and UNIX.

* Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond
synchronizing access to shared data) is required on part of the application
developer to develop threaded, high-performance clients and servers.

* Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither
client nor server code are aware of the underlying transport. (The desired
transport can be chosen by a configuration parameter.)

® Location and server transparency

The Ice run time takes care of locating objects and managing the underlying
transport mechanism, such as opening and closing connections. Interactions
between client and server appear connection-less. Via IceGrid, you can
arrange for servers to be started on demand if they are not running at the time
a client invokes an operation. Servers can be migrated to different physical
addresses without breaking proxies held by clients, and clients are completely
unaware how object implementations are distributed over server processes.

* Security
Communications between client and server can be fully secured with strong
encryption over SSL, so applications can use unsecured public networks to
communicate securely. Via Glacier2, you can implement secure forwarding of
requests through a firewall, with full support for callbacks.

* Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.
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* Source code availability

The source code for Ice is available. While it is not necessary to have access to
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment
for distributed computing that is more complete than any other platform we are
aware of.

A Comparison with CORBA

2.5.1

Obviously, Ice uses many ideas that can be found in CORBA and earlier distrib-
uted computing platforms, such as DCE [14]. In some areas, Ice is remarkably
close to CORBA whereas, in others, the differences are profound and have far-
reaching architectural implications. If you have used CORBA in the past, it is
important to be aware of these differences.

Differences in the Object Model

The Ice object model, even though superficially the same, differs in a number of
important points from the CORBA object model.

Type System

An Ice object, like a CORBA object, has exactly one most derived main interface.
However, an Ice object can provide other interfaces as facets. It is important to
notice that all facets of an Ice object share the same object identity, that is, the
client sees a single object with multiple interfaces instead of several objects, each
with a different interface.

Facets provide great architectural flexibility. In particular, they offer an
approach to the versioning problem: it is easy to extend functionality in a server
without breaking existing, already deployed clients by simply adding a new facet
to an already existing object.

Proxy Semantics

Ice proxies (the equivalent of CORBA object references) are not opaque. Clients
can always create a proxy without support from any other system component, as
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long as they know the type and identity of the object. (For indirect binding, it is
not necessary to be aware of the transport address of the object.)
Allowing clients to create proxies on demand has a number of advantages:

* Clients can create proxies without the need to consult an external look-up
service, such as a naming service. In effect, the object identity and the object’s
name are considered to be one and the same. This eliminates the problems that
can arise from having the contents of the naming service go out of sync with
reality, and reduces the number of system components that must be functional
for clients and servers to work correctly.

* Clients can easily bootstrap themselves by creating proxies to the initial
objects they need. This eliminates the need for a separate bootstrap service.

® There is no need for different encodings of stringified proxies. A single,
uniform representation is sufficient, and that representation is readable to
humans. This avoids the complexities introduced by CORBA’s three different
object reference encodings (IOR, corbaloc, and corbaname).

Experience over many years with CORBA has shown that, pragmatically, opacity
of object references is problematic: not only does it require more complex APIs
and run-time support, it also gets in the way of building realistic systems. For that
reason, mechanisms such as corbaloc and corbaname were added, as well as
the (ill-defined) is_equivalent and hash operations for reference comparison.
All of these mechanisms compromise the opacity of object references, but other
parts of the CORBA platform still try to maintain the illusion of opaque refer-
ences. As a result, the developer gets the worst of both worlds: references are
neither fully opaque nor fully transparent—the resulting confusion and
complexity are considerable.

Object Identity

The Ice object model assumes that object identities are universally unique (but
without imposing this requirement on the application developer). The main advan-
tage of universally unique object identities is that they permit you to migrate
servers and to combine the objects in multiple separate servers into a single server
without concerns about name collisions: if each Ice object has a unique identity, it
is impossible for that identity to clash with the identity of another object in a
different domain.

The Ice object model also uses strong object identity: it is possible to deter-
mine whether two proxies denote the same object as a local, client-side operation.
(With CORBA, you must invoke operations on the remote objects to get reliable
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identity comparison.) Local identity comparison is far more efficient and crucial
for some application domains, such as a distributed transaction service.

Differences in Platform Support

CORBA, depending on which specification you choose to read, provides many of
the services provided by Ice. For example, CORBA supports asynchronous
method invocation and, with the component model, a form of multiple interfaces.
However, the problem is that it is typically impossible to find these features in a
single implementation. Too many CORBA specifications are either optional or not
widely implemented so, as a developer, you are typically faced with having to
choose which feature to do without.

Other features of Ice do not have direct CORBA equivalents:

* Asynchronous Method Dispatch (AMD)

The CORBA APIs do not provide any mechanism to suspend processing of an
operation in the server, freeing the thread of control, and resuming processing
of the operation later.

* Security

While there are many pages of specifications relating to security, most of them
remain unimplemented to date. In particular, CORBA to date offers no prac-
tical solution that allows CORBA to coexist with firewalls.

* Protocol Features

The Ice protocol offers bidirectional support, which is a fundamental require-
ment for allowing callbacks through firewalls. (CORBA specified a bidirec-
tional protocol at one point, but the specification was technically flawed and,
to the best of our knowledge, never implemented.) In addition, Ice allows you
to use UDP as well as TCP, so event distribution on reliable (local) networks
can be made extremely efficient and light-weight. CORBA provides no
support for UDP as a transport.

Another important feature of the Ice protocols is that all messages and data are
fully encapsulated on the wire. This allows Ice to implement services such as
IceStorm extremely efficiently because, to forward data, no unmarshaling and
remarshaling is necessary. Encapsulation is also important for the deployment
of protocol bridges, such as Glacier2, because the bridge does not need to be

configured with type-specific information.
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* Language Mappings
CORBA does not specify a language mapping for C#, Visual Basic, or PHP.

Differences in Complexity

CORBA is known as a platform that is large and complex. This is largely a result
of the way CORBA is standardized: decisions are reached by consensus and
majority vote. In practice, this means that, when a new technology is being stan-
dardized, the only way to reach agreement is to accommodate the pet features of
all interested parties. The result are specifications that are large, complex, and
burdened with redundant or useless features. In turn, all this complexity leads to
implementations that are large and inefficient. The complexity of the specifica-
tions is reflected in the complexity of the CORBA APIs: even experts with years
of experience still need to work with a reference manual close at hand, and, due to
this complexity, applications are frequently plagued with latent bugs that do not
show up until after deployment.

CORBA'’s object model adds further to CORBA’s complexity. For example,
opaque object references force the specification of a naming service because
clients must have some way to access object references. In turn, this requires the
developer to learn yet another API, and to configure and deploy yet another
service when, as with the Ice object model, no naming service is necessary in the
first place.

One of the most infamous areas of complexity in CORBA is the C++
mapping. The CORBA C++ API is arcane in the extreme; in particular, the
memory management issues of this mapping are more than what many developers
are willing to endure. Yet, the code required to implement the C++ mapping is
neither particularly small nor efficient, leading to binaries that are larger and
require more memory at run time than they should. If you have used CORBA with
C++ in the past, you will appreciate the simplicity, efficiency, and neat integration
with STL of the Ice C++ mapping.

In contrast to CORBA, Ice is first and foremost a simple platform. The
designers of Ice took great care to pick a feature set that is both sufficient and
minimal: you can do everything you want, and you can do it with the smallest and
simplest possible API. As you start to use Ice, you will appreciate this simplicity.
It makes it easy to learn and understand the platform, and it leads to shorter devel-
opment time with lower defect counts in deployed applications. At the same time,
Ice does not compromise on features: with Ice, you can achieve everything you
can achieve with CORBA and do so with less effort, less code, and less
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complexity. We see this as the most compelling advantage of Ice over any other
middleware platform: things are simple, so simple, in fact, that you will be devel-
oping industrial-strength distributed applications after only a few days exposure to
Ice.



Chapter 3
A Hello World Application

3.1

Chapter Overview

In this chapter, we will see how to create a very simple client—server application in
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic

(Section 3.6), and Python (Section 3.7). Rather than reading the entire chapter, we
suggest that you read Section 3.2 and then skip to the section that deals with the
programming language of your choice.

The application enables remote printing: a client sends the text to be printed to
a server, which in turn sends that text to a printer. For simplicity (and because we
do not want to concern ourselves with the idiosyncrasies of print spoolers for
various platforms), our printer will simply print to a terminal instead of a real
printer. This is no great loss: the purpose of the exercise is to show how a client
can communicate with a server; once the thread of control has reached the server
application code, that code can of course do anything it likes (including sending
the text to a real printer). How to do this is independent of Ice and therefore not
relevant here.

Note that much of the detail of the source code will remain unexplained for
now. The intent is to show you how to get started and give you a feel for what the
development environment looks like; we will provide all the detail throughout the
remainder of this book.

35
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3.2

Writing a Slice Definition

3.3

The first step in writing any Ice application is to write a Slice definition containing
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo {
interface Printer {
void printString(string s);
};
b

We save this text in a file called Printer.ice.

Our Slice definitions consist of the module Demo containing a single interface
called Printer. For now, the interface is very simple and provides only a single
operation, called printString. The printString operation accepts a string as its
sole input parameter; the text of that string is what appears on the (possibly
remote) printer.

Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to
generate C++ proxies and skeletons. Under UNIX, you can compile the definition
as follows:

S slice2cpp Printer.ice
The slice2cpp compiler produces two C++ source files from this definition,
Printer.hand Printer.cpp.

®* Printer.h

The Printer.h header file contains C++ type definitions that correspond to
the Slice definitions for our Printer interface. This header file must be
included in both the client and the server source code.

®* Printer.cpp

The Printer. cpp file contains the source code for our Printer interface.
The generated source contains type-specific run-time support for both clients
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and servers. For example, it contains code that marshals parameter data (the
string passed to the printString operation) on the client side and unmarshals
that data on the server side.

The Printer. cpp file must be compiled and linked into both client and
server.

Writing and Compiling a Server
The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer ({
public:
virtual void printString(const stringé& s,
const Ice::Currenté&) ;

void
PrinterI::
printString(const string& s, const Ice::Currenté&)
cout << 8 << endl;
int
main (int argc, char* argv[])
int status = 0;
Ice::CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);

Ice: :0ObjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add(object, ic->stringToldentity ("SimplePrinter")

adapter-sactivate() ;
ic->waitForShutdown () ;
} catch (const Ice::Exception& e) {
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cerr << e << endl;
status = 1;

} catch (const char* msg) {
cerr << msg << endl;

status = 1;
}
if (ic) |
try {
ic->destroy () ;
} catch (const Ice::Exception& e) ({
cerr << e << endl;
status = 1;
}
}

return status;

}

There appears to be a lot of code here for something as simple as a server that just
prints a string. Do not be concerned by this: most of the preceding code is boiler
plate that never changes. For this very simple server, the code is dominated by this
boiler plate.

Every Slice source file starts with an include directive for Ice.h, which
contains the definitions for the Ice run time. We also include Printer . h, which
was generated by the Slice compiler and contains the C++ definitions for our
printer interface, and we import the contents of the std and Demo namespaces
for brevity in the code that follows:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type PrinterI. Looking at
the generated code in Printer.h, we find the following (tidied up a little to get
rid of irrelevant detail):

namespace Demo {
class Printer : virtual public Ice::0Object
public:
virtual void printString(const std::string&,
const Ice::Currenté&
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= Ice::Current ()
) = 0;
}i
}i
The Printer skeleton class definition is generated by the Slice compiler. (Note
that the print St ring method is pure virtual so the skeleton class cannot be
instantiated.) Our servant class inherits from the skeleton class to provide an
implementation of the pure virtual print St ring method. (By convention, we
use an I-suffix to indicate that the class implements an interface.)

class PrinterI : public Printer {
public:
virtual void printString(const string& s,
const Ice::Currenté&) ;

}i

The implementation of the print String method is trivial: it simply writes its
string argument to stdout:

void

PrinterI::

printString(const string& s, const Ice::Currenté&)
cout << s << endl;

Note that printString has a second parameter of type Ice: : Current. As
you can see from the definition of Printer: :printString, the Slice
compiler generates a default argument for this parameter, so we can leave it
unused in our implementation. (We will examine the purpose of the
Ice: :Current parameter in Section 30.6.)

What follows is the server main program. Note the general structure of the
code:
int
main (int argc, char* argv[])

{

int status = 0;
Ice: :CommunicatorPtr ic;
try {

// Server implementation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
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status = 1;

} catch (const char* msg) {
cerr << msg << endl;
status = 1;

}
if (ic) {
try {
ic->destroy () ;
} catch (const Ice::Exception& e)
cerr << e << endl;
status = 1;
}
}

return status;

}

The body of main contains the declaration of two variables, status and ic.
The status variable contains the exit status of the program and the ic variable,
of type Ice: : CommunicatorPtr, contains the main handle to the Ice run
time.

Following these declarations is a try block in which we place all the server
code, followed by two catch handlers. The first handler catches all exceptions
that may be thrown by the Ice run time; the intent is that, if the code encounters an
unexpected Ice run-time exception anywhere, the stack is unwound all the way
back to main, which prints the exception and then returns failure to the operating
system. The second handler catches string constants; the intent is that, if we
encounter a fatal error condition somewhere in our code, we can simply throw a
string literal with an error message. Again, this unwinds the stack all the way back
to main, which prints the error message and then returns failure to the operating
system.

Following the try block, we see a bit of cleanup code that calls the destroy
method on the communicator (provided that the communicator was initialized).
The cleanup call is outside the first t ry block for a reason: we must ensure that
the Ice run time is finalized whether the code terminates normally or terminates
due to an exception.l

The body of the first try block contains the actual server code:

1. Failure to call destroy on the communicator before the program exits results in undefined
behavior.
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ic = Ice::initialize(argc, argv);
Ice: :0bjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice::0bjectPtr object = new PrinterI;
adapter->add(object, ic->stringTolIdentity ("SimplePrinter")

adapter->activate() ;
ic->waitForShutdown () ;

The code goes through the following steps:

1

. We initialize the Ice run time by calling Ice: :initialize. (We pass

argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not
require any command-line arguments.) The call to initialize returns a
smart pointer to an Ice: :Communicator object, which is the main handle to
the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.) The server starts to process incoming
requests from clients as soon as the adapter is activated.

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice: :Application—see Section 8.3.1.) As far as actual application code is
concerned, the server contains only a few lines: six lines for the definition of the
PrinterT class, plus three? lines to instantiate a PrinterT object and register
it with the object adapter.

Assuming that we have the server code in a file called Server . cpp, we can
compile it as follows:

$ c++ -I. -ISICE HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICE_HOME environment variable is set to the
top-level directory containing the Ice run time. (For example, if you have installed
Icein /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you
may have to add additional include directives or other options to the compiler
(such as an include directive for the STLport headers, or to control template
instantiation); please see the demo programs that ship with Ice for the details.
Finally, we need to link the server into an executable:

S c++ -0 server Printer.o Server.o \
-L$ICE HOME/lib -1Ice -1lIceUtil

Again, depending on the platform, the actual list of libraries you need to link
against may be longer. The demo programs that ship with Ice contain all the detail.
The important point to note here is that the Ice run time is shipped in two libraries,
libIceand 1ibIceUtil.

Writing and Compiling a Client
The client code looks very similar to the server. Here it is in full:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int

2. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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main (int argc, char* argv(])

{
int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);
Ice::0bjectPrx base = ic->stringToProxy (

"SimplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base) ;
if (!printer)
throw "Invalid proxy";

printer->printString("Hello World!") ;
} catch (const Ice::Exception& ex) {

cerr << ex << endl;

status = 1;
} catch (const char* msg) {

cerr << msg << endl;

status = 1;

1

if (ic)
ic->destroy () ;

return status;

}

Note that the overall code layout is the same as for the server: we include the
headers for the Ice run time and the header generated by the Slice compiler, and
we use the same try block and catch handlers to deal with errors.

The code in the t ry block does the following:

1. As for the server, we initialize the Ice run time by calling
Ice::initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice: :ObjectPrx,
which is at the root of the inheritance tree for interfaces and classes. But to
actually talk to our printer, we need a proxy for a Printer interface, not an
Object interface. To do this, we need to do a down-cast by calling Print -



44

A Hello World Application

erPrx: :checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy to a Printer; otherwise, if the proxy denotes an interface of
some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print -
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -IS$ICE HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -L$ICE HOME/lib -lIce -1IceUtil

Running Client and Server
To run client and server, we first start the server in a separate window:
$ ./server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Section 8.3.1.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some plat-
form-dependent environment variables. For example, under Linux, you need to
add the Ice library directory to your LD LIBRARY PATH. Please have a look at
the demo applications that ship with Ice for the details for your platform.
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3.4 Writing an Ice Application with Java

This section shows how to create an Ice application with Java.

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to
generate Java proxies and skeletons. Under UNIX, you can compile the definition
as follows:

$ mkdir generated
$ slice2java --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The slice2java compiler produces a number of Java
source files from this definition. The exact contents of these files do not concern
us for now—they contain the generated code that corresponds to the Printer
interface we defined in Printer.ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file PrinterI.java:

public class PrinterI extends Demo. PrinterDisp ({
public void
printString(String s, Ice.Current current)

{
}

System.out.println(s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the slice2java compiler. The base class is abstract and
contains a printString method that accepts a string for the printer to print and
a parameter of type Ice.Current. (For now we will ignore the
Ice.Current parameter. We will see its purpose in detail in Section 30.6.) Our

3. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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implementation of the print String method simply writes its argument to the
terminal.

The remainder of the server code is in a source file called Server.java,
shown in full here:
public class Server {

public static void
main (String[] args)

{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args);

Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
Ice.Util.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Ice.LocalException e)
e.printStackTrace () ;
status = 1;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
if (ic != null) {
// Clean up
//
try {
ic.destroy () ;
} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;
}
}

System.exit (status) ;

}

Note the general structure of the code:
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public class Server {
public static void
main(String[] args) {

int status = 0;
Ice.Communicator ic = null;
try {

// Server implementation here...

} catch (Ice.LocalException e)
e.printStackTrace () ;
status = 1;

} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;

}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}
}

System.exit (status) ;

}

The body of main contains a try block in which we place all the server code,
followed by two catch blocks. The first block catches all exceptions that may be
thrown by the Ice run time; the intent is that, if the code encounters an unexpected
Ice run-time exception anywhere, the stack is unwound all the way back to main,
which prints the exception and then returns failure to the operating system. The
second block catches Except ion exceptions; the intent is that, if we encounter a
fatal error condition somewhere in our code, we can simply throw an exception
with an error message. Again, this unwinds the stack all the way back to main,
which prints the error message and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.
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The body of our try block contains the actual server code:

ic = Ice.Util.initialize(args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object object = new PrinterI();
adapter.add (
object,
Ice.Util.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an

Ice: :Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000, which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

. Finally, we call waitForShutdown. This call suspends the calling thread

until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 12.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterT class, plus four* lines to instantiate a PrinterI object and
register it with the object adapter.

We can compile the server code as follows:

S mkdir classes
$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICEJ HOME environment variable is set to
the top-level directory containing the Ice run time. (For example, if you have
installed Ice in /opt /Ice], set ICEJ HOME to that path.) Note that Ice for Java
uses the ant build environment to control building of source code. (ant is
similar to make, but more flexible for Java applications.) You can have a look at
the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client

The client code, in Client . java, looks very similar to the server. Here it is in
full:

public class Client ({
public static void

main (String[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(args) ;
Ice.ObjectPrx base = ic.stringToProxy (

"SimplePrinter:default -p 10000");
Demo.PrinterPrx printer
= Demo.PrinterPrxHelper.checkedCast (base) ;
if (printer == null)
throw new Error ("Invalid proxy") ;

4. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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}

printer.printString("Hello World!") ;

} catch (Ice.LocalException e) ({
e.printStackTrace () ;
status = 1;

} catch (Exception e) {
System.err.println(e.getMessage()) ;
status = 1;

}

if (ic != null) {

// Clean up

//

try {
ic.destroy () ;

} catch (Exception e) ({
System.err.println(e.getMessage()) ;
status = 1;

}
}

System.exit (status) ;

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the t ry block does the
following:

1. As for the server, we initialize the Ice run time by calling

Ice.Util.initialize.

. The next step is to obtain a proxy for the remote printer. We create a proxy by

calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 36.)

. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is

at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
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returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICEJ HOME/lib/Ice.jar\
-source 1.4 Client.java PrinterI.java generated/Demo/*.java

Running Client and Server
To run client and server, we first start the server in a separate window:

$ java Server

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ java Client

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! » thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 12.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectFailedException

at IcelInternal.Network.doConnect (Network.java:201)

at IcelInternal.TcpConnector.connect (TcpConnector.java:26)

at
IcelInternal.OutgoingConnectionFactory.create (OutgoingConnectionFac
tory.java:80)

at Ice. ObjectDelM.setup( ObjectDelM.java:251)

at Ice.ObjectPrxHelper. getDelegate (ObjectPrxHelper.java:
642)

at Ice.ObjectPrxHelper.ice_ isA(ObjectPrxHelper.java:41)

at Ice.ObjectPrxHelper.ice isA(ObjectPrxHelper.java:30)

at Demo.PrinterPrxHelper.checkedCast (Unknown Source)

at Client.main (Unknown Source)



Caused by: java.net.ConnectException: Connection refused

at sun.nio.ch.SocketChannelImpl.checkConnect (Native Method
)

at
sun.nio.ch.SocketChannelImpl.finishConnect (SocketChannelImpl.java:
518)

at IcelInternal.Network.doConnect (Network.java:173)

8 more

Note that, to successfully run client and server, your CLASSPATH must include
the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH:./classes:$ICEJ HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for
your platform.

Writing an Ice Application with C#

This section shows how to create an Ice application with C#.

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to
generate C# proxies and skeletons. You can compile the definition as follows:’

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1lice2cs compiler produces a single source file,
Printer. cs, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

5. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file Server. cs:

using System;

public class PrinterI : Demo.PrinterDisp

{

public override void printString(string s, Ice.Current current)

{
}

Console.WriteLine(s) ;

}

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2cs compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Tce . Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server. cs and is shown in full

here:
public class Server
{
public static void Main(string[] args)
{
int status = 0;
Ice.Communicator ic = null;
try {
ic = Ice.Util.initialize(ref args);

Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (

"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (

obj,

Ice.Util.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;
} catch (Exception e) {
Console.Error.WriteLine (e) ;
status = 1;
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}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

Note the general structure of the code:

public class Server

{

public static void Main(string[] args)

{

int status = 0;
Ice.Communicator ic = null;
try {

// Server implementation here...

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}

if (ic != null) {
// Clean up
//
try {

ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}

Environment .Exit (status) ;
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The body of Main contains a try block in which we place all the server code,
followed by a catch block. The catch block catches all exceptions that may be
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.Util.initialize(ref args);
Ice.ObjectAdapter adapter
= ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000");
Ice.Object obj = new PrinterI();
adapter.add (
obj,
Ice.Util.stringToIdentity ("SimplePrinter")) ;
adapter.activate() ;
ic.waitForShutdown () ;

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice: :Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)
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5. Next, we activate the adapter by calling its act ivate method. (The adapter
is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: seven lines for the definition of
the PrinterT class, plus four® lines to instantiate a PrinterT object and
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:icecs.dll /lib:$ICICLE HOME/lib Server.cs \
generated/Printer.cs

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICICLE HOME environment variable is set to
the top-level directory containing the Ice run time. (For example, if you have
installed Ice in /opt/Icicle, set ICICLE HOME to that path.)

Writing and Compiling a Client
The client code, in Client . cs, looks very similar to the server. Here it is in full:

using System;
using Demo;

public class Client

{

public static void Main(string[] args)

{

int status = 0;
Ice.Communicator ic = null;

6. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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try {

ic = Ice.Util.initialize(ref args);

Ice.ObjectPrx obj = ic.stringToProxy (
"SimplePrinter:default -p 10000");

PrinterPrx printer
= PrinterPrxHelper.checkedCast (obj) ;

if (printer == null)

throw new ApplicationException("Invalid proxy") ;

printer.printString ("Hello World!") ;
} catch (Exception e) {

Console.Error.WriteLine (e) ;

status = 1;

1
if (ic != null) {
// Clean up

!/

try {
ic.destroy () ;

} catch (Exception e) ({
Console.Error.WriteLine (e) ;
status = 1;

}
}

Environment .Exit (status) ;

}

Note that the overall code layout is the same as for the server: we use the same
try and catch blocks to deal with errors. The code in the t ry block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
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to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:icecs.dll /lib:$ICICLE HOME/lib Client.cs \
generated/Printer.cs

Running Client and Server
To run client and server, we first start the server in a separate window:
$ ./server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ ./client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectFailedException: Connect failed: connection refused
at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Int32 cnt)
at Ice.ObjectPrxHelperBase. handleException(LocalException ex,
Int32 cnt)
at Ice.ObjectPrxHelperBase.ice isA(String _ id, Context _ conte
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xt)
at Ice.ObjectPrxHelperBase.ice isA(String _ id)
at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b)
at Client.Main(Stringl[] args)

Note that, to successfully run client and server, the C# run time must be able to
locate the Tcecs.d11 library. (Under Windows, the simplest way to ensure this
is to copy the library into the current directory. Please consult the documentation
for your C# run time to see how it locates libraries.)

Writing an Ice Application with Visual Basic

This section shows how to create an Ice application with Visual Basic.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to
generate VB proxies and skeletons. You can compile the definition as follows:’

$ mkdir generated
$ slice2vb --output-dir generated Printer.ice

The - -output-dir option instructs the compiler to place the generated files
into the generated directory. This avoids cluttering the working directory with
the generated files. The s1ice2vb compiler produces a single source file,
Printer.vb, from this definition. The exact contents of this file do not concern
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI and placed into a source file Server . vb:

7. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.



Imports System
Imports Demo

Public Class PrinterI
Inherits PrinterDisp

Public Overloads Overrides Sub printString( _
ByVal s As String,
ByVal current As Ice.Current)
Console.WriteLine(s)
End Sub

End Class

The PrinterT class inherits from a base class called PrinterDisp, which
is generated by the s1ice2vb compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Tce . Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server . vb and is shown in full
here:

Module Server
Public Sub Main(ByVal args() As String)

Dim status As Integer = 0

Dim ic As Ice.Communicator = Nothing

Try
ic = Ice.Util.initialize(args)
Dim adapter As Ice.ObjectAdapter = _

ic.createObjectAdapterWithEndpoints(
"SimplePrinterAdapter", "default -p 10000")
Dim obj As Ice.Object = New PrinterI
adapter.add(obj, Ice.Util.stringToIdentity( _
"SimplePrinter"))

adapter.activate()
ic.waitForShutdown ()

Catch e As Exception
Console.Error.WriteLine (e)
status = 1

End Try

If Not ic Is Nothing Then
' Clean up
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1

Try
ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If
Environment .Exit (status)
End Sub

End module
Note the general structure of the code:

Module Server
Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing

Try
' Server implementation here...
Catch e As Exception

Console.Error.WriteLine (e)
status = 1

End Try

If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()

Catch e As Exception
Console.Error.WritelLine (e)
status =1

End Try

End If
Environment .Exit (status)
End Sub

End module

The body of Main contains a Try block in which we place all the server code,
followed by a Catch block. The catch block catches all exceptions that may be
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thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created

successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our Try block contains the actual server code:

ic = Ice.Util.initialize(args)
Dim adapter As Ice.ObjectAdapter = _
ic.createObjectAdapterWithEndpoints(
"SimplePrinterAdapter", "default -p 10000")

Dim obj As Ice.Object = New PrinterI

adapter.add(obj, Ice.Util.stringToIdentity( _
"SimplePrinter"))

adapter.activate ()

ic.waitForShutdown ()

The code goes through the following steps:

1.

We initialize the Ice run time by calling Ice.Util.initialize. (We
pass args to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
any command-line arguments.) The call to initialize returns an
Ice::Communicator reference, which is the main handle to the Ice run time.

. We create an object adapter by calling createObjectAdapterWith-

Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for

our Printer interface by instantiating a PrinterI object.

. We inform the object adapter of the presence of a new servant by calling add

on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

. Next, we activate the adapter by calling its act ivate method. (The adapter

is initially created in a holding state; this is useful if we have many servants
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that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 16.3.1.) As far as actual application code is
concerned, the server contains only a few lines: ten lines for the definition of the
PrinterT class, plus three® lines to instantiate a PrinterT object and register
it with the object adapter.

We can compile the server code as follows:

$ vbe /reference:Icecs.dll /1lib:$ICICLE HOME/lib Server.vb \
generated/Printer.vb

This compiles both our application code and the code that was generated by the
Slice compiler. We assume that the ICICLE HOME environment variable is set to
the top-level directory containing the Ice run time. (For example, if you have
installed Ice in /opt/Icicle, set ICICLE HOME to that path.)

Writing and Compiling a Client
The client code, in Client . vb, looks very similar to the server. Here it is in full:

Imports System
Imports Demo

Module Client

Public Sub Main(ByVal args() As String)

Dim status As Integer = 0
Dim ic As Ice.Communicator = Nothing
Try

ic = Ice.Util.initialize(args)

Dim obj As Ice.ObjectPrx = ic.stringToProxy( _
"SimplePrinter:default -p 10000")

8. Well, two lines, really: printing space limitations force us to break source lines more often than
you would in your actual source files.
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Dim printer As PrinterPrx = _
PrinterPrxHelper.checkedCast (obj)
If printer Is Nothing Then
Throw New ApplicationException ("Invalid proxy")
End If

printer.printString("Hello World!")
Catch e As Exception
Console.Error.WriteLine (e)

status = 1
End Try
If Not ic Is Nothing Then
' Clean up
1
Try

ic.destroy ()
Catch e As Exception
Console.Error.WriteLine (e)

status =1
End Try
End If
Environment .Exit (status)
End Sub

End Module

Note that the overall code layout is the same as for the server: we use the same
Try and Catch blocks to deal with errors. The code in the Try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Printer interface, not an Object inter-



3.6 Writing an Ice Application with Visual Basic 65

face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server,
effectively asking “is this a proxy for a Printer interface?” If so, the call
returns a proxy of type Demo: : Printer; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ vbe /reference:Icecs.dll /lib:$ICICLE HOME/lib Client.vb \
generated/Printer.vb

Running Client and Server
To run client and server, we first start the server in a separate window:
$ ./server.exe

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ ./client.exe

$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! » thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Ice.ConnectFailedException: Connect failed: connection refused
at IcelInternal.ProxyFactory.checkRetryAfterException (LocalExcep
tion ex, Int32 cnt)
at Ice.ObjectPrxHelperBase. handleException(LocalException ex,
Int32 cnt)
at Ice.ObjectPrxHelperBase.ice isA(String __ id, Context _ conte
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xt)
at Ice.ObjectPrxHelperBase.ice isA(String _ id)
at Demo.PrinterPrxHelper.checkedCast (ObjectPrx b)
at Client.Main(Stringl[] args)

Note that, to successfully run client and server, the VB run time must be able to
locate the Tcecs.d11 library. (Under Windows, the simplest way to ensure this
is to copy the library into the current directory. Please consult the documentation
for your VB run time to see how it locates libraries.)

Writing an Ice Application with Python

This section shows how to create an Ice application with Python.

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition
to generate Python proxies and skeletons. You can compile the definition as
follows:”

$ slice2py Printer.ice

The s1ice2py compiler produces a single source file, Printer ice.py,
from this definition. The compiler also creates a Python package for the Demo
module, resulting in a subdirectory named Demo. The exact contents of the source
file do not concern us for now—it contains the generated code that corresponds to
the Printer interface we defined in Printer. ice.

Writing a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant
class is called PrinterI:

class PrinterI (Demo.Printer) :
def printString(self, s, current=None) :
print s

9. Whenever we show UNIX commands in this book, we assume a Bourne or Bash shell. The
commands for Windows are essentially identical and therefore not shown.
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The PrinterT class inherits from a base class called Demo . Printer, which
is generated by the s1ice2py compiler. The base class is abstract and contains a
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice . Current param-
eter. We will see its purpose in detail in Section 30.6.) Our implementation of the
printString method simply writes its argument to the terminal.

The remainder of the server code, in Server. py, follows our servant class
and is shown in full here:

import sys, traceback, Ice
import Demo

class PrinterI (Demo.Printer) :
def printString(self, s, current=None) :

print s
status = 0
ic = None
try:
ic = Ice.initialize(sys.argv)
adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")
object = PrinterI()

adapter.add (object, Ice.stringToldentity ("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()
except:
traceback.print exc()
status = 1

if ic:
# Clean up
try:
ic.destroy ()
except:
traceback.print exc()
status = 1

sys.exit (status)

Note the general structure of the code:
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status = 0
ic = None
try:

# Server implementation here...

except:
traceback.print exc()
status = 1

if ic:
# Clean up
try:
ic.destroy ()
except:
traceback.print exc()
status = 1

sys.exit (status)

The body of the main program contains a try block in which we place all the
server code, followed by an except block. The except block catches all excep-
tions that may be thrown by the code; the intent is that, if the code encounters an
unexpected run-time exception anywhere, the stack is unwound all the way back
to the main program, which prints the exception and then returns failure to the
operating system.

Before the code exits, it destroys the communicator (if one was created
successfully). Doing this is essential in order to correctly finalize the Ice run time:
the program must call destroy on any communicator it has created; otherwise,
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.initialize(sys.argv)

adapter = ic.createObjectAdapterWithEndpoints (
"SimplePrinterAdapter", "default -p 10000")

object = PrinterI()

adapter.add(object, Ice.stringToldentity ("SimplePrinter"))
adapter.activate ()
ic.waitForShutdown ()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.initialize. (We pass
sys.argv to this call because the server may have command-line arguments
that are of interest to the run time; for this example, the server does not require
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any command-line arguments.) The call to initialize returns an
Ice: :Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are
"SimplePrinterAdapter (which is the name of the adapter) and
"default -p 10000", which instructs the adapter to listen for incoming
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add
on the adapter; the arguments to add are the servant we have just instantiated,
plus an identifier. In this case, the string "SimplePrinter is the name of
the servant. (If we had multiple printers, each would have a different name or,
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act ivate method. (The adapter
is initially created in a holding state; this is useful if we have many servants
that share the same adapter and do not want requests to be processed until after
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread
until the server implementation terminates, either by making a call to shut
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the
same for all servers. You can put that code into a helper class and, thereafter, will
not have to bother with it again. (Ice ships with such a helper class, called
Ice.Application—see Section 24.3.1.) As far as actual application code is
concerned, the server contains only a few lines: three lines for the definition of the
PrinterT class, plus two lines to instantiate a PrinterI object and register it
with the object adapter.

Writing a Client
The client code, in Client . py, looks very similar to the server. Here it is in full:
import sys, traceback, Ice

import Demo

status = 0
ic = None
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try:
ic = Ice.initialize(sys.argv)
base = ic.stringToProxy ("SimplePrinter:default -p 10000")
printer = Demo.PrinterPrx.checkedCast (base)
if not printer:
raise RuntimeError ("Invalid proxy")

printer.printString("Hello World!™")
except:

traceback.print_exc()

status =1

if dic:
# Clean up
try:
ic.destroy ()
except:
traceback.print exc()
status =1

sys.exit (status)

Note that the overall code layout is the same as for the server: we use the same
try and except blocks to deal with errors. The code in the try block does the
following:

1. As for the server, we initialize the Ice run time by calling
Ice.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by
calling stringToProxy on the communicator, with the string
"SimplePrinter:default -p 10000". Note that the string contains
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a
bad idea, but it will do for now; we will see more architecturally sound ways
of doing this in Chapter 36.)

3. The proxy returned by stringToProxy is of type Ice: :0bjectPrx, which is
at the root of the inheritance tree for interfaces and classes. But to actually talk
to our printer, we need a proxy for a Demo: :Printer interface, not an Object
interface. To do this, we need to do a down-cast by calling Demo . Print -
erPrx.checkedCast. A checked cast sends a message to the server, effec-
tively asking “is this a proxy for a Demo: :Printer interface?” If so, the call
returns a proxy of type Demo . PrinterPrx; otherwise, if the proxy denotes
an interface of some other type, the call returns None.
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4. We test that the down-cast succeeded and, if not, throw an error message that
terminates the client.

5. We now have a live proxy in our address space and can call the print -
String method, passing it the time-honored "Hello World!r string. The
server prints that string on its terminal.

Running Client and Server
To run client and server, we first start the server in a separate window:
$ python Server.py

At this point, we won’t see anything because the server simply waits for a client to
connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server
window, we see the "Hello World! " thatis produced by the printer. To get rid
of the server, we interrupt it on the command line for now. (We will see cleaner
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if
we run the client without having first started the server, we get something like the
following:

Traceback (most recent call last):
File "Client.py", line 10, in ?
printer = Demo.PrinterPrx.checkedCast (base)
File "Printer ice.py", line 43, in checkedCast
return Demo.PrinterPrx.ice checkedCast (proxy, '::Demo::Printer
', facet) a
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be
able to locate the Ice extension for Python. See the Ice for Python installation
instructions for more information.

Summary

This chapter presented a very simple (but complete) client and server. As we saw,
writing an Ice application involves the following steps:
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1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client,
you do not need to write the Slice definition, only compile it (and, obviously, you
do not need to write the server in that case).

Do not be concerned if, at this point, much appears unclear. The intent of this
chapter is to give you an idea of the development process, not to explain the Ice
APIs in intricate detail. We will cover all the detail throughout the remainder of
this book.
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Chapter 4
The Slice Language

4.1

Chapter Overview

4.2

In this chapter we present the Slice language. We start by discussing the role and
purpose of Slice, explaining how language-independent specifications are
compiled for particular implementation languages to create actual implementa-
tions. Sections 4.10 and 4.11 cover the core Slice concepts of interfaces, opera-
tions, exceptions, and inheritance. These concepts have profound influence on the
behavior of a distributed system and should be read in detail.

This chapter also presents s1ice2docbook, which you can use to automate
generation of documentation for Slice definitions.

Introduction

Slice! (Specification Language for Ice) is the fundamental abstraction mechanism
for separating object interfaces from their implementations. Slice establishes a
contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation

1. Even though Slice is an acronym, it is pronounced as single syllable, like a slice of bread.
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language, so it does not matter whether the client is written in the same language
as the server.

Slice definitions are compiled for a particular implementation language by a
compiler. The compiler translates the language-independent definitions into
language-specific type definitions and APIs. These types and APIs are used by the
developer to provide application functionality and to interact with Ice. The trans-
lation algorithms for various implementation languages are known as language
mappings. Currently, Ice defines language mappings for C++, Java, C#, Visual
Basic .NET, Python, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a
purely declarative language; there is no way to write executable statements in
Slice.

Slice definitions focus on object interfaces, the operations supported by those
interfaces, and exceptions that may be raised by operations. In addition, Slice
offers features for object persistence (see Chapter 37). This requires quite a bit of
supporting machinery; in particular, quite a bit of Slice is concerned with the defi-
nition of data types. This is because data can be exchanged between client and
server only if their types are defined in Slice. You cannot exchange arbitrary C++
data between client and server because it would destroy the language indepen-
dence of Ice. However, you can always create a Slice type definition that corre-
sponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice
is based on C++ and Java, we focus on those areas where Slice differs from C++
or Java or constrains the equivalent C++ or Java feature in some way. Slice
features that are identical to C++ and Java are mentioned mostly by example.

Compilation

A Slice compiler produces source files that must be combined with application
code to produce client and server executables.

The outcome of the development process is a client executable and a server
executable. These executables can be deployed anywhere, whether the target envi-
ronments use the same or different operating systems and whether the executables
are implemented using the same or different languages. The only constraint is that
the host machines must provide the necessary run-time environment, such as any
required dynamic libraries, and that connectivity can be established between
them.
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4.3.1

Single Development Environment for Client and Server

Figure 4.1 shows the situation when both client and server are developed in C++.
The Slice compiler generates two files from a Slice definition in a source file
Printer.ice: aheader file (Printer.h) and a source file (Printer. cpp).

Slice ) ) Slice-to-C++ Server
Printer.ice - .
Developer Compiler Developer

4 / / B

\
N

- C++ Ice
Client »| Client.cpp Run-Time
Developer Library
G /\
Y Yy

Client RPC Server
Executable [——=< "™ Executable

Figure 4.1. Development process if client and server share the same development environment.

® The Printer.h header file contains definitions that correspond to the types
used in the Slice definition. It is included in the source code of both client and
server to ensure that client and server agree about the types and interfaces used
by the application.

® The Printer. cpp source file provides an API to the client for sending
messages to remote objects. The client source code (Client . cpp, written
by the client developer) contains the client-side application logic. The gener-
ated source code and the client code are compiled and linked into the client
executable.

The Printer . cpp source file also contains source code that provides an up-
call interface from the Ice run time into the server code written by the devel-
oper and provides the connection between the networking layer of Ice and the
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application code. The server implementation file (Server . cpp, written by
the server developer) contains the server-side application logic (the object
implementations, properly termed servants). The generated source code and
the implementation source code are compiled and linked into the server
executable.

Both client and server also link with an Ice library that provides the necessary run-
time support.

You are not limited to a single implementation of a client or server. For
example, you can build multiple servers, each of which implements the same
interfaces but uses different implementations (for example, with different perfor-
mance characteristics). Multiple such server implementations can coexist in the
same system. This arrangement provides one fundamental scalability mechanism
in Ice: if you find that a server process starts to bog down as the number of objects
increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed
over a number of processes on different machines. Each server in the federation
implements the same interfaces but hosts different object instances. (Of course,
federated servers must somehow ensure consistency of any databases they share
across the federation.)

Ice also provides support for replicated servers. Replication permits multiple
servers to each implement the same set of object instances. This improves perfor-
mance and scalability (because client load can be shared over a number of servers)
as well as redundancy (because each object is implemented in more than one
server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are devel-
oped in different languages. For example, a client written in Java cannot include a
C++ header file.

Figure 4.2 shows the situation when a client written in Java and the corre-
sponding server is written in C++. In this case, the client and server developers are
completely independent, and each uses his or her own development environment
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and language mapping. The only link between client and server developers is the
Slice definition each one uses.

Java C++
I
I
Client Slice-to-Java [ Slice-to-C++ Server
Developer Compiler I Compiler Developer
I
I ,\
A Y : | BN |
Client.java * . java : Printer.h Printer.cpp Eeicil
N !
I
I
I
y : Y
ava Ice
Jav : Client RPC Server C++ I.ce
Run-Time > E tabl | E tabl - Run-Time
Library xecutable | xecutable Library
I

Figure 4.2. Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on
the names of various Slice constructs. (These files are collectively referred to as
* . java in Figure 4.2.)

4.4 Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
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442

443

File Naming

Files containing Slice definitions must end in a . ice file extension, for example,
Clock.ice is a valid file name. Other file extensions are rejected by the
compilers.

For case-insensitive file systems (such as DOS), the file extension may be
written as uppercase or lowercase, so Clock . ICE is legal. For case-sensitive file
systems (such as UNIX), Clock. ICE is illegal. (The extension must be in lower-
case.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab
stops, form feeds, and newline characters to lay out your code in any way you
wish. (White space characters are token separators). Slice does not attach seman-
tics to the layout of a definition. You may wish to follow the style we have used
for the Slice examples throughout this book.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual prepro-
cessor directives, such as #1nclude and macro definitions. However, Slice permits
#incTlude directives only at the beginning of a file, before any Slice definitions.

If you use a #include directive it is a good idea to protect them with guard to
prevent double inclusion of a file:

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

#incTlude directives permit a Slice definition to use types defined in a different
source file. The Slice compilers parse all of the code in a source file, including the
code in #included files. However, the compilers generate code only for the top-
level file(s) nominated on the command line. You must separately compile
#incTuded files to obtain generated code for all the files that make up your Slice
definition.
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4.4.4

4.5

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any
order you prefer. However, identifiers must be declared before they can be used.

Lexical Rules

4.5.1

45.2

453

Slice’s lexical rules are very similar to those of C++ and Java, except for some
differences for identifiers.

Comments

Slice definitions permit both the C and the C++ style of writing comments:

/7‘:
% C-style comment.

:'c/

// C++-style comment extending to the end of this Tine.

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For
example, class and dictionary are keywords and must be spelled as shown.
There are two exceptions to this lowercase rule: Object and LocalObject are
keywords and must be capitalized as shown. You can find a full list of Slice
keywords in Appendix A.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alpha-
betic characters or digits. Slice identifiers are restricted to the ASCII range of
alphabetic characters and cannot contain non-English letters, such as A.
(Supporting non-ASCII identifiers would make it very difficult to map Slice to
target languages that lack support for this feature.)

Unlike C++ identifiers, Slice identifiers cannot contain underscores. This
restriction may seem draconian at first but is necessary: by reserving underscores,
the various language mappings gain a namespace that cannot clash with legitimate
Slice identifiers. That namespace can then be used to hold language-native identi-
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fiers that are derived from Slice identifiers without fear of clashing with another,
legitimate Slice identifier that happens to be the same as one of the derived identi-
fiers.

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example,
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming
scope. However, Slice enforces consistent capitalization. After you have intro-
duced an identifier, you must capitalize it consistently throughout; otherwise, the
compiler will reject it as illegal. This rule exists to permit mappings of Slice to
languages that ignore case in identifiers as well as to languages that treat differ-
ently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation
languages. For example, switch is a perfectly good Slice identifier but is a C++
and Java keyword. Each language mapping defines rules for dealing with such
identifiers. The solution typically involves using a prefix to map away from the
keyword. For example, the Slice identifier switch is mapped to _cpp switch
in C++and _switch in Java.

The rules for dealing with keywords can result in hard-to-read source code.
Identifiers such as native, throw, or export will clash with C++ or Java
keywords (or both). To make life easier for yourself and others, try to avoid Slice
identifiers that are implementation language keywords. Keep in mind that
mappings for new languages may be added to Ice in the future. While it is not
reasonable to expect you to compile a list of all keywords in all popular program-
ming languages, you should make an attempt to avoid at least common keywords.
Slice identifiers such as sel1f, import, and while are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with
a backslash, for example:

struct dictionary { // Error!
// ...
b

struct \dictionary { // OK
// ...
b
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struct \foo { // Legal, same as "struct foo"
// ...
};

The backslash escapes the usual meaning of a keyword; in the preceding example,
\dictionary is treated as the identifier dictionary. The escape mechanism
exists to permit keywords to be added to the Slice language over time with
minimal disruption to existing specifications: if a pre-existing specification
happens to use a newly-introduced keyword, that specification can be fixed by
simply prepending a backslash to the new keyword. Note that, as a matter of style,
you should avoid using Slice keywords as identifiers (even though the backslash
escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword
with a backslash—the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier Ice and all identifiers beginning with Ice (in any
capitalization) for the Ice implementation. For example, if you try to define a type
named Icecream, the Slice compiler will issue an error message.

Slice identifiers ending in any of the suffixes Helper, Holder, Prx, and Ptr are
also reserved. These endings are used by the various language mappings and are
reserved to prevent name clashes in the generated code.

Modules

A common problem in large systems is pollution of the global namespace: over
time, as isolated systems are integrated, name clashes become quite likely. Slice
provides the module construct to alleviate this problem:

module ZeroC {
module Client {
// Definitions here...
1

2. You can suppress this behavior by using the - - i ce compiler option, which enables definition of
identifiers beginning with Ice. However, do not use this option unless you are compiling the
Slice definitions for the Ice run time itself.
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NOTE:

module Server {
// Definitions here...
};
b

A module can contain any legal Slice construct, including other module defini-
tions. Using modules to group related definitions together avoids polluting the
global namespace and makes accidental name clashes quite unlikely. (You can use
a well-known name, such as a company or product name, as the name of the outer-
most module.)

Slice requires all definitions to be nested inside a module, that is, you cannot
define anything other than a module at global scope. For example, the following is
illegal:
interface I { // Error: only modules can appear at global scope

/] ...
}s

Definitions at global scope are prohibited because the cause problems with some
implementation languages (such as Python, which does not have a true global
scope).

Throughout the remainder of this book, you will occasionally see Slice definitions
that are not nested inside a module. This is to keep the examples short and free of
clutter. Whenever you see such a definition, assume that it is nested in a module.

Modules can be reopened:

module ZeroC {
// Definitions here...

};
// Possibly in a different source file:

module ZeroC { // OK, reopened module
// More definitions here...

};

Reopened modules are useful for larger projects: they allow you to split the
contents of a module over several different source files. The advantage of doing
this is that, when a developer makes a change to one part of the module, only files
dependent on the changed part need be recompiled (instead of having to recompile
all files that use the module).
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4.7

Modules map to a corresponding scoping construct in each programming
language. (For example, for C++, C#, and Visual Basic, Slice modules map to
namespaces and, for Java, they map to packages.) This allows you to use an appro-
priate C++ using or Java import declaration to avoid excessively long identi-
fiers in the source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls
that cannot be expressed in Ice, are defined in the Ice module. In other words,
most of the Ice API is actually expressed as Slice definitions. The advantage of
doing this is that a single Slice definition is sufficient to define the API for the Ice
run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the Ice module throughout the
remainder of this book.
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4.8 Basic Slice Types

Slice provides a number of built-in basic types, shown in Table 4.1.
Table 4.1. Slice basic types.

Type Range of Mapped Type Size of Mapped Type

bool false or true > 1bit

byte -128-1272 > 8 bits

short || 213 t0215-1 > 16 bits

int 23110 23111 > 32 bits

Tong 28310 2%-1 > 64 bits

float IEEE single-precision > 32 bits

double ||IEEE double-precision > 64 bits

string || All Unicode characters, excluding | Variable-length

the character with all bits zero.
a. Or 0—255, depending on the language mapping
All the basic types (except byte) are subject to changes in representation as they
are transmitted between clients and servers. For example, a Tong value is byte-
swapped when sent from a little-endian to a big-endian machine. Similarly, strings
undergo translation in representation if they are sent, for example, from an
EBCDIC to an ASCII implementation, and the characters of a string may also
change in size. (Not all architectures use 8-bit characters). However, these
changes are transparent to the programmer and do exactly what is required.
4.8.1 Integer Types

Slice provides integer types short, int, and Tong, with 16-bit, 32-bit, and 64-bit
ranges, respectively. Note that, on some architectures, any of these types may be
mapped to a native type that is wider. Also note that no unsigned types are
provided. (This choice was made because unsigned types are difficult to map into
languages without native unsigned types, such as Java. In addition, the unsigned
integers add little value to a language. See [9] for a good treatment of the topic.)
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4.8.2

4.8.3

48.4

4.8.5

Floating-Point Types

These types follow the IEEE specification for single- and double-precision
floating-point representation [6]. If an implementation cannot support IEEE
format floating-point values, the Ice run time converts values into the native
floating-point representation (possibly at a loss of precision or even magnitude,
depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear
inside a string is the zero character.’

The Slice data model does not have the concept of a null string (in the sense of
a C++ null pointer). This decision was made because null strings are difficult to
map to languages without direct support for this concept (such as Python). Do not
design interfaces that depend on a null string to indicate “not there” semantics. If
you need the notion of an optional string, use a class (see Section 4.11), a
sequence of strings (see Section 4.9.3), or use an empty string to represent the idea
of a null string. (Of course, the latter assumes that the empty string is not other-
wise used as a legitimate string value by your application.)

Booleans

Boolean values can have only the values false and true. Language mappings use
the corresponding native boolean type if one is available.

Bytes

The Slice type byte is an (at least) 8-bit type that is guaranteed not to undergo any
changes in representation as it is transmitted between address spaces. This guar-

antee permits exchange of binary data such that it is not tampered with in transit.
All other Slice types are subject to changes in representation during transmission.

3. This decision was made as a concession to C++, with which it becomes impossibly difficult to
manipulate strings with embedded zero characters using standard library routines, such as
strlenor strcat.
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4.9

User-Defined Types

4.9.1

4.9.2

In addition to providing the built-in basic types, Slice allows you to define
complex types: enumerations, structures, sequences, and dictionaries.

Enumerations
A Slice enumerated type definition looks like the C++ version:

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fruit that becomes a new type in its own
right. Slice does not define how ordinal values are assigned to enumerators. For
example, you cannot assume that the enumerator Orange will have the value 2 in
different implementation languages. Slice guarantees only that the ordinal values
of enumerators increase from left to right, so AppTe compares less than Pear in all
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of
enumerators (because many implementation languages do not support such a
feature):

enum Fruit { Apple = @, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you
do not transmit the ordinal value of an enumerator between address spaces. For
example, sending the value 0 to a server to mean Apple can cause problems
because the server may not use 0 to represent AppTle. Instead, simply send the
value Apple itself. If Apple is represented by a different ordinal value in the
receiving address space, that value will be appropriately translated by the Ice run
time.

As with C++, Slice enumerators enter the enclosing namespace, so the
following is illegal:

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple redefined

Slice does not permit empty enumerations.

Structures

Slice supports structures containing one or more named members of arbitrary
type, including user-defined complex types. For example:
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4.9.3

struct TimeOfDay {

short hour; // @ - 23
short minute; // @ - 59
short second; // @ - 59

};

As in C++, this definition introduces a new type called TimeOfDay. Structure defi-
nitions form a namespace, so the names of the structure members need to be
unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can
appear inside a structure. It is impossible to, for example, define a structure inside
a structure:

struct TwoPoints {

struct Point { // Illegal!
short x;
short y;

1

Point coordl;

Point coord?2;

};

This rule applies to Slice in general: type definitions cannot be nested (except for
modules, which do support nesting—see Section 4.6). The reason for this rule is
that nested type definitions can be difficult to implement for some target
languages and, even if implementable, greatly complicate the scope resolution
rules. For a specification language, such as Slice, nested type definitions are
unnecessary—you can always write the above definitions as follows (which is
stylistically cleaner as well):

struct Point {

short x;
short y;
}
struct TwoPoints { // Legal (and cleaner!)
Point coordl;
Point coord?2;
};
Sequences

Sequences are variable-length vectors of elements:



90

The Slice Language

sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any
number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrange-
ment allows you to create lists of lists:

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues,
sets, bags, or trees. (It is up to the application to decide whether or not order is
important; by discarding order, a sequence serves as a set or bag.)

One particular use of sequences has become idiomatic, namely, the use of a
sequence to indicate an optional value. For example, we might have a Part struc-
ture that records the details of the parts that go into a car. The structure could
record things such as the name of the part, a description, weight, price, and other
details. Spare parts commonly have a serial number, which we can model as a
Tong value. However, some parts, such as simple screws, often do not have a serial
number, so what are we supposed to put into the serial number field of a screw?
There a number of options for dealing with this situation:

¢ Use a sentinel value, such as zero, to indicate the “no serial” number condi-
tion.

This approach is workable, provided that a sentinel value is actually available.
While it may seem unlikely that anyone would use a serial number of zero for
a part, it is not impossible. And, for other values, such as a temperature value,
all values in the range of their type can be legal, so no sentinel value is avail-
able.

* Change the type of the serial number from long to string.

Strings come with their own built-in sentinel value, namely, the empty string
SO we can use an empty string to indicate the “no serial number” case. This is
workable, but leaves a bad taste in most people’s mouth: we should not have
to change the natural data type of something to string just so we get a
sentinel value.

* Add an indicator as to whether the contents of the serial number are valid:
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struct Part {
string name;
string description;
// ...

bool serialIsValid; // true if part has serial number
long serialNumber;

}s

This is distasteful to most people and guaranteed to get you into trouble even-
tually: sooner or later, some programmer will forget to check whether the
serial number is valid before using it and create havoc.

* Use a sequence to model the optional field.

This technique uses the following convention:

sequence<long> SerialOpt;

struct Part {

string name;
string description;
/] ...

SerialOpt serialNumber; // optional: zero or one element

};

By convention, the Opt suffix is used to indicate that the sequence is used to
model an optional value. If the sequence is empty, the value is obviously not
there; if it contains a single element, that element is the value. The obvious
drawback of this scheme is that someone could put more than one element into
the sequence. This could be rectified by adding a special-purpose Slice
construct for optional values. However, optional values are not used
frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in Section 4.11, you can also use class hierarchies to
model optional fields.)

4.9.4 Dictionaries

A dictionary is a mapping from a key type to a value type. For example:
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struct Employee {
Tong  number;
string firstName;
string lastName;

};
dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named EmployeeMap that maps from an
employee number to a structure containing the details for an employee. Whether
or not the key type (the employee number, of type Tong in this example) is also
part of the value type (the EmpT1oyee structure in this example) is up to you—as far
as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data struc-
ture with non-integral key type. Even though a sequence of structures containing
key—value pairs could be used to model the same thing, a dictionary is more
appropriate:

* A dictionary clearly signals the intent of the designer, namely, to provide a
mapping from a domain of values to a range of values. (A sequence of struc-
tures of key—value pairs does not signal that same intent as clearly.)

* At the programming language level, sequences are implemented as vectors (or
possibly lists), that is, they are not well suited to model sparsely populated
domains and require a linear search to locate an element with a particular
value. On the other hand, dictionaries are implemented as a data structure
(typically a hash table or red-black tree) that supports efficient searching in
O(log n) average time or better.

The key type of a dictionary need not be an integral type. For example, we could
use the following definition to translate the names of the days of the week:

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key—
value pairs Monday-Montag, Tuesday-Dienstag, and so on.
The value type of a dictionary can be any user-defined type. However, the key

type of a dictionary is limited to one of the following types:

* Integral types (byte, short, int, Tong, boo1, and enumerated types)

® string

* sequences with elements of integral type or string

* structures containing only data members of integral type or string



4.9 User-Defined Types 93

4.9.5

Complex nested types, such as nested structures or dictionaries, and floating-point
types (float and double) cannot be used as the key type. Complex nested types
are disallowed because they complicate the language mappings for dictionaries,
and floating-point types are disallowed because representational changes of values
as they cross machine boundaries can lead to ill-defined semantics for equality.

Constant Definitions and Literals
Slice allows you to define constants. Constant definitions must be of one of the
following types:
* An integral type (bool, byte, short, int, Tong, or an enumerated type)
® float or double
® string
Here are a few examples:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor excep-
tions):
* Boolean constants can only be initialized with the keywords false and true.
(You cannot use @ and 1 to represent false and true.)

* As for C++, integer literals can be specified in decimal, octal, or hexadecimal
notation. For example:

const byte TheAnswer = 42;
const byte TheAnswerInOctal = 052;
const byte TheAnswerInHex = 0x2A; // or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you
may get different results in different languages. For example, for C++, byte
maps to unsigned char whereas, for Java, byte maps to byte, whichis a
signed type.

Note that suffixes to indicate long and unsigned constants (1, L, u, U, used by
C++) are illegal:
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const Tong Wrong = Qu; // Syntax error
const long WrongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as
shown in Table 4.1 on page 86; otherwise the compiler will issue a diagnostic.

Floating-point literals use C++ syntax, except that you cannot use an 1 or L
suffix to indicate an extended floating-point constant; however, f and F are
legal (but are ignored). Here are a few examples:

const float P1 = -3.14f; // Integer & fraction, with suffix
const float P2 +3.1e-3; // Integer, fraction, and exponent
const float P3 = .1; // Fraction part only

const float P4 = 1.; // Integer part only

const float P5 = .9E5; // Fraction part and exponent
const float P6 = 5e2; // Integer part and exponent

Floating-point literals must be within the range of the constant type (float or
double); otherwise, the compiler will issue a diagnostic.

String literals support the same escape sequences as C++. Here are some
examples:

const string AnOrdinaryString = "Hello World!";

const string DoubleQuote = "\"";

const string TwoSingleQuotes = "'\'"; // ' and \' are OK
const string Newline = "\n";

const string CarriageReturn = "\r";

const string HorizontalTab = "\t";

const string VerticalTab = "\Vv";

const string FormFeed = "\f";

const string Alert = "\a";

const string Backspace = "\b";

const string QuestionMark = "\?";

const string Backslash = "\\";

const string OctalEscape = "\007"; // Same as \a
const string HexEscape = "\x07"; // Ditto

const string UniversalCharName = "\u@3A9"; // Greek Omega

As for C++, adjacent string literals are concatenated:
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const string MSG1 "Hello World!";
const string MSG2 = "Hello" " " "World!"; // Same message

/%

x Escape sequences are processed before concatenation,
% so the string below contains two characters,

# '\xa' and 'c'.

7':/

const string S = "\xa" "c";

Note that Slice has no concept of a null string:

const string nullString = 0; // ITlegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal
value for a string anywhere in the Ice platform. The reason for this decision is
that null strings do not exist in many programming languages.4

4.10 Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

struct TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59

};

interface Clock {
TimeOfDay getTime();
void setTime(TimeOfDay time);

};

This definition defines an interface type called Clock. The interface supports two
operations: getTime and setTime. Clients access an object supporting the Clock
interface by invoking an operation on the proxy for the object: to read the current
time, the client invokes the getTime operation; to set the current time, the client
invokes the setTime operation, passing an argument of type TimeOfDay.

4. Many languages other than C and C++ use a byte array as the internal string representation. Null
strings do not exist (and would be very difficult to map) in such languages.
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Invoking an operation on a proxy instructs the Ice run time to send a message
to the target object. The target object can be in another address space or can be
collocated (in the same process) as the caller—the location of the target object is
transparent to the client. If the target object is in another (possibly remote) address
space, the Ice run time invokes the operation via a remote procedure call; if the
target is collocated with the client, the Ice run time uses an ordinary function call
instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a
C++ class definition or as the equivalent of a Java interface, and of operation defi-
nitions as (virtual) member functions. Note that nothing but operation definitions
are allowed to appear inside an interface definition. In particular, you cannot
define a type, an exception, or a data member inside an interface. This does not
mean that your object implementation cannot contain state—it can, but how that
state is implemented (in the form of data members or otherwise) is hidden from
the client and, therefore, need not appear in the object’s interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class
type—see Section 4.11). Of course, you can create multiple Ice objects that have
the same type; to draw the analogy with C++, a Slice interface corresponds to a
C++ class definition, whereas an Ice object corresponds to a C++ class instance
(but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets. We discuss
facets in detail in Chapter 32.

A Slice interface defines the smallest grain of distribution in Ice: each Ice
object has a unique identity (encapsulated in its proxy) that distinguishes it from
all other Ice objects; for communication to take place, you must invoke operations
on an object’s proxy. There is no other notion of an addressable entity in Ice. You
cannot, for example, instantiate a Slice structure and have clients manipulate that
structure remotely. To make the structure accessible, you must create an interface
that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence
on the overall architecture. Distribution boundaries must follow interface (or
class) boundaries; you can spread the implementation of interfaces over multiple
address spaces (and you can implement multiple interfaces in the same address
space), but you cannot implement parts of interfaces in different address spaces.
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4.10.1

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter
definitions. For example, the get Time operation on page 95 has a return type of
TimeOfDay and the setTime operation has a return type of void. You must use
void to indicate that an operation returns no value—there is no default return type
for Slice operations.

An operation can have one or more input parameters. For example, setTime
accepts a single input parameter of type TimeOfDay called time. Of course, you
can use multiple input parameters, for example:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);

// ...
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the
parameter name, so the following is in error:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay, TimeOfDay); // Error!

// ...
};

By default, parameters are sent from the client to the server, that is, they are input
parameters. To pass a value from the server to the client, you can use an output
parameter, indicated by the out keyword. For example, an alternative way to
define the getTime operation on page 95 would be:

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return
value. As with input parameters, you can use multiple output parameters:

interface CircadianRhythm {
void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
void getSleepPeriod(out TimeOfDay startTime,
out TimeOfDay stopTime);
// ...
1

If you have both input and output parameters for an operation, the output parame-
ters must follow the input parameters:
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void changeSleepPeriod( TimeOfDay startTime, // OK
TimeOfDay stopTime,
out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime);
void changeSleepPeriod(out TimeOfDay prevStartTime,
out TimeOfDay prevStopTime,
TimeOfDay startTime, // Error
TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call
by reference). The reason is that, for remote calls, reference parameters do not
result in the same savings that one can obtain for call by reference in program-
ming languages. (Data still needs to be copied in both directions and any gains in
marshaling efficiency are negligible.) Also, reference (or input—output) parame-
ters result in more complex language mappings, with concomitant increases in
code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition
you use in Slice: Slice return types map to programming language return types,
and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value
from the operation instead of using an out-parameter. This style maps naturally
into all programming languages. Note that, if you use an out-parameter instead,
you impose a different API style on the client: most programming languages
permit the return value of a function to be ignored whereas it is typically not
possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as
out-parameters and to use a return type of void. However, the rule is not all that
clear-cut because operations with multiple output values can have one particular
value that is considered more “important” than the remainder. A common example
of this is an iterator operation that returns items from a collection one-by-one:

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a
Boolean to indicate the end-of-collection condition. (If the return value is false,
the end of the collection has been reached and the parameter r has an undefined
value.) This style of definition can be useful because it naturally fits into the way
programmers write control structures. For example:
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while (next (record))
// Process record...

if (next (record))
// Got a valid record...

Overloading
Slice does not support any form of overloading of operations. For example:

interface CircadianRhythm {
void modify(TimeOfDay startTime,
TimeOfDay endTime);
void modify( TimeOfDay startTime, // Error
TimeOfDay endTime,
out timeOfDay prevStartTime,
out TimeOfDay prevEndTime);
};

Operations in the same interface must have different names, regardless of what
type and number of parameters they have. This restriction exists because over-
loaded functions cannot sensibly be mapped to languages without built-in support
for ovelrloading.5

Nonmutating Operations

Some operations, such as getTime on page 95, do not modify the state of the
object they operate on. They are the conceptual equivalent of C++ const
member functions. You can indicate this in Slice as follows:

interface Clock {
nonmutating TimeOfDay getTime();
void setTime(TimeOfDay time);
¥
The nonmutating keyword indicates that the getTime operation does not change
the state of its object. This is useful for two reasons:
* Language mappings can take advantage of the additional knowledge about the

behavior of the operation. For example, for C++, nonmutating operations
map to C++ const member functions on skeleton classes.

5. Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable
to humans.
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* Knowing that an operation will not modify the state of its object permits the
Ice run time to attempt more aggressive error recovery. Specifically, Ice guar-
antees at-most-once semantics for operation invocations.

For normal operations, the Ice run time has to be conservative about how it
deals with errors. For example, if a client sends an operation invocation to a
server and then loses connectivity, there is no way for the client-side run time
to find out whether the request it sent actually made it to the server. This
means that the run time cannot attempt to recover from the error by re-estab-
lishing a connection and sending the request a second time because that could
cause the operation to be invoked a second time and violate at-most-once
semantics; the run time has no option but to report the error to the application.

For nonmutating operations, on the other hand, the client-side run time can
attempt to re-establish a connection to the server and safely send the failed
request a second time. If the server can be reached on the second attempt,
everything is fine and the application never notices the (temporary) failure.
Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration
parameter.)

Idempotent Operations

We can further modify the definition of the Clock interface on page 99 to indicate
that the setTime operation is idempotent:

interface Clock {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);

};

An operation is idempotent if two successive invocations of the operation have the
same effect as a single invocation. For example, x = 1; is an idempotent opera-
tion because it does not matter whether it is executed once or twice—either way,
x ends up with the value 1. On the other hand, x += 1; is not an idempotent
operation because executing it twice results in a different value for x than
executing it once.

The idempotent keyword indicates that an operation can safely be executed
more than once. As for nonmutating operations, the Ice run time uses this knowl-
edge to recover more aggressively from errors.

An operation can have either a nonmutating or an idempotent qualifier, but
not both. (nonmutating implies idempotent.)
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4.10.2

User Exceptions

Looking at the setTime operation on page 95, we find a potential problem: given
that the TimeOfDay structure uses short as the type of each field, what will
happen if a client invokes the setTime operation and passes a TimeOfDay value
with meaningless field values, such as -199 for the minute field, or 42 for the
hour? Obviously, it would be nice to provide some indication to the caller that this
is meaningless. Slice allows you to define user exceptions to indicate error condi-
tions to the client. For example:

exception Error {}; // Empty exceptions are Tegal

exception RangeError {
TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

};

A user exception is much like a structure in that it contains a number of data
members. However, unlike structures, exceptions can have zero data members,
that is, be empty. Exceptions allow you to return an arbitrary amount of error
information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions
that may be returned to the client:

interface Clock {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time)
throws RangeError, Error;

};

This definition indicates that the setTime operation may throw either a
RangeError or an Error user exception (and no other type of exception). If the
client receives a RangeError exception, the exception contains the TimeOfDay
value that was passed to setTime and caused the error (in the errorTime
member), as well as the minimum and maximum time values that can be used (in
the minTime and maxTime members). If setTime failed because of an error not
caused by an illegal parameter value, it throws Error. Obviously, because Error
does not have data members, the client will have no idea what exactly it was that
went wrong—it simply knows that the operation did not work.

An operation can throw only those user exceptions that are listed in its excep-
tion specification. If, at run time, the implementation of an operation throws an
exception that is not listed in its exception specification, the client receives a run-
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4103

time exception (see Section 4.10.4) to indicate that the operation did something
illegal. To indicate that an operation does not throw any user exception, simply
omit the exception specification. (There is no empty exception specification in
Slice.)

Exceptions are not first-class data types and first-class data types are not
exceptions:

* You cannot pass an exception as a parameter value.

* You cannot use an exception as the type of a data member.

* You cannot use an exception as the element type of a sequence.

* You cannot use an exception as the key or value type of a dictionary.

* You cannot throw a value of non-exception type (such as a value of type int
or string).

The reason for these restrictions is that some implementation languages use a
specific and separate type for exceptions (in the same way as Slice does). For such
languages, it would be difficult to map exceptions if they could be used as an ordi-
nary data type. (C++ is somewhat unusual among programming languages by
allowing arbitrary types to be used as exceptions.)

Exception Inheritance
Exceptions support inheritance. For example:

exception ErrorBase {
string reason;

};

enum RTError {
DivideByZero, NegativeRoot, IllegalNull /+ ... */
};

exception RuntimeError extends ErrorBase {
RTError err;

}s
enum LError { ValueOutOfRange, ValuesInconsistent, /* ... %/ };

exception LogicError extends ErrorBase {
LError err;

};

exception RangeError extends LogicError {
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TimeOfDay errorTime;
TimeOfDay minTime;
TimeOfDay maxTime;

}s
These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause
of the error.

® Derived from ErrorBase are RuntimeError and LogicError. Each of these
exceptions contains an enumerated value that further categorizes the error.

* Finally, RangeError is derived from LogicError and reports the details of the
specific error.

Setting up exception hierarchies such as this not only helps to create a more read-
able specification because errors are categorized, but also can be used at the
language level to good advantage. For example, the Slice C++ mapping preserves
the exception hierarchy so you can catch exceptions generically as a base excep-
tion, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy on page 102, it is not clear whether, at run
time, the application will only throw most derived exceptions, such as
RangeError, or if it will also throw base exceptions, such as LogicError, Runt-
imeError, and ErrorBase. If you want to indicate that a base exception, interface,
or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific
exception type, at run time, the implementation of the operation may also throw
more derived exceptions. For example:

exception Base {
// ...
};

exception Derived extends Base {
/] ...
};

interface Example {
void op() throws Base; // May throw Base or Derived

};

In this example, op may throw a Base or a Derived exception, that is, any excep-
tion that is compatible with the exception types listed in the exception specifica-
tion can be thrown at run time.
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As a system evolves, it is quite common for new, derived exceptions to be
added to an existing hierarchy. Assume that we initially construct clients and
server with the following definitions:

exception Error {
// ...
b

interface Application {
void doSomething() throws Error;

};

Also assume that a large number of clients are deployed in field, that is, when you
upgrade the system, you cannot easily upgrade all the clients. As the application
evolves, a new exception is added to the system and the server is redeployed with
the new definition:

exception Error {
/] ...
};

exception FatalApplicationError extends Error {
// ...
};

interface Application {
void doSomething() throws Error;

};

This raises the question of what should happen if the server throws a FatalApp1i-
cationError from doSomething. The answer depends whether the client was
built using the old or the updated definition:

¢ If the client was built using the same definition as the server, it simply
receives a FatalApplicationError.

¢ If the client was built with the original definition, that client has no knowledge
that FatalApplicationError even exists. In this case, the Ice run time auto-
matically slices the exception to the most-derived type that is understood by
the receiver (Error, in this case) and discards the information that is specific
to the derived part of the exception. (This is exactly analogous to catching
C++ exceptions by value—the exception is sliced to the type used in the
catch-clause.)



4.10 Interfaces, Operations, and Exceptions 105

4.10.4

Exceptions support single inheritance only. (Multiple inheritance would be diffi-
cult to map into many programming languages.)

Ice Run-Time Exceptions

As mentioned in Section 2.2.2, in addition to any user exceptions that are listed in
an operation’s exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-
related run-time errors. For example, if a networking error interrupts communica-
tion between client and server, the client is informed of this by a run-time excep-
tion, such as ConnectTimeoutException or SocketException.

The exception specification of an operation must not list any run-time excep-
tions. (It is understood that all operations can raise run-time exceptions and you
are not allowed to restate that.)

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy,
as shown in Figure 4.3.

Exception

Specific Run-Time Exceptions... ’_’_’_‘ ‘ Specific User Exceptions... ’_’_’_‘
T T
[ [
I I

Figure 4.3. Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are
the (abstract) types Ice: :LocalException and Ice::UserException. In turn, all
run-time exceptions are derived from Ice::LocalException, and all user excep-
tions are derived from Ice: :UserException.
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Figure 4.4 shows the complete hierarchy of the Ice run-time exceptions.

LocalException

A

UnknownException

UnknownLocalException
UnknownUserException

InitializationException
lllegalldentityException
IdentityParseException
PlugininitializationException
DNSException
ProxyParseException
NoEndpointException
ObjectAdapterDeactivatedException
ObjectAdapterNamelnUseException
ObjectAdapterldinUseException
VersionMismatchException
CommunicatorDestroyedException
EndpointParseException
LocationForwardldentityException
PlugininitializationException
CollocationOptimizationException
AlreadyRegisteredException
NotRegisteredException
TwowayOnlyException
CloneNotIimplementedException
SecurityException

Exception

SyscallException

SocketException

ConnectFailedException
ConnectionLostException

ConnectionRefusedException

ProtocolException

BadMagicException
UnsupportedProtocolException
UnsupportedEncodingException
UnknownMessageException
ConnectionNotValidatedException
UnknownRequestldException
UnknownReplyStatusException
CloseConnectionException
ForcedCloseConnectionException
AbortBatchRequestException
lllegalMessageSizeException
FeatureNotSupportedException
CompressionException
DatagramLimitException

6

UserException

RequestFailedException

ObjectNotExistException
OperationNotExistException
FacetNotExistException

TimeoutException

ConnectTimeoutException
ConnectionTimeoutException
CloseTimeoutException

MarshalException

ProxyUnmarshalException
UnmarshalOutOfBoundsException
lllegallndirectionException
MemoryLimitException
EncapsulationException
NoObjectFactoryException
UnexpectedObjectException
EncapsulationException

NegativeSizeException

Figure 4.4. Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

6. We use the Unified Modeling Language (UML) for the object model diagrams in this book
(see [1] and [13] for details).
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Note that Figure 4.4 groups several exceptions into a single box to save space
(which, strictly, is incorrect UML syntax). Also note that some run-time excep-
tions have data members, which, for brevity, we have omitted in Figure 4.4. These
data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Memo-
ryLimitException. Others indicate problems in the Ice run time, such as Encap-
sulationException. Still others can arise only through application programming
errors, such as NotRegisteredException. In practice, you will likely never see
most of these exceptions. However, there are a few run-time exceptions you will
encounter and whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side. For example, if an attempt to
contact a server fails, the client-side run time raises a ConnectTimeoutExcep-
tion. However, there are three specific error conditions (shaded in Figure 4.4) that
are detected by the server and made known explicitly to the client-side run time
via the Ice protocol:

® ObjectNotExistException

This exception indicates that a request was delivered to the server but the
server could not locate a servant with the identity that is embedded in the
proxy. In other words, the server could not find an object to dispatch the
request to.

An ObjectNotExistException is a death certificate: it indicates that the
target object in the server does not exist.” Most likely, this is the case because
the object existed some time in the past and has since been destroyed, but the
same exception is also raised if a client uses a proxy with the identity of an
object that has never been created. If you receive this exception, you are
expected to clean up whatever resources you might have allocated that relate
to the specific object for which you receive this exception.

® FacetNotExistException

The client attempted to contact a non-existent facet of an object, that is, the
server has at least one servant with the given identity, but no servant with a
matching facet name. (See Chapter 32 for a discussion of facets.)

7. The Ice run time raises ObjectNotExistException only if there are no facets in existence
with a matching identity; otherwise, it raises FacetNotExistException (see Chapter 32).
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® OperationNotExistException

This exception is raised if the server could locate an object with the correct
identity but, on attempting to dispatch the client’s operation invocation, the
server found that the target object does not have such an operation. You will
see this exception in only two cases:

* You have used an unchecked down-cast on a proxy of the incorrect type.
(See page 201 and page 317 for unchecked down-casts.)

* Client and server have been built with Slice definitions for an interface that
disagree with each other, that is, the client was built with an interface defini-
tion for the object that indicates that an operation exists, but the server was
built with a different version of the interface definition in which the opera-
tion is absent.

Any error condition on the server side that is not described by one of the three
preceding exceptions is made known to the client as one of three generic excep-
tions (shaded in Figure 4.4):

® UnknownUserException

This exception indicates that an operation implementation has thrown a Slice
exception that is not declared in the operation’s exception specification (and is
not derived from one of the exceptions in the operation’s exception specifica-
tion).

UnknownLocalException

If an operation implementation raises a run-time exception other than
ObjectNotExistException, FacetNotExistException, or OperationNo-
tExistException (such as a NotRegisteredException), the client receives
an UnknownLocalException. In other words, the Ice protocol does not
transmit the exact exception that was encountered in the server, but simply
returns a bit to the client in the reply to indicate that the server encountered a
run-time exception.

A common cause for a client receiving an UnknownLocalException is failure
to catch and handle all exceptions in the server. For example, if the implemen-
tation of an operation encounters an exception it does not handle, the excep-
tion propagates all the way up the call stack until the stack is unwound to the
point where the Ice run time invoked the operation. The Ice run time catches
all Ice exceptions that “escape” from an operation invocation and returns them
to the client as an UnknownLocalException.
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4.10.5

® UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in
the server throws a C++ exception, such as a char *, or a Java exception,
such as a ClassCastException, the client receives an UnknownExcep-
tion.

All other run-time exceptions (not shaded in Figure 4.4) are detected by the client-
side run time and are raised locally.

It is possible for the implementation of an operation to throw Ice run-time
exceptions (as well as user exceptions). For example, if a client holds a proxy to
an object that no longer exists in the server, your server application code is
required to throw an ObjectNotExistException. If you do throw run-time excep-
tions from your application code, you should take care to throw a run-time excep-
tion only if appropriate, that is, do not use run-time exceptions to indicate
something that really should be a user exception. Doing so can be very confusing
to the client: if the application “hijacks” some run-time exceptions for its own
purposes, the client can no longer decide whether the exception was thrown by the
Ice run time or by the server application code. This can make debugging very
difficult.

Interface Semantics and Proxies
Building on the Clock example, we can create definitions for a world-time server:

exception GenericError {
string reason;

};

struct TimeOfDay {
short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

};
exception BadTimeVal extends GenericError {};

interface Clock {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time) throws BadTimeVal;

};

dictionary<string, Clockx> TimeMap; // Time zone name to clock map
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exception BadZoneName extends GenericError {};

interface WorldTime {
idempotent void addZone(string zoneName, Clockx zoneClock);
void removeZone(string zoneName) throws BadZoneName;
nonmutating Clocks findZone(string zoneName)
throws BadZoneName;
nonmutating TimeMap TistZones();
idempotent void setZones(TimeMap zones);

}s

The Wor1dT1ime interface acts as a collection manager for clocks, one for each
time zone. In other words, the Wor1dT1ime interface manages a collection of pairs.
The first member of each pair is a time zone name; the second member of the pair
is the clock that provides the time for that zone. The interface contains operations
that permit you to add or remove a clock from the map (addZone and remove-
Zone), to search for a particular time zone by name (findZone), and to read or
write the entire map (1istZones and setZones).

The Wor1dTime example illustrates an important Slice concept: note that
addZone accepts a parameter of type Clock+ and findZone returns a parameter of
type Clock=. In other words, interfaces are types in their own right and can be
passed as parameters. The = operator is known as the proxy operator. Its left-hand
argument must be an interface (or class—see Section 4.11) and its return type is a
proxy. A proxy is like a pointer that can denote an object. The semantics of
proxies are very much like those of C++ class instance pointers:

* A proxy can be null (see page 115).
* A proxy can dangle (point at an object that is no longer there)

® Operations dispatched via a proxy use late binding: if the actual run-time type
of the object denoted by the proxy is more derived than the proxy’s type, the
implementation of the most-derived interface will be invoked.

When a client passes a Clock proxy to the addZone operation, the proxy denotes
an actual Clock object in a server. The Clock Ice object denoted by that proxy
may be implemented in the same server process as the Wor1dTime interface, or in
a different server process. Where the Clock object is physically implemented
matters neither to the client nor to the server implementing the Wor1dTime inter-
face; if either invokes an operation on a particular clock, such as getTime, an RPC
call is sent to whatever server implements that particular clock. In other words, a
proxy acts as a local “ambassador” for the remote object; invoking an operation on
the proxy forwards the invocation to the actual object implementation. If the
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4.10.6

object implementation is in a different address space, this results in a remote
procedure call; if the object implementation is collocated in the same address
space, the Ice run time uses an ordinary local function call from the proxy to the
object implementation.

Note that proxies also act very much like pointers in their sharing semantics: if
two clients have a proxy to the same object, a state change made by one client
(such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++
and Java). This means that you cannot pass something other than a Clock proxy to
the addZone operation; attempts to do so are rejected at compile time.

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time
server to support the concept of an alarm clock:

interface AlarmClock extends Clock {
nonmutating TimeOfDay getAlarmTime();
idempotent void setAlarmTime(TimeOfDay alarmTime)
throws BadTimeVal;

};

The semantics of this are the same as for C++ or Java: AlarmClock is a subtype of
Clock and an ATarmClock proxy can be substituted wherever a Clock proxy is
expected. Obviously, an AlarmClock supports the same getTime and setTime
operations as a Clock but also supports the getAlarmTime and setAlarmTime
operations.

Multiple interface inheritance is also possible. For example, we can construct
a radio alarm clock as follows:

interface Radio {
void setFrequency(long hertz) throws GenericError;
void setVolume(Tong dB) throws GenericError;

};
enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
void setMode (ATarmMode mode);
AlarmMode getMode();

};
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RadioClock extends both Radio and AlarmClock and can therefore be passed

where a Radio, an AlarmClock, or a Clock is expected. The inheritance diagram
for this definition looks as follows:

Clock
«interface»

Radio AlarmClock
«interface» «interface»

RadioClock
«interface»

Figure 4.5. Inheritance diagram for RadioClock.

Interfaces that inherit from more than one base interface may share a common
base interface. For example, the following definition is legal:

interface B { /» ... =/ };

interface Il extends B { /* ... =/ };
interface I2 extends B { /* ... =/ };
interface D extends I1, I2 { /* ... %/ };

This definition results in the familiar diamond shape:

B
«interface»

1/7\

I 12
«interface» «interface»

\D/

«interface»

Figure 4.6. Diamond-shaped inheritance.
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Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation
name from more than one base interface. For example, the following definition is

illegal:
interface Clock {
void set(TimeOfDay time); // set time
};
interface Radio {
void set(Tong hertz); // set frequency
};
interface RadioClock extends Radio, Clock { // Illegal!
// ...
};

This definition is illegal because RadioClock inherits two set operations,
Radio::set and Clock: :set. The Slice compiler makes this illegal because
(unlike C++) many programming languages do not have a built-in facility for
disambiguating the different operations. In Slice, the simple rule is that all inher-
ited operations must have unique names. (In practice, this is rarely a problem
because inheritance is rarely added to an interface hierarchy “after the fact”. To
avoid accidental clashes, we suggest that you use descriptive operation names,
such as setTime and setFrequency. This makes accidental name clashes less
likely.)



114

The Slice Language

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Object. For example, the inherit-
ance hierarchy from Figure 4.5 would be shown more correctly as in Figure 4.7.

Object
«interface»
Clock
«interface»
Radio AlarmClock
«interface» «interface»
RadioClock
«interface»

Figure 4.7. Implicit inheritance from Object.

Because all interfaces have a common base interface, we can pass any type of
interface as that type. For example:

interface ProxyStore {
idempotent void putProxy(string name, Object* 0);
nonmutating Objectx getProxy(string name);

};

Object is a Slice keyword (note the capitalization) that denotes the root type of
the inheritance hierarchy. The ProxyStore interface is a generic proxy storage
facility: the client can call putProxy to add a proxy of any type under a given
name and later retrieve that proxy again by calling getProxy and supplying that
name. The ability to generically store proxies in this fashion allows us to build
general-purpose facilities, such as a naming service that can store proxies and
deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers (see Chapter 36).

Inheritance from type Object is always implicit. For example, the following
Slice definition is illegal:

interface MyInterface extends Object { /* ... %/ }; // Error!
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It is understood that all interfaces inherit from type Object; you are not allowed to
restate that.

Type Object is mapped to an abstract type by the various language mappings,
S0 you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the ProxyStore interface once more, we notice that getProxy does
not have an exception specification. The question then is what should happen if a
client calls getProxy with a name under which no proxy is stored? Obviously, we
could add an exception to indicate this condition to getProxy. However, another
option is to return a null proxy. Ice has the built-in notion of a null proxy, which is
a proxy that “points nowhere”. When such a proxy is returned to the client, the
client can test the value of the returned proxy to check whether it is null or denotes
a valid object.

A more interesting question is: “which approach is more appropriate, throwing
an exception or returning a null proxy?” The answer depends on the expected
usage pattern of an interface. For example, if, in normal operation, you do not
expect clients to call getProxy with a non-existent name, it is better to throw an
exception. (This is probably the case for our ProxyStore interface: the fact that
there is no 11st operation makes it clear that clients are expected to know which
names are in use.)

On the other hand, if you expect that clients will occasionally try to look up
something that is not there, it is better to return a null proxy. The reason is that
throwing an exception breaks the normal flow of control in the client and requires
special handling code. This means that you should throw exceptions only in
exceptional circumstances. For example, throwing an exception if a database
lookup returns an empty result set is wrong; it is expected and normal that a result
set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that
get these details right are easier to use and easier to understand. Not only do such
interfaces make life easier for client developers, they also make it less likely that
latent bugs cause problems later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For
example:
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interface Link {
nonmutating SomeType getValue();
nonmutating Link: next();

};

The L1ink interface contains a next operation that returns a proxy to a Link inter-
face. Obviously, this can be used to create a chain of interfaces; the final link in
the chain returns a null proxy from its next operation.

Empty Interfaces
The following Slice definition is legal:

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting
question is: “why would I need an empty interface?” In most cases, empty inter-
faces are an indication of design errors. Here is one example:

interface ThingBase {};

interface Thingl extends ThingBase {
// Operations here...

}s

interface Thing2 extends ThingBase {
// Operations here...

¥
Looking at this definition, we can make two observations:

® Thingl and Thing2 have a common base and are therefore related.

* Whatever is common to Thingl and Thing2 can be found in interface Thing-
Base.

Of course, looking at ThingBase, we find that Thingl and Thing2 do not share
any operations at all because ThingBase is empty. Given that we are using an
object-oriented paradigm, this is definitely strange: in the object-oriented model,
the only way to communicate with an object is to send a message to the object.
But, to send a message, we need an operation. Given that ThingBase has no oper-
ations, we cannot send a message to it, and it follows that Thingl and Thing2 are
not related because they have no common operations. But of course, seeing that
Thingl and Thing2 have a common base, we conclude that they are related, other-
wise the common base would not exist. At this point, most programmers begin to
scratch their head and wonder what is going on here.
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One common use of the above design is a desire to treat Thingl and Thing2
polymorphically. For example, we might continue the previous definition as
follows:

interface ThingUser {
void putThing(ThingBasex thing);
s

Now the purpose of having the common base becomes clear: we want to be able to
pass both Thingl and Thing2 proxies to putThing. Does this justify the empty
base interface? To answer this question, we need to think about what happens in
the implementation of putThing. Obviously, putThing cannot possibly invoke an
operation on a ThingBase because there are no operations. This means that
putThing can do one of two things:

1. putThing can simply remember the value of thing.

2. putThing can try to down-cast to either Thingl or Thing2 and then invoke an
operation. The pseudo-code for the implementation of putThing would look
something like this:

void putThing(ThingBase thing)

{
if (is_a(Thingl, thing)) {
// Do something with Thingl...
} else if (is_a(Thing2, thing)) {
// Do something with Thing2...
} else {
// Might be a ThingBase?
//
}
}

The implementation tries to down-cast its argument to each possible type in
turn until it has found the actual run-time type of the argument. Of course, any
object-oriented text book worth its price will tell you that this is an abuse of
inheritance and leads to maintenance problems.

If you find yourself writing operations such as putThing that rely on artificial
base interfaces, ask yourself whether you really need to do things this way. For
example, a more appropriate design might be:

interface Thingl {
// Operations here...

};



118

The Slice Language

interface Thing2 {
// Operations here...

};

interface ThingUser {
void putThingl(Thinglx thing);
void putThing2(Thing2= thing);
}s

With this design, Thingl and Thing2 are not related, and ThingUser offers a sepa-

rate operation for each type of proxy. The implementation of these operations does

not need to use any down-casts, and all is well in our object-oriented world.
Another common use of empty base interfaces is the following:

interface PersistentObject {};

interface Thingl extends PersistentObject {
// Operations here...

}s

interface Thing2 extends PersistentObject {
// Operations here...

Clearly, the intent of this design is to place persistence functionality into the
PersistentObject base implementation and require objects that want to have
persistent state to inherit from PersistentObject. On the face of things, this is
reasonable: after all, using inheritance in this way is a well-established design
pattern, so what can possibly be wrong with it? As it turns out, there are a number
of things that are wrong with this design:

® The above inheritance hierarchy is used to add behavior to Thingl and
Thing2. However, in a strict OO model, behavior can be invoked only by
sending messages. But, because PersistentObject has no operations, no
messages can be sent.

This raises the question of how the implementation of PersistentObject
actually goes about doing its job; presumably, it knows something about the
implementation (that is, the internal state) of Thingl and Thing2, so it can
write that state into a database. But, if so, PersistentObject, Thingl, and
Thing2 can no longer be implemented in different address spaces because, in
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that case, PersistentObject can no longer get at the state of Thingl and
Thing2.

Alternatively, Thingl and Thing2 use some functionality provided by
PersistentObject in order to make their internal state persistent. But
PersistentObject does not have any operations, so how would Thingl and
Thing2 actually go about achieving this? Again, the only way that can work is
if PersistentObject, Thingl, and Thing2 are implemented in a single
address space and share implementation state behind the scenes, meaning that
they cannot be implemented in different address spaces.

* The above inheritance hierarchy splits the world into two halves, one
containing persistent objects and one containing non-persistent ones. This has
far-reaching ramifications:

* Suppose you have an existing application with already implemented, non-
persistent objects. Requirements change over time and you find that you
now would like to make some of your objects persistent. With the above
design, you cannot do this unless you change the type of your objects
because they now must inherit from PersistentObject. Of course, this is
extremely bad news: not only do you have to change the implementation of
your objects in the server, you also need to locate and update all the clients
that are currently using your objects because they suddenly have a
completely new type. What is worse, there is no way to keep things back-
ward compatible: either all clients change with the server, or none of them
do. It is impossible for some clients to remain “unupgraded”.

* The design does not scale to multiple features. Imagine that we have a
number of additional behaviors that objects can inherit, such as serializa-
tion, fault-tolerance, persistence, and the ability to be searched by a search
engine. We quickly end up in a mess of multiple inheritance. What is worse,
each possible combination of features creates a completely separate type
hierarchy. This means that you can no longer write operations that generi-
cally operate on a number of object types. For example, you cannot pass a
persistent object to something that expects a non-persistent object, even if
the receiver of the object does not care about the persistence aspects of the
object. This quickly leads to fragmented and hard-to-maintain type systems.
Before long, you will either find yourself rewriting your application or end
up with something that is both difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface
definition language that has nothing to do with implementation (but empty inter-
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faces almost always indicate that implementation state is shared via mechanisms
other than defined interfaces). If you find yourself writing an empty interface defi-
nition, at least step back and think about the problem at hand; there may be a more
appropriate design that expresses your intent more cleanly. If you do decide to go
ahead with an empty interface regardless, be aware that, almost certainly, you will
lose the ability to later change the distribution of the object model over physical
server process because you cannot place an address space boundary between
interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In partic-
ular, if two interfaces are in an inheritance relationship, this in no way implies that
the implementations of those interfaces must also inherit from each other. You can
choose to use implementation inheritance when you implement your interfaces,
but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation
inheritance by default, and interface inheritance requires extra effort to imple-
ment.)

In summary, Slice inheritance simply establishes type compatibility. It says
nothing about how interfaces are implemented and, therefore, keeps implementa-
tion choices open to whatever is most appropriate for your application.

Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like
interfaces in that they can have operations and are like structures in that they can
have data members. This leads to hybrid objects that can be treated as interfaces
and passed by reference, or can be treated as values and passed by value. Classes
provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be imple-
mented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you
can pass a class instance to an operation as long as the actual class type is derived
from the formal parameter type in the operation’s signature. This also permits
classes to be used as type-safe unions, similarly to Pascal’s discriminated variant
records.
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4.11.2

Simple Classes

A Slice class definition is similar to a structure definition, but uses the class
keyword. For example:

class TimeOfDay {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // @ - 59

};

Apart from the keyword class, this definition is identical to the structure defini-
tion we saw on page 89. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use
a class where a structure is sufficient). Unlike structures, classes can be empty:

class EmptyClass {}; // OK
struct EmptyStruct {}; // Error

Much the same design considerations as for empty interfaces (see page 116) apply
to empty classes: you should at least stop and rethink your approach before
committing yourself to an empty class.

Class Inheritance
Unlike structures, classes support inheritance. For example:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @ - 59
short second; // @ - 59
};
class DateTime extends TimeOfDay {
short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

}s

This example illustrates one major reason for using a class: a class can be

extended by inheritance, whereas a structure is not extensible. The previous

example defines DateTime to extend the TimeOfDay class with a date.®
Classes only support single inheritance. The following is illegal:
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class TimeOfDay {
short hour; // @ - 23
short minute; // @ - 59
short second; // @ - 59
};
class Date {
short day;
short month;
short year;
};
class DateTime extends TimeOfDay, Date { // Error!
// ...
};
A derived class also cannot redefine a data member of its base class:
class Base {
int integer;
};
class Derived extends Base {
int integer; // Error, integer redefined
};
4.11.3 Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class
instance to an operation, the class and all its members are passed. The usual type
compatibility rules apply: you can pass a derived instance where a base instance is
expected. If the receiver has static type knowledge of the actual derived run-time
type, it receives the derived instance; otherwise, if the receiver does not have static
type knowledge of the derived type, the instance is sliced to the base type. For an
example, suppose we have the following definitions:

8. If you are puzzled by the comment about the year 1753, search the Web for “1752 date change”.
The intricacies of calendars for various countries prior to that year can keep you occupied for
months...
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// In file Clock.ice:

class TimeOfDay {

short hour; // 0 - 23
short minute; // @0 - 59
short second; // @ - 59

};
interface Clock {
TimeOfDay getTime();
void setTime(TimeOfDay time);
};
// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {

short day; // 1 - 31
short month; // 1 - 12
short year; // 1753 onwards

};

Because DateTime is a sub-class of TimeOfDay, the server can return a DateT1ime
instance from getTime, and the client can pass a DateTime instance to setTime.
In this case, if both client and server are linked to include the code generated for
both Clock.ice and DateTime. ice, they each receive the actual derived
DateTime instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code
generated for both Clock.ice and DateTime. ice, but the client is linked
only with the code generated for Clock . ice. In other words, the server under-
stands the type DateTime and can return a DateTime instance from getTime, but
the client only understands TimeOfDay. In this case, the derived DateTime instance
returned by the server is sliced to its TimeOfDay base type in the client. (The infor-
mation in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of poly-
morphic interfaces). For example:

class Shape {
// Definitions for shapes, such as size, center, etc.

};

class Circle extends Shape {
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// Definitions for circles, such as radius...
b
class Rectangle extends Shape {
// Definitions for rectangles, such as width and Tength...
}s
sequence<Shape> ShapeSeq;
interface ShapeProcessor {
void processShapes(ShapeSeq ss);
};
Note the definition of ShapeSeq and its use as a parameter to the processShapes
operation: the class hierarchy allows us to pass a polymorphic sequence of shapes
(instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and
down-cast each element to its actual run-time type. (The receiver can also ask each
element for its type ID to determine its type—see Section 6.14.1 and
Section 10.11.2.)

4.11.4 Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By
deriving classes from a common base class, you can create the same effect as with
a union:

interface ShapeShifter {
Shape translate(Shape s, long xDistance, long yDistance);

};

The parameter s of the translate operation can be viewed as a union of two
members: a Circle and a Rectangle. The receiver of a Shape instance can use the
type ID (see Section 4.13) of the instance to decide whether it received a Circle
or a Rectangle. Alternatively, if you want something more along the lines of a
conventional discriminated union, you can use the following approach:

class UnionDiscriminator {
int d;
};

class Memberl extends UnionDiscriminator {
// d ==

string s;
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float f;
b
class Member2 extends UnionDiscriminator {
// d ==
byte b;
int i;

};

With this approach, the UnionDiscriminator class provides a discriminator
value. The “members” of the union are the classes that are derived from Union-
Discriminator. For each derived class, the discriminator takes on a distinct
value. The receiver of such a union uses the discriminator value in a switch
statement to select the active union member.

Self-Referential Classes
Classes can be self-referential. For example:

class Link {
SomeType value;
Link next;

}s

This looks very similar to the self-referential interface example on page 116, but
the semantics are very different. Note that value and next are data members, not
operations, and that the type of next is Link (nof Link=). As you would expect,
this forms the same linked list arrangement as the Link interface on page 116:
each instance of a Link class contains a next member that points at the next link
in the chain; the final link’s next member contains a null value. So, what looks
like a class including itself really expresses pointer semantics: the next data
member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the
Link interface on page 116 and the Link class on page 125. The difference is that
classes have value semantics, whereas proxies have reference semantics. To illus-
trate this, consider the Link interface from page 116 once more:

interface Link {
nonmutating SomeType getValue();
nonmutating Links next();

};
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Here, getValue and next are both operations and the return value of next is
Link=, that is, next returns a proxy. A proxy has reference semantics, that is, it
denotes an object somewhere. If you invoke the getValue operation on a Link
proxy, a message is sent to the (possibly remote) servant for that proxy. In other
words, for proxies, the object stays put in its server process and we access the state
of the object via remote procedure calls. Compare this with the definition of our
Link class:

class Link {
SomeType value;
Link next;

};

Here, value and next are data members and the type of next is Link, which has
value semantics. In particular, while next looks and feels like a pointer, it cannot
denote an instance in a different address space. This means that if we have a chain
of Link instances, all of the instances are in our local address space and, when we
read or write a value data member, we are performing local address space opera-
tions. This means that an operation that returns a L1ink instance, such as getHead,
does not just return the head of the chain, but the entire chain, as shown in
Figure 4.8.

Client Server Client Server

getHead

4o~

Figure 4.8. Class version of Link before and after calling getHead.

On the other hand, for the interface version of Link, we do not know where all the
links are physically implemented. For example, a chain of four links could have
each object instance in its own physical server process; those server processes
could be each in a different continent. If you have a proxy to the head of this four-
link chain and traverse the chain by invoking the next operation on each link, you
will be sending four remote procedure calls, one to each object

Self-referential classes are particularly useful to model graphs. For example,
we can create a simple expression tree along the following lines:
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enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
UnaryOp operator;
Node operand;

};

class BinaryOperator extends Node {
BinaryOp op;
Node operandl;
Node operand2;

};

class Operand extends Node {
Tong val;

};

The expression tree consists of leaf nodes of type Operand, and interior nodes of
type UnaryOperator and BinaryOperator, with one or two descendants, respec-
tively. All three of these classes are derived from a common base class Node. Note
that Node is an empty class. This is one of the few cases where an empty base class
is justified. (See the discussion on page 116; once we add operations to this class
hierarchy (see Section 4.11.7), the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing
that parameter results in transmission of the entire tree to the server:

interface Evaluator {
Tong eval(Node expression); // Send entire tree for evaluation

};

Self-referential classes are not limited to acyclic graphs; the Ice run time permits
loops: it ensures that no resources are leaked and that infinite loops are avoided
during marshaling.

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes,
when classes obviously can be used to model structures? The answer has to do
with the cost of implementation: classes provide a number of features that are
absent for structures:
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* Classes support inheritance.

* (Classes can be self-referential.

* Classes can have operations (see Section 4.11.7).

* Classes can implement interfaces (see Section 4.11.9).

Obviously, an implementation cost is associated with the additional features of
classes, both in terms of the size of the generated code and the amount of memory
and CPU cycles consumed at run time. On the other hand, structures are simple
collections of values (“plain old structs”) and are implemented using very efficient
mechanisms. This means that, if you use structures, you can expect better perfor-
mance and smaller memory footprint than if you would use classes (especially for
languages with direct support for “plain old structures”, such as C++ and C#). Use
a class only if you need at least one of its more powerful features.

Classes with Operations

Classes, in addition to data members, can have operations. The syntax for opera-
tion definitions in classes is identical to the syntax for operations in interfaces. For
example, we can modify the expression tree from Section 4.11.5 as follows:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
idempotent long eval();

};

class UnaryOperator extends Node {
UnaryOp operator;
Node operand;

};

class BinaryOperator extends Node {
BinaryOp op;
Node operandl;
Node operand2;

};

class Operand {
Tong val;

};
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The only change compared to the version in Section 4.11.5 is that the Node class
now has an eval operation. The semantics of this are as for a virtual member
function in C++: each derived class inherits the operation from its base class and
can choose to override the operation’s definition. For our expression tree, the
Operand class provides an implementation that simply returns the value of its val
member, and the UnaryOperator and BinaryOperator classes provide imple-
mentations that compute the value of their respective subtrees. If we call eval on
the root node of an expression tree, it returns the value of that tree, regardless of
whether we have a complex expression or a tree that consists of only a single
Operand node.

Operations on classes are always executed in the caller’s address space, that is,
operations on classes are local operations. Therefore, calling an operation on a
class does not ever result in a remote procedure call. Of course, this immediately
raises an interesting question: what happens if a client receives a class instance
with operations from a server, but client and server are implemented in different
languages? Classes with operations require the receiver to supply a factory for
instances of the class. The Ice run time only marshals the data members of the
class. If a class has operations, the receiver of the class must provide a class
factory that can instantiate the class in the receiver’s address space, and the
receiver is responsible for providing an implementation of the class’s operations.

Therefore, if you use classes with operations, it is understood that client and
server each have access to an implementation of the class’s operations. No code is
shipped over wire (which, in an environment of heterogeneous nodes using
different operating systems and languages is infeasible).

Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in
some detail.

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-
referential or not) pose no architectural problems: they simply are values that are
marshaled like any other value, such as a sequence, structure, or dictionary.
Classes using derivation also pose no problems: if the receiver of a derived
instance has knowledge of the derived type, it simply receives the derived type;
otherwise, the instance is sliced to the most-derived type that is understood by the
receiver. This makes class inheritance useful as a system is extended over time:
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you can create derived class without having to upgrade all parts of the system at
once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose
that you are creating an Ice application. Also assume that the Slice definitions use
quite a few classes with operations. You sell your clients and servers (both written
in Java) and end up with thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients
written in C++. For commercial reasons, you would like to leave the development
of C++ clients to customers or a third party but, at this point, you discover a glitch:
your application has lots of classes with operations along the following lines:

class ComplexThingForExpertsOnly {
// Lots of arcane data members here...
MysteriousThing mysteriousOperation(/+ parameters =/);
ArcaneThing arcaneOperation(/+ parameters =*/);
ComplexThing complexOperation(/+ parameters =/);
// etc...

};

It does not matter what exactly these operations do. (Presumably, you decided to
off-load some of the processing for your application onto the client side for
performance reasons.) Now that you would like other developers to write C++
clients, it turns out that your application will work only if these developers
provide implementations of all the client-side operations and, moreover, if the
semantics of these operations exactly match the semantics of your Java implemen-
tations. Depending on what these operations do, providing exact semantic equiva-
lents in a different language may not be trivial, so you decide to supply the C++
implementations yourself. But now, you discover another problem: the C++
clients need to be supported for a variety of operating systems that use a variety of
different C++ compilers. Suddenly, your task has become quite daunting: you
really need to supply implementations for all the combinations of operating
systems and compiler versions that are used by clients. Given the different state of
compliance with the ISO C++ standard of the various compilers, and the idiosyn-
crasies of different operating systems, you may find yourself facing a develop-
ment task that is much larger than anticipated. And, of course, the same scenario
will arise again should you need client implementations in yet another language.
The moral of this story is not that classes with operations should be avoided;
they can provide significant performance gains and are not necessarily bad. But,
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keep in mind that, once you use classes with operations, you are, in effect, using
client-side native code and, therefore, you can no longer enjoy the implementation
transparencies that are provided by interfaces. This means that classes with opera-
tions should be used only if you can tightly control the deployment environment
of clients. If not, you are better off using interfaces and classes without operations.
That way, all the processing stays on the server and the contract between client
and server is provided solely by the Slice definitions, not by the semantics of the
additional client-side code that is required for classes with operations.

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the
state of a class in a database with very little implementation effort. To get access
to these persistence features, you must define a Slice class whose members store
the state of the class. We discuss the persistence features of Slice in detail in
Chapter 37.

Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class
can be used to provide the behavior for an interface, for example:

interface Time {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
TimeOfDay time;
};

The implements keyword indicates that the class Clock provides an implementa-
tion of the Time interface. The class can provide data members and operations of
its own; in the preceding example, the Clock class stores the current time that is
accessed via the Time interface. A class can implement several interfaces, for
example:

interface Time {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

interface Radio {
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idempotent void setFrequency(long hertz);
idempotent void setVolume(long dB);
};

class RadioClock implements Time, Radio {
TimeOfDay time;
long hertz;

};

The class RadioClock implements both Time and Radio interfaces.
A class, in addition to implementing an interface, can also extend another
class:

interface Time {
nonmutating TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
TimeOfDay time;
};

interface AlarmClock extends Time {
nonmutating TimeOfDay getAlarmTime();
idempotent void setAlarmTime(TimeOfDay alarmTime);

};

interface Radio {
idempotent void setFrequency(long hertz);
idempotent void setVolume(long dB);

};

class RadioAlarmClock extends Clock
implements AlarmClock, Radio {
TimeOfDay alarmTime;
Tong hertz;

};
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These definitions result in the inheritance graph shown in Figure 4.9:

Time
«interface»
Radio AlarmClock
. . Clock
«interface» «interface»
RadioATarmClock

Figure 4.9. A Class using implementation and interface inheritance.

For this definition, Radio and ATarmClock are abstract interfaces, and Clock and
RadioAlarmClock are concrete classes. As for Java, a class can implement
multiple interfaces, but can extend at most one class.

Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member
that it inherits from a base interface or class. For example:

interface BaselInterface {
void op();
};

class BaseClass {
int member;

};
class DerivedClass extends BaseClass implements BaseInterface {
void someOperation(); // OK
int op(); // Error!
int someMember; // OK
Tong member; // Error!

};
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Pass-by-Value Versus Pass-by-Reference

As we saw in Section 4.11.5, classes naturally support pass-by-value semantics:
passing a class transmits the data members of the class to the receiver. Any
changes made to these data members by the receiver affect only the receiver’s
copy of the class; the data members of the sender’s class are not affected by the
changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For
example:

class TimeOfDay {
short hour;
short minute;
short second;
string format();

}s

interface Example {
TimeOfDay= get(); // Note: returns a proxy!

};

Note that the get operation returns a proxy to a TimeOfDay class and not a
TimeOfDay instance itself. The semantics of this are as follows:

* When the client receives a TimeOfDay proxy from the get call, it holds a
proxy that differs in no way from an ordinary proxy for an interface.

® The client can invoke operations via the proxy, but cannot access the data
members. This is because proxies do not have the concept of data members,
but represent interfaces: even though the TimeOfDay class has data members,
only its operations can be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the
TimeOfDay class. A proxy for that instance was passed to the client. The only
thing the client can do with this proxy is to invoke the format operation. The
implementation of that operation is provided by the server and, when the client
invokes format, it sends an RPC message to the server just as it does when it
invokes an operation on an interface. The implementation of the format operation
is entirely up to the server. (Presumably, the server will use the data members of
the TimeOfDay instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However,
it makes perfect sense if classes implement interfaces: parts of your application
can exchange class instances (and, therefore, state) by value, whereas other parts
of the system can treat these instances as remote interfaces. For example:



4.12 Forward Declarations 135

4.12

interface Time {
string format();

// ...
}s

class TimeOfDay implements Time {
short hour;
short minute;
short second;

};

interface I1 {
TimeOfDay get(); // Pass by value
void put(TimeOfDay time); // Pass by value

};

interface I2 {
Timex get(); // Pass by reference

};

In this example, clients dealing with interface I1 are aware of the TimeOfDay class
and pass it by value whereas clients dealing with interface I2 deal only with the
Time interface. However, the actual implementation of the Time interface in the
server uses TimeOfDay instances.

Be careful when designing systems that use such mixed pass-by-value and
pass-by-reference semantics. Unless you are clear about what parts of the system
deal with the interface (pass by reference) aspects and the class (pass by value)
aspects, you can end up with something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze (see
Chapter 37), which allows you to add classes to an existing interface to implement
persistence.

Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit
the creation of mutually dependent objects, for example:

module Family {
interface Child; // Forward declaration

sequence<Child«> Children; // OK
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interface Parent {
Children getChildren(); // OK

1

interface Child { // Definition
Parentx getMother();
Parent= getFather();
1
};

Without the forward declaration of Ch1i1d, the definition obviously could not
compile because Child and Parent are mutually dependent interfaces. You can
use forward-declared interfaces and classes to define types (such as the Children
sequence in the previous example). Forward-declared interfaces and classes are
also legal as the type of a structure, exception, or class member, as the value type
of a dictionary, and as the parameter and return type of an operation. However,
you cannot inherit from a forward-declared interface or class until after its defini-
tion has been seen by the compiler:

interface Base; // Forward declaration
interface Derivedl extends Base {}; // Error!
interface Base {}; // Definition

interface Derived2 extends Base {}; // OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is
seen is necessary because, otherwise, the compiler could not enforce that derived
interfaces must not redefine operations that appear in base interfaces.’

Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID.
The type ID is simply the fully-qualified name of each type. For example, the type
ID of the Chi1d interface in the preceding example is : :Family: :Chil-
dren::Child. All type IDs for user-defined types start with a leading : :, so the
type ID of the Family module is : : Family (not Family). In general, a type ID is

9. A multi-pass compiler could be used, but the added complexity is not worth it.
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formed by starting with the global scope (: :) and forming the fully-qualified
name of a type by appending each module name in which the type is nested, and
ending with the name of the type itself; the components of the type ID are sepa-
rated by ::.

The type ID of a proxy is formed by appending a = to the type ID of an inter-
face or class. For example, the type ID of a Child proxy is : :Family::Chil-
dren: :Child=.

The type ID of the Slice Object type is : :Ice: :0Object and the type ID of an
Object proxy is ::Ice: :0Objects.

The type IDs for the remaining built-in types, such as int, booT, and so on, are
the same as the corresponding keyword. For example, the type ID of int is int,
and the type ID of stringis string.

Type IDs are used internally by the Ice run time as a unique identifier for each
type. For example, when an exception is raised, the marshaled form of the excep-
tion that is returned to the client is preceded by its Type ID on the wire. The client-
side run time first reads the Type ID and, based on that, unmarshals the remainder
of the data as appropriate for the type of the exception.

Type IDs are also used by the ice_isA operation (see page 138).

Operations on Object

The Object interface has a number of operations. We cannot define type Object
in Slice because Object is a keyword; regardless, here is what (part of) the defini-
tion of Object would look like if it were legal:

sequence<string> StrSeq;

interface Object { // "Pseudo" Slice!
void ice_ping();
bool ice_isA(string typelD);
string ice_id();
StrSeq ice_ids();
// ...
};

Note that, apart from the illegal use of the keyword Object as the interface name,
the operation names all contain an underscore. This is deliberate: by putting an
underscore into these operation names, it becomes impossible for these built-in
operations to ever clash with a user-defined operation. This means that all Slice
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interfaces can inherit from Object without name clashes. There are three built-in
operations that are commonly used:
® jce_ping
All interfaces support the ice_ping operation. That operation is useful for
debugging because it provides a basic reachability test for an object: if the
object exists and a message can successfully be dispatched to the object,
ice_ping simply returns without error. If the object cannot be reached or does
not exist, ice_ping throws a run-time exception that provides the reason for
the failure.
® ice_isA
The ice_1isA operation accepts a type identifier (such as the identifier returned
by ice_id) and tests whether the target object supports the specified type,
returning true if it does. You can use this operation to check whether a target
object supports a particular type. For example, referring to Figure 4.7 once
more, assume that you are holding a proxy to a target object of type Alarm-
Clock. Table 4.2 illustrates the result of calling ice_1isA on that proxy with
various arguments. (We assume that all type in Figure 4.7 are defined in a
module Times):

Table 4.2. Calling ice_1isA on a proxy denoting an object of type AlarmClock.

Argument Result
::Ice::0Object true
::Times::Clock true

::Times::AlarmClock || true

::Times::Radio false

::Times: :RadioClock || false

As expected, ice_isA returns true for : :Times: :Clock and

::Times: :AlarmClock and also returns true for : :Ice: :0bject (because all
interfaces support that type). Obviously, an AlarmClock supports neither the
Radio nor the RadioClock interfaces, so ice_isA returns false for these types.
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® ice_id
The 1ice_id operation returns the type ID (see Section 4.13) of the most-
derived type of an interface.

® jce_ids
The ice_ids operation returns a sequence of type IDs that contains all of the
type IDs supported by an interface. For example, for the RadioClock interface
in Figure 4.7, i ce_ids returns a sequence containing the type IDs
::Ice::0bject, ::Times: :Clock, : :Times: :AlarmClock, : : Times: :Radio,
and ::Times: :RadioClock.

4.15 Local Types

In order to access certain features of the Ice run time, you must use APIs that are
provided by libraries. However, instead of defining an API that is specific to each
implementation language, Ice defines its APIs in Slice using the Tocal keyword.
The advantage of defining APIs in Slice is that a single definition suffices to
define the API for all possible implementation languages. The actual language-
specific APl is then generated by the Slice compiler for each implementation
language. Types that are provided by Ice libraries are defined using the Slice
Tocal keyword. For example:

module Ice {
Tocal interface ObjectAdapter {
// ...
};
};

Any Slice definition (not just interfaces) can have a Tocal modifier. If the Tocal
modifier is present, the Slice compiler does not generate marshaling code for the
corresponding type. This means that a local type can never be accessed remotely
because it cannot be transmitted between client and server. (The Slice compiler
prevents use of Tocal types in non-Tocal contexts.)

In addition, local interfaces and local classes do not inherit from
Ice: :Object. Instead, local interfaces and classes have their own, completely
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separate inheritance hierarchy. At the root of this hierarchy is the type
Ice::LocalObject, as shown in Figure 4.10.

LocalObject
«interface»

«interface» interfaces...

T
T
T

ObjectAdapter Other local ‘m

Figure 4.10. Inheritance from LocalObject

Because local interfaces form a completely separate inheritance hierarchy, you
cannot pass a local interface where a non-local interface is expected and vice-
versa.

You rarely need to define local types for your own applications—the Tocal
keyword exists mainly to allow definition of APIs for the Ice run time. (Because
local objects cannot be invoked remotely, there is little point for an application to
define local objects; it might as well define ordinary programming-language
objects instead.) However, there is one exception to this rule: servant locators
must be implemented as local objects (see Section 30.7).

Names and Scoping

4.16.1

Slice has a number of rules regarding identifiers. You will typically not have to
concern yourself with these. However, occasionally, it is good to know how Slice
uses naming scopes and resolves identifiers.

Naming Scopes

The following Slice constructs establish a naming scope:

the global (file) scope
* modules

* interfaces

* classes

¢ structures
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® exceptions
® enumerations
® parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the
same identifier for different purposes. For example:

interface Bad {
void op(int p, string p); // Error!
};

Because a parameter list forms a naming scope, it is illegal to use the same
identifier p for different parameters. Similarly, data members, operation names,
interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identi-
fiers that differ not only in capitalization within a naming scope. For example:

struct Bad {

int m;

string M; // Error!
};

The Slice compiler also enforces consistent capitalization for identifiers. Once
you have defined an identifier, you must use the same capitalization for that iden-
tifier thereafter. For example, the following is in error:

sequence<string> StringSeq;

interface Bad {
stringSeq op(); // Error!
};

Note that identifiers must not differ from a Slice keyword in case only. For
example, the following is in error:

interface Module { // Error, "module" is a keyword
// ...
};
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4.16.3 Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local
scope. For example:

module Types {
sequence<long> LongSeq;

}s

module MyApp {
sequence<Types: :LongSeq> NumberTree;

};

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module
Types. The global scope is denoted by a leading : :, so we could also refer to
LongSeq as ::Types::LongSeq.

The scope-qualification operator also allows you to create mutually dependent
interfaces that are defined in different modules. The obvious attempt to do this
fails:

module Parents {
interface Children::Child; // Syntax error!
interface Mother {
Children::Childx getChild();
1
interface Father {
Children::Childx getChild();
1
};

module Children {
interface Child {
Parents: :Mother= getMother();
Parents::Father= getFather();
1
};

This fails because it is syntactically illegal to forward-declare an interface in a
different module. To make it work, we must use a reopened module:
module Children {

interface Child; // Forward declaration

}s

module Parents {
interface Mother {
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Children::Childx getChild(); // OK
1
interface Father {
Children::Childx getChild(); // OK
1
};
module Children { // Reopen module
interface Child { // Define Child
Parents: :Mother= getMother();
Parents::Father= getFather();
1
};

While this technique works, it is probably of dubious value: mutually dependent
interfaces are, by definition, tightly coupled. On the other hand, modules are
meant to be used to place related definitions into the same module, and unrelated
definitions into different modules. Of course, this begs the question: if the inter-
faces are so closely related that they depend on each other, why are they defined in
different modules? In the interest of clarity, you probably should avoid this
construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For
example, the following is legal:

module Outer {
sequence<string> Seq;

module Inner {
sequence<short> Seq;
1
};

Within module Inner, the name Seq refers to a sequence of short values and
hides the definition of Outer: : Seq. You can still refer to the other definition by
using explicit scope qualification, for example:

module Outer {
sequence<string> Seq;

module Inner {
sequence<short> Seq;
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struct Confusing {
Seq a; // Sequence of short
::0uter::Seq b; // Sequence of string
s
}s
s
Needless to say, you should try to avoid such redefinitions—they make it harder
for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a
module named M cannot (recursively) contain any construct also named M. The
same is true for interfaces, classes, structures, exceptions, and operations. For
example, the following examples are all in error:

module M {
interface M { /+ ... %/ }; // Error!
interface I {
void I(); // Error!
void op(string op); // Error!
1
struct S {
long s; // Error, even if case differs!
1

};

moduTle Outer {
module Inner {
interface OQuter { // Error!
// ...
};
1
};

The reason for this restriction is that nested types that have the same name are
difficult to map into some languages. For example, C++ and Java reserve the name
of a class as the name of the constructor, so an interface I could not contain an
operation named I without artificial rules to avoid the name clash.

Similarly, some languages (such as C# and Visual Basic) do not permit a qual-
ified name to be anchored at the global scope. If a nested module or type is
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permitted to have the same name as the name of an enclosing module, it can
become impossible to generate legal code in some cases.

In the interest of simplicity, Slice simply prohibits the name of a nested
module or type to be the same as the name of one its enclosing modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; there-
after, within that naming scope, the identifier cannot change meaning. For
example:

module M {
sequence<string> Seq;

interface Bad {
Seq opl(); // Seq and opl introduced here
int Seq(); // Error, Seq has changed meaning
};
b

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the
scope of interface Bad. Thereafter, Seq can only be used as a type name that
denotes a sequence of strings, so the compiler flags the declaration of the second
operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

module M {
sequence<string> Seq;

interface Bad {
::M::Seq opl(); // Only opl introduced here
int Seq(); // OK
1
};

In general, a fully-qualified name (one that is anchored at the global scope and,
therefore, begins with a : : scope resolution operator) does not introduce any
name into the current scope. On the other hand, qualified name that is not
anchored at the global scope introduces only the first component of the name:

module M {
sequence<string> Seq;

interface Bad {
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M::Seq opl(); // M and opl introduced here, but not Seq
int Seq(); // OK

};
};
4.16.6 Name Lookup Rules

When searching for the definition of a name that is not anchored at the global
scope, the compiler first searches backward in the current scope of a definition of
the name. If it can find the name in the current scope, it uses that definition. Other-
wise, the compiler successively searches enclosing scopes for the name until it
reaches the global scope. Here is an example to illustrate this:

module M1 {
sequence<double> Seq;

module M2 {
sequence<string> Seq; // OK, hides ::M1::Seq

interface Base {

Seq opl(); // Returns sequence of string
};
1
module M3 {
interface Derived extends M2::Base {
Seq op2(); // Returns sequence of double
};
sequence<bool> Seq; // OK, hides ::M1::Seq
interface I {
Seq op(); // Returns sequence of bool
};
1

interface I {
Seq op(); // Returns sequence of double

s
1
Note that M2: :Derived: : op2 returns a sequence of double, even though
M1::Base::opl returns a sequence of string. That is, the meaning of a type in a
base interface is irrelevant to determining its meaning in a derived interface—the
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compiler always searches for a definition only in the current scope and enclosing
scopes, and never takes the meaning of a name from a base interface or class.

Metadata

Slice has the concept of a metadata directive. For example:

["java:type:java.util.LinkedList"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata
directives appear in a pair of square brackets and contain one or more string
literals separated by commas. For example, the following is a syntactically valid
metadata directives containing two strings:

["a", "b"] interface Example {};

Metadata directives are not part of the Slice language per se: the presence of a
metadata directive has no effect on the client—server contract, that is, metadata
directives do not change the Slice type system in any way. Instead, metadata direc-
tives are targeted at specific back-ends, such as the code generator for a particular
language mapping. In the preceding example, the java: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that
does not change the Slice types being defined, but somehow influences how the
compiler will generate code for these definitions. For example, a metadata direc-
tive java:type:java.util.LinkedList instructs the Java code generator to map
a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create proxies and skeletons that support
Asynchronous Method Invocation (AMI) and Asynchronous Method Dispatch
(AMD) (see Chapter 31).

Apart from metadata directives that are attached to a specific definition, there
are also global metadata directives. For example:

[["java:package:com.acme"]]

Note that a global metadata directive is enclosed by double square brackets,
whereas a local metadata directive (one that is attached to a specific definition) is
enclosed by single square brackets. Global metadata directives are used to pass
instructions that affect the entire compilation unit. For example, the preceding
metadata directive instructs the Java code generator to generate the contents of the
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source file into the Java package com.acme. Global metadata directives must
precede any definitions in a file (but can appear following any #include direc-
tives).

We discuss specific metadata directives in the relevant chapters to which they
apply.

Deprecating Slice Definitions

4.19

All Slice compilers support a metadata directive that allows you to deprecate a
Slice definition. For example:

interface Example {
["deprecated:someOperation() has been deprecated, \
use alternativeOperation() instead."]
void someOperation();

void alternativeOperation();

};

The [“deprecated”] metadata directive causes the compiler to emit code that
generates a warning if you compile application code that uses a deprecated
feature. This is useful if you want to remove a feature from a Slice definition but
do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and
use [“deprecated”], the Slice compilers insert a default message into the gener-
ated code.

You can apply the [“deprecated”] metadata directive to Slice constructs
other than operations (for example, a structure or sequence definition).

Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping. For the C++
mapping, the executable is slice2cpp; for the Java mapping, it is
slice2java; for the C# mapping, it is slice2cs; for the Visual Basic
mapping, it is slice2vb; for the Python mapping, it is slice2py. The
compilers share a similar command-line syntax:

<compiler-name> [options] file..
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Regardless of which compiler you use, a number of command-line options are
common to the compilers for any language mapping. (See the appropriate
language mapping chapter for options that are specific to a particular language
mapping.) The common command-line options are:

¢® -h, --help
Displays a help message.
* -v, --version
Displays the compiler version.
o -pNaME'’
Defines the preprocessor symbol NAME.
e -DNAME=DEF'"
Defines the preprocessor symbol NAME with the value DEF.
* -UNAME'®?
Undefines the preprocessor symbol NAME.
¢ -IDIR
Add the directory DIR to the search path for #include directives.
* -E
Print the preprocessor output on stdout.
® --output-dir DIR
Place the generated files into directory DIR.
¢ -d, --debug
Print debug information showing the operation of the Slice parser.
® --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option
only when compiling the source code for the Ice run time.

The Slice compilers permit you to compile more than a single source file, so you
can compile several Slice definitions at once, for example:

slice2cpp -I. filel.ice file2.ice file3.ice

10.Note that the preprocessor may not be supported in future versions of Slice, so use these options
with caution.
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4.20 Slice Checksums

As distributed applications evolve, developers and system administrators must be
careful to ensure that deployed components are using the same client—server
contract. Unfortunately, mistakes do happen, and it is not always readily apparent
when they do.

To minimize the chances of this situation, the Slice compilers support an
option that generates checksums for Slice definitions, thereby enabling two peers
to verify that they share an identical client—server contract. The checksum for a
Slice definition includes details such as parameter and member names and the
order in which operations are defined, but ignores information that is not relevant
to the client—server contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice
type identifiers to checksums. A server typically supplies an operation that returns
its checksum dictionary for the client to compare with its local version, at which
point the client can take action if it discovers a mismatch.

The dictionary type is defined in the file Tce/S1iceChecksumDict.ice
as follows:

module Ice {
dictionary<string, string> STiceChecksumDict;

3
This type can be incorporated into an application’s Slice definitions like this:

#include <Ice/STiceChecksumDict.ice>

interface MyServer {
nonmutating Ice::STiceChecksumDict getSTiceChecksums();

};

The key of each element in the dictionary is a Slice type ID (see Section 4.13), and
the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appro-
priate language mapping chapter.
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A Comparison of Slice and CORBA IDL

4.21.1

It is instructive to compare Slice and CORBA IDL because the different feature
sets of the two languages illustrate a number of design principles. In this section,
we briefly compare the two languages and explain the motivation for the presence
or absence of each feature.

Slice is neither a subset nor a superset of CORBA IDL. Instead, Slice both
removes and adds features. The overall result is a specification language that is
both simpler and more powerful than CORBA IDL, as we will see in the following
sections.

Slice Features that are Missing in CORBA IDL
Slice adds a number of features over CORBA IDL. The main additions are:
* Exception inheritance

Lack of inheritance for exceptions in CORBA IDL has long been a thorn in
the side of CORBA programmers. The absence of exception inheritance in
CORBA IDL prevents natural mappings to languages with equivalent native
exception support, such as C++ and Java. In turn, this makes it difficult to
implement structured error handling.

As aresult, CORBA applications typically use a plethora of exception
handlers following each call or block of calls or, at the other extreme, use only
generic exception handling at too high a level to still yield useful diagnostics.
The trade-off imposed by this is rather draconian: either you have good error
handling and diagnostics, but convoluted and difficult-to-maintain code, or
you sacrifice error handling in order to keep the code clean.

* Dictionaries

“How do I send a Java hash table to a server?” is one of the most frequently
asked questions for CORBA. The standard answer is to model the hash table
as a sequence of structures, with each structure containing the key and value,
copy the hash table into the sequence, send the sequence, and reconstruct the
hash table at the other end.

Doing this is not only wasteful in CPU cycles and memory, but also pollutes
the IDL with data types whose presence is motivated by limitations of the
CORBA platform (instead of requirements of the application). Slice dictio-
naries provide support for sending efficient lookup tables as a first-class
concept and eliminate the waste and obfuscation of the CORBA approach.
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* Nonmutating and idempotent operations

Knowing that an operation will not modify the state of its object permits the
Ice run time to transparently recover from transient errors that otherwise
would have to be handled by the application. This makes for a more reliable
and convenient platform. In addition, nonmutating operations can be mapped
to a corresponding construct (if available) in the target language, such as C++
const member functions. This improves the static type safety of the system.

Classes

Slice provides classes that support both pass-by-value and pass-by-proxy
semantics. In contrast, CORBA value types (which are somewhat similar)
only support pass-by-value semantics: you cannot create a CORBA reference
to a value type instance and invoke on that instance remotely.

Slice also uses classes for its automatic persistence mechanism (see

Chapter 37). No equivalent feature is provided by CORBA.

Metadata

Metadata directives permit the language to be extended in a controlled way
without affecting the client—server contract. Asynchronous method invocation

(AMI) and asynchronous method dispatch (AMD) are examples of the use of
metadata directives.

4.21.2 CORBA IDL Features that are Missing in Slice

Slice deliberately drops quite a number of features of CORBA IDL. These can
broadly be categorized as follows:

® Redundancies

Some CORBA IDL features are redundant in that they provide more than one
way to achieve a single thing. This is undesirable for two reasons:

1. Providing more than one way of achieving the same thing carries a penalty
in terms of code and data size. The resulting code bloat also causes perfor-
mance penalties and so should be avoided.

2.Redundant features are unergonomic and confusing. A single feature is both
easier to learn (for programmers) and easier to implement (for vendors) than
two features that do the same thing. Moreover, there is always a niggling
feeling of unease, especially for newcomers: “How come I can do this in
two different ways? When is one style preferable over the other style? Are
the two features really identical, or is there some subtle difference I am
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missing?” Not providing more than one way to do the same thing avoids
these questions entirely.

* Non-features

A number of features of CORBA IDL are unnecessary, in the sense that they
are hardly ever used. If there is a reasonable way of achieving something
without a special-purpose feature, the feature should be absent. This results in
a system that easier to learn and use, and a system that is smaller and performs
better than it would otherwise.

* Mis-features

Some features of CORBA IDL are mis-features in the sense that they do
something that, if not outright wrong, is at least of questionable value. If the
potential for abuse through ignorance of a feature is greater than its benefit,
the feature should be omitted, again resulting in a simpler, more reliable, and
better performing system.

Redundancies
1. IDL attributes

IDL attributes are a syntactic short-hand for an accessor operation (for read-
only attributes) or a pair of accessor and a modifier operations (for writable

attributes). The same thing can be achieved by simply defining an accessor

and modifier operation directly.11

Attributes introduce considerable complexity into the CORBA run time and
APIs. (For example, programmers using the Dynamic Invocation Interface
must remember that, to set or get an attribute, they have to use
_get_<attribute-name> and _set_<attribute-name> whereas, for opera-
tions, the unadorned name must be used.)

2. Unsigned integers
Unsigned integers add very little to the type system but make it considerably
more complex. In addition, if the target programming language does not
support unsigned integers (Java does not), it becomes almost impossibly diffi-
cult to deal with out-of-range conditions. Currently, Java CORBA program-

11.IDL attributes are also second-class citizens because, prior to CORBA 3.x, it was impossible to
throw user exceptions from attribute accesses.
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mers deal with the problem by ignoring it. (See [9] for a very cogent
discussion of the disadvantages of unsigned types.)

. Underscores in identifiers

Whether or not identifiers should contain underscores is largely a matter of
personal taste. However, it is important to have some range of identifiers
reserved for the language mapping in order to avoid name clashes. For
example, a CORBA IDL specification that contains the identifiers

T and T_var in the same scope cannot be compiled into valid C++. (There are
numerous other such conflicts, for C++ as well as other languages.)

Disallowing underscores in Slice identifiers guarantees that all valid Slice
specifications can be mapped into valid programming language source code
because, at the programming language level, underscores can reliably be used
to avoid clashes.

. Arrays

CORBA IDL offers both arrays and sequences (with sequences further
divided into bounded and unbounded sequences). Given that a sequence can
easily be used to model an array, there is no need for arrays. Arrays are some-
what more precise than sequences in that they allow you to state that
precisely n elements are required instead of at most n. However, the minute
gain in expressiveness is dearly paid for in complexity: not only do arrays
contribute to code bloat, they also open a number of holes in the type system.
(The CORBA C++ mapping suffers more from the weak type safety of arrays
than from any other feature.)

. Bounded sequences

Much the same arguments that apply to arrays also apply to bounded
sequences. The gain in expressiveness of bounded sequences is not worth the
complexity that is introduced into language mappings by the feature.

. Self-referential structures via sequences

CORBA IDL permits structures to have a member that is of the type of its
enclosing structure. While the feature is useful, it requires a curiously artificial
sequence construct to express. With the introduction of CORBA valuetypes,
the feature became redundant because valuetypes support the same thing more
clearly and elegantly.

. Repository ID versioning with #pragma version

#pragma version directives in CORBA IDL have no purpose whatsoever.
The original intent was to allow versioning of interfaces. However, different
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minor and major version numbers do not actually define any notion of back-
ward (non-)compatibility. Instead, they simply define a new type, which can
also be achieved via other means.

Non-Features
1. Arrays

We previously classified arrays as a redundant feature. Experience has shown
that arrays are a non-feature as well: after more than ten years of published
IDL specifications, you can count the number of places where an array is used
on the fingers of one hand.

2. Constant expressions

CORBA IDL allows you to initialize a constant with a constant expression,
such as X * Y. While this seems attractive, it is unnecessary for a specification
language. Given that all values involved are compile-time constants, it is
entirely possibly to work out the values once and write them into the specifica-
tion directly. (Again, the number of constant expressions in published IDL
specifications can be counted on the fingers of one hand.)!?

3. Types char and wchar

There simply is no need for a character type in a specification language such
as slice. In the rare case where a character is required, type string can be

13
used.

4. Fixed-point types

Fixed-point types were introduced into CORBA to support financial applica-
tions that need to calculate monetary values. (Floating-point types are ill-
suited to this because they cannot store a sufficient number of decimal digits
and are subject to a number of undesirable rounding and representational
errors.)

The cost of adding fixed-point types to CORBA in terms of code size and API
complexity is considerable. Especially for languages without a native fixed-
point type, a lot of supporting machinery must be provided to emulate the

12.As of version 2.6.x of CORBA, the semantics of IDL constant expressions are still largely unde-
fined: there are no rules for type coercion or how to deal with overflow, and there is no defined
binary representation; the result of constant expressions is therefore implementation-dependent.

13.We cannot recall ever having seen a (non-didactic) IDL specification that uses type char or
wchar.
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type. This penalty is paid over and over again, even for languages that are not
normally chosen for financial calculations. Moreover, no-one actually does
calculations with these types in IDL—instead, IDL simply acts as the vehicle
to enable transmission of these types. It is entirely feasible (and simple to
implement) to use strings to represent fixed-point values and to convert them
into a native fixed-point type in the client and server.

. Extended floating-point types

While there is a genuine need for extended floating-point types for some
applications, the feature is difficult to provide without native support in the
underlying hardware. As a result, support for extended floating-point types is
widely unimplemented in CORBA. On platforms without extended floating-
point support, the type is silently remapped to an ordinary double.

Mis-Features
1. typedef

IDL typedef has probably contributed more to complexity, semantic prob-
lems, and bugs in applications than any other IDL feature. The problem with
typedef is that it does not create a new type. Instead, it creates an alias for an
existing type. Judiciously used, type definitions can improve readability of a
specification. However, under the hood, the fact that a type can be aliased
causes all sorts of problems. For many years, the entire notion of type equiva-
lence was completely undefined in CORBA and it took many pages of specifi-
cation with complex explanations to nail down the semantic complexities
caused by aliased types.14

The complexity (both in the run time and in the APIs) disappears in absence of
the feature: Slice does not permit a type to be aliased, so there can never be
any doubt as to the name of a type and, hence, type equivalence.

. Nested types

IDL allows you define types inside the scope of, for example, an interface or
an exception, similar to C++. The amount of complexity created by this deci-
sion is staggering: the CORBA specification contains numerous and complex
rules for dealing with the order of name lookup, exactly how to decide when a
type is introduced into a scope, and how types may (or may not) hide other
types of the same name. The complexity carries through into language

14.CORBA 2.6.x still has some unresolved issues with respect to type equivalence.
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mappings: nested type definitions result in more complex (and more bulky)
source code and are difficult to deal with in languages that do not permit the
same nesting of definitions as IDL.1

Slice allows types to be defined only at module scope. Experience shows that
this is all that is needed and it avoids all the complexity.

3. Unions

As most OO textbooks will tell you, unions are not required; instead, you can
use derivation from a base class to implement the same thing (and enjoy the
benefit of type-safe access to the members of the class). IDL unions are yet
another source of complexity that is entirely out of proportion to the utility of
the feature. Language mappings suffer badly from this. For example, the C++
mapping for IDL unions is something of a challenge even for experts. And, as
with any other feature, unions extract a price in terms of code size and run-
time performance.

4. #pragma
IDL allows the use of #pragma directives to control the contents of type IDs.
This was a most unfortunate choice: because #pragma is a preprocessing
directive, it is completely outside the normal scoping rules of the language.
The resulting complexity is sufficient to take up several pages of explanations
in the specification. (And, even with all those explanations, it is still possible
to use #pragma directives that make no sense, yet cannot be diagnosed as erro-
neous.)

Slice does not permit control of type IDs because it simply is not necessary.
5. oneway operations

IDL permits an operation to be tagged with a oneway keyword. Adding this
keyword causes the ORB to dispatch the operation invocation with “best-
effort” semantics. In theory, the run time simply fires off the request and then
forgets all about it, not caring whether the request is lost or not. In practice,
there are a number of problems with this idea:

* oneway invocations are delivered via TCP/IP just as normal invocations are.
Even though the server may not reply to a oneway request, the underlying
TCP/IP implementation still attempts to guarantee delivery of the request.

15.Again, the number of published specifications that actually use nested type definitions can be
counted on the fingers of one hand; yet, every CORBA platform must bear the resulting
complexity.
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This means that, despite the oneway keyword, the sending ORB is still
subject to flow control (meaning that the client application may block). In
addition, at the TCP/IP level, there is return traffic from the server to the
client even for a oneway request (in the form of acknowledgement and
flow-control packets).

* The semantics of oneway invocations were poorly defined in earlier versions
of CORBA and refined later, to allow the client to have some control over
the delivery guarantees. Unfortunately, this resulted in yet more complexity
in the application APIs and the ORB implementation.

* Architecturally, the use of oneway in IDL is dubious: IDL is an interface
definition language, but oneway has nothing to do with interface. Instead, it
controls an aspect of call dispatch that is quite independent of a specific
interface. This begs the question of why oneway is a first-class language
concept when it has nothing to do with the contract between client and
Sserver.

Slice does not have a oneway keyword (even though Ice supports oneway
invocations). This avoids contaminating Slice definitions with non-type
related directives. For asynchronous method invocations, Slice uses metadata
directives. The use of such metadata does in no way affect the client—server
contract: if you delete all metadata definitions from a specification and then
recompile only one of client or server, the interface contract between client
and server remains unchanged and valid.

. IDL contexts

IDL contexts are a general escape hatch that, in essence, permit a sequence of
name-—string pairs to be sent with every invocation of an operation; the server
can examine the name—string pairs and use their contents to change its
behavior. Unfortunately, IDL contexts are completely outside the type system
and provide no guarantees whatsoever to either client or server: even if an
operation has a context clause, there is no guarantee that the client will send
any of the named contexts or send well-formed values for those contexts.
CORBA has no idea of the meaning or type of these pairs and, therefore,
cannot provide any assistance in assuring that their contents are correct (either
at compile or run time). The net effect is that IDL contexts shoot a big hole
through the IDL type system and result in systems that are hard to understand,
code, and debug.
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7. Wide strings

CORBA has the notion of supporting multiple codesets and character sets for
wide strings, with a complex negotiation mechanism that is meant to permit
client and server to agree on a particular codeset for transmission of wide
strings. A large amount of complexity arises from this choice; as of

CORBA 3.0, many ORB implementations still suffer interoperability prob-
lems for the exchange of wide string data. The specification still contains a
number of unresolved problems that make it unlikely that interoperability will
become a reality any time soon.

Slice uses Unicode for its wide strings, that is, there is a single character set
and a single defined codeset for the transmission of wide strings. This greatly
simplifies the implementation of the run time and avoids interoperability prob-
lems.

8. Type Any

The IDL Any type is a universal container type that can contain a value of any
IDL type. The feature is somewhat similar to exchanging untyped data as a
void * in C, but improved with introspection, so the type of the contents of
an Any can be determined at run time. Unfortunately, type Any adds much
complexity for little gain:

* The API to deal with type Any and its associated type description is arcane
and complex. Code that uses type Any is extremely error-prone (particularly
in C++). In addition, the language-mapping requires the generation of a
large number of helper functions and operators that slow down compilations
and take up considerable code and data space at run time.

* Despite the fact that type Any is self-describing and that each instance that is
sent over the wire contains a complete (and bulky) description of the value’s
type, it is impossible for a process to receive and re-transmit a value of type
Any without completely unmarshaling and remarshaling the value. This
affects programs such as the CORBA Event Service: the extra marshaling
cost dominates the overall execution time and limits performance unaccept-
ably for many applications.

Slice uses classes to replace both IDL unions and type Any. This approach is
simpler and more type safe than using type Any. In addition, the Slice protocol
permits receipt and retransmission of values without forcing the data to be
unmarshaled and remarshaled; this leads to smaller and better performing
systems than what could be built with CORBA.
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9. Anonymous types

Earlier versions of the CORBA specification permitted the use of anonymous
IDL types (types that are defined in-line without assigning a separate name to
them). Anonymous types caused major problems for language mappings and
have since been deprecated in CORBA. However, the complexity of anony-
mous types is still visible due to backward compatibility concerns. Slice
ensures that every type has a name and so prevents any of the problems that
are caused by anonymous types.

4.22 Generating Slice Documentation

If you look at Appendix B, you will find reference documentation for all the Slice
definitions used by Ice and its services. In the binary distributions of Ice, you will
also find HTML documentation that contains the same information. Both the PDF
and the HTML documentation are generated from special comments in the Slice
definitions by s1ice2docbook, a tool that scans Slice definitions for special
comments and generates SGML in DocBook [25] format. The SGML then is post-
processed by other tools to generate the final published documentation.

As an example of documentation comments, here is the definition of
Ice::Current:

/:“c:‘:

% Information about the current method invocation for servers.
% Each operation on the server has a [Current] as its implicit
# final parameter. [Current] is mostly used for &Ice; services.
% Most applications ignore this parameter.
* :‘:/

Jocal struct Current {

/7': ¥*
% The object adapter.

:':-,:/
ObjectAdapter adapter;

/:'::':

% Information about the connection over which the current

x method invocation was received. If the invocation is direct
# due to collocation optimization, this value is set to null.
-,':-.':/

Connection con;
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4.22.1

/:':7':

* The &Ice; object identity.
-,':-.':/

Identity id;

/7': *
* The facet.
wiww/
string facet;
/:'c *
%* The operation name.
xi/
string operation;
/:'c *
% The mode of the operation.
* :‘:/
OperationMode mode;
VEL:
% The request context, as received from the client.
¥* 5‘:/

Context ctx;

/:'::':

% The request id unless oneway (@) or collocated (-1).
:'M‘:/
int requestId;

b

If you look at the comments, you will see these reflected in the documentation for
Ice::Current in Appendix B.

Documentation Comments

Any comment that starts with /«+ and ends with ==/ is a documentation
comment. Such a comment can precede any Slice construct, such as a module,
interface, structure, operation, and so on. Within a documentation comment, you
can either start each line with a *, or you can leave the beginning of the line
blank—s1lice2docbook can handle either convention:
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V&L

# This is a documentation comment for which every line
% starts with a "' character.

ek /
/ ke

This is a documentation comment without a Teading '=
for each 1line. Either style of comment is fine.

k3 -.':/

The first sentence of the documentation comment for a Slice construct should be a
summary sentence. slice2docbook generates an index of all Slice constructs
and the first sentence of the comments for each Slice construct as a summary in
that index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code
font. For example:
VEDS

* An empty [name] denotes a null object.

k3 -.':/

This generates a hyperlink for the name markup that points at the definition of the
corresponding Slice symbol. (The symbol can denote any Slice construct, such as
a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive @see is recognized by slice2docbook. Where it appears, the
generated SGML contains a separate section titled “See Also”, followed by a list
of Slice identifiers. For example:
/:“c %

* The object adapter, which is responsible for receiving requests

x from endpoints, and for mapping between servants, identities,
% and proxies.

% @see Communicator
% @see ServantlLocator

k3 -.':/
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The Slice identifiers are listed in the corresponding “See Also” section as comma-
separated hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @param,
@return, and @throws. For example:

/:“c:‘:
% Look for an item with the specified
+ primary and secondary key.

%* @param p The primary search key.
x @param s The secondary search key.
+ @return The item that matches the specified keys.

% @throws NotFound Raised if no item matches the specified keys.

-,':-.':/
Item findItem(Key p, Key s) throws NotFound;

slice2docbook generates separate “Parameters”, “Return Value”, and
“Exceptions” sections for these directives. Parameters are listed in the same order
as they appears in the comments. (For clarity, that order should match the order of
declaration of parameters for the corresponding operation.)

General DocBook Markup

A documentation comment can contain any markup that is permitted by DocBook
in that place. For example, you can create separate paragraphs with <para> and
</para> elements:

/:“c:‘:

# This is a comment for some Slice construct.

%* <para>This comment appears in a separate paragraph.</para>

k3 -.':/

There are various other ways to create markup—for example, you can use
<literal> and <note> elements. Please see the DocBook documentation for
details.
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4.22.2

Using slice2docbook
slice2docbook uses the following syntax:
slice2docbook [options] sgml file slice file..

sgml £ile specifies the output file name for the generated SGML documenta-
tion. (The file name must end in . sgml.) If you have cross-references that span
Slice files, you must compile all of the Slice files with a single invocation of
slice2docbook.

The command supports the following options:

® -h, --help
Displays a help message.
® -v, --version
Displays the compiler version.
* -DNAME'®
Defines the preprocessor symbol NAME.
* -DNAME=DEF'"
Defines the preprocessor symbol NAME with the value DEF.
 -uNaME!?
Undefines the preprocessor symbol NAME.

® -IDIR
Add the directory DIR to the search path for #include directives.
* -E

Print the preprocessor output on stdout.

® g, --stand-alone
With this option, the top-level element of the generated SGML is an
<article> element that contains all of the documentation as child elements.
Without this option, the top-level elements are <section> elements (or
<chapters> elements, if you use the - -chapter option).

16.Note that the preprocessor may not be supported in future versions of Slice, so use these options
with caution.
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¢ --chapter

By default, the command generates separate <section> elements. With this
option, the compiler emits a separate <chapters> element for each module,
interface, class, exception, structure, and enumeration.

® --noindex

By default, the compiler generates an index that lists Slice types. The index
contains a separate sections for modules, classes, interfaces, and so on.
- -noindex suppresses the generation of the index.

* —-sort-fields

By default, the fields of structures, classes, and exceptions are presented in the
order in which they are defined in the Slice definition. - -sort-fields
changes the fields to be presented in ascending alphabetical order.

¢ -d, --debug
Print debug information showing the operation of the Slice parser.
® --jice

Permit use of the normally reserved prefix Ice for identifiers. Use this option
only when compiling the source code for the Ice run time.

4.23 Summary

Slice is the fundamental mechanism for defining the client—server contract. By
defining data types and interfaces in Slice, you create a language-independent API
definition that are translated by a compiler into an API specific for a particular
programming language.

Slice provides the usual built-in types and allows you to create user-defined
types of arbitrary complexity, such as sequences, enumerations, structures, dictio-
naries, and classes. Polymorphism is catered for via inheritance of interfaces,
classes, and exceptions. In turn, exceptions provide you with facilities that permit
sophisticated error reporting and handling. Modules permit you to group related
parts of a specification and prevent pollution of the global namespace, and meta-
data can be used to augment Slice definitions with directives for specific compiler
backends.

slice2docbook permits you to integrate Slice documentation with existing
documentation tools.






Chapter 5
Slice for a Simple File System

5.1

Chapter Overview

5.2

The remainder of this book uses a file system application to illustrate various
aspects of Ice. Throughout the book, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates
the architectural and coding aspects of Ice. This allows us to explore the capabili-
ties of the platform to a realistic degree of complexity without overwhelming you
with an inordinate amount of detail early on. Section 5.2 outlines the file system
functionality, Section 5.3 develops the data types and interfaces that are required
for the file system, and Section 5.4 presents the complete Slice definition for the
application.

The File System Application

Our file system application implements a simple hierarchical file system, similar
to the file systems we find in Windows or UNIX. To keep code examples to
manageable size, we ignore many aspects of a real file system, such as ownership,
permissions, symbolic links, and a number of other features. However, we build
enough functionality to illustrate how you could implement a fully-featured file
system, and we pay attention to things such as performance and scalability. In this

167
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5.3

way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

To begin with, the file system is non-distributed: although we implement the
application in a server that is accessed by clients (so we can access the file system
remotely), the initial version requires all files in the file system to be provided by a
single server. This means that all directories and files below the root of the file
system are implemented in a single server. (We discuss how to remove this limita-
tion and create a truly distributed file system in XREF.)

Our file system consists of directories and files. Directories are containers that
can contain either directories or files, meaning that the file system is hierarchical.
A dedicated directory is at the root of the file system. Each directory and file has a
name. Files and directories with a common parent directory must have different
names (but files and directories with different parent directories can have the same
name). In other words, directories form a naming scope, and entries with a single
directory must have unique names. Directories allow you to list their contents.

For now, we do not have a concept of pathnames, or the creation and destruc-
tion of files and directories. Instead, the server provides a fixed number of directo-
ries and files. (We will address the creation and destruction of files and directories
in XREF.)

Files can be read and written but, for now, reading and writing always replace
the entire contents of a file; it is impossible to read or write only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing inter-
faces for the system. Files and directories have something in common: they have a
name and both files and directories can be contained in directories. This suggests a
design that uses a base type that provides the common functionality, and derived
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types that provide the functionality specific to directories and files, as shown in

Figure 5.1.
Node
«interface»
File Directory
«interface» «interface»

Figure 5.1. Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

interface Node {
// ...
};

interface File extends Node {
// ...
};

interface Directory extends Node {
/] ..
};

Next, we need to think about what operations should be provided by each inter-
face. Seeing that directories and files have names, we can add an operation to
obtain the name of a directory or file to the Node base interface:

interface Node {
nonmutating string name();

};

The File interface provides operations to read and write a file. For the time being,
we limit ourselves to text files (see XREF for a discussion of dealing with binary
files). For simplicity, we assume that read operations never fail and that only
write operations can encounter error conditions. This leads to the following defi-
nitions:
exception GenericError {

string reason;

}s

sequence<string> Lines;
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interface File extends Node {
nonmutating Lines read();
idempotent void write (Lines text) throws GenericError;

};

Note that read is marked as nonmutating because the operation does not modify
the state of a file. The write operation is marked as idempotent because it
replaces the entire contents of a file with what is passed in the text parameter.
This means that it is safe to call the operation with the same parameter value twice
in a row: the net result of doing so is the same has having (successfully) called the
operation only once.

The wri te operation can raise an exception of type GenericError. The excep-
tion contains a single reason data member, of type string. If a write operation
fails for some reason (such as running out of file system space), the operation
throws a GenericError exception, with an explanation of the cause of the failure
provided in the reason data member.

Directories provide an operation to list their contents. Because directories can
contain both directories and files, we take advantage of the polymorphism
provided by the Node base interface:

sequence<Nodes> NodeSeq;

interface Directory extends Node {
nonmutating NodeSeq 1ist();

};

The NodeSeq sequence contains elements of type Nodex. Because Node is a base
interface of both Directory and File, the NodeSeq sequence can contain proxies
of either type. (Obviously, the receiver of a NodeSeq must down-cast each element
to either File or Directory in order to get at the operations provided by the
derived interfaces; only the name operation in the Node base interface can be
invoked directly, without doing a down-cast first. Note that, because the elements
of NodeSeq are of type Nodex (not Node), we are using pass-by-reference seman-
tics: the values returned by the 11 st operation are proxies that each point to a
remote node on the server.

These definitions are sufficient to build a simple (but functional) file system.
Obviously, there are still some unanswered questions, such as how a client obtains
the proxy for the root directory. We will address these questions in XREF.
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5.4 The Complete Definition

To avoid polluting the global namespace, we wrap our definitions in a module,
resulting in the final definition as follows:

module Filesystem {

interface Node {
nonmutating string name();

1

exception GenericError {
string reason;

s
sequence<string> Lines;

interface File extends Node {
nonmutating Lines read();
idempotent void write(Lines text) throws GenericError;

};
sequence<Nodex=> NodeSeq;

interface Directory extends Node {
nonmutating NodeSeq Tist();
};

interface Filesys {
nonmutating Directory= getRoot();

1
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Chapter 6
Client-Side Slice-to-C++ Mapping

6.1

Chapter Overview

6.2

In this chapter, we present the client-side Slice-to-C++ mapping (see Chapter 8
for the server-side mapping). One part of the client-side C++ mapping concerns
itself with rules for representing each Slice data type as a corresponding C++
type; we cover these rules in Section 6.3 to Section 6.10. Another part of the
mapping deals with how clients can invoke operations, pass and receive parame-
ters, and handle exceptions. These topics are covered in Section 6.11 to

Section 6.13. Slice classes have the characteristics of both data types and inter-
faces and are covered in Section 6.14. Finally, we conclude the chapter with a
brief comparison of the Slice-to-C++ mapping with the CORBA C++ mapping.

Introduction

The client-side Slice-to-C++ mapping defines how Slice data types are translated
to C++ types, and how clients invoke operations, pass parameters, and handle
errors. Much of the C++ mapping is intuitive. For example, Slice sequences map
to STL vectors, so there is essentially nothing new you have learn in order to use
Slice sequences in C++.
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6.3

The rules that make up the C++ mapping are simple and regular. In particular,
the mapping is free from the potential pitfalls of memory management: all types
are self-managed and automatically clean up when instances go out of scope. This
means that you cannot accidentally introduce a memory leak by, for example,
ignoring the return value of an operation invocation or forgetting to deallocate
memory that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting
mechanism for classes (see Section 6.14.6) is interlocked against parallel access,
so reference counts cannot be corrupted if a class instance is shared among a
number of threads. Obviously, you must still synchronize access to data from
different threads. For example, if you have two threads sharing a sequence, you
cannot safely have one thread insert into the sequence while another thread is iter-
ating over the sequence. However, you only need to concern yourself with concur-
rent access to your own data—the Ice run time itself is fully thread safe, and none
of the Ice API calls require you to acquire or release a lock before you safely can
make the call.

Much of what appears in this chapter is reference material. We suggest that
you skim the material on the initial reading and refer back to specific sections as
needed. However, we recommend that you read at least Section 6.9 to
Section 6.13 in detail because these sections cover how to call operations from a
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C++ mapping, you
should need no more than the Slice definition of your application and knowledge
of the C++ mapping rules. In particular, looking through the generated header files
in order to discern how to use the C++ mapping is likely to be confusing because
the header files are not necessarily meant for human consumption and, occasion-
ally, contain various cryptic constructs to deal with operating system and compiler
idiosyncrasies. Of course, occasionally, you may want to refer to a header file to
confirm a detail of the mapping, but we recommend that you otherwise use the
material presented here to see how to write your client-side code.

Mapping for Identifiers

Slice identifiers map to an identical C++ identifier. For example, the Slice identi-
fier Clock becomes the C++ identifier C1lock. There is one exception to this rule:
if a Slice identifier is the same as a C++ keyword, the corresponding C++ identi-
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fier is prefixed with _cpp . For example, the Slice identifier whiTe is mapped as
_cpp_whil el

A single Slice identifier often results in several C++ identifiers. For example,
for a Slice interface named Foo, the generated C++ code uses the identifiers Foo
and FooPrx (among others). If the interface has the name wh1ile, the generated
identifiers are cpp while and whilePrx (not cpp whilePrx), thatis,
the prefix is applied only to those generated identifiers that actually require it.

Mapping for Modules

Slice modules map to C++ namespaces. The mapping preserves the nesting of the
Slice definitions. For example:

module M1 {
module M2 {
// ...
1
// ...
};
// ...
module M1 { // Reopen M1
// ...
};

This definition maps to the corresponding C++ definition:

namespace M1 {
namespace M2 {

/]
}
/...

/] ...

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such identifiers as much as
possible.
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namespace M1 { // Reopen M1

/..
}

If a Slice module is reopened, the corresponding C++ namespace is reopened as
well.

The Ice Namespace

6.6

All of the APIs for the Ice run time are nested in the I ce namespace, to avoid
clashes with definitions for other libraries or applications. Some of the contents of
the Tce namespace are generated from Slice definitions; other parts of the Tce
namespace provide special-purpose definitions that do not have a corresponding
Slice definition. We will incrementally cover the contents of the Tce namespace
throughout the remainder of the book.

Mapping for Simple Built-In Types

The Slice built-in types are mapped to C++ types as shown in Table 6.1.

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++
bool bool
byte Ice: :Byte

short Ice: :Short

int Ice::Int

Tong Ice::Long

float Ice: :Float

double || Ice: :Double
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6.6.1

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++

string || std::string

Slice bool and string map to C++ bool and std: : string. The remaining
built-in Slice types map to C++ type definitions instead of C++ native types. This
allows the Ice run time to provide a definition as appropriate for each target archi-
tecture. (For example, Ice: : Int might be defined as 1ong on one architecture
and as int on another.)

Note that Ice: :Byte is a typedef for unsigned char. This guarantees
that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can
safely overload functions that differ in only the types in Table 6.1.

Alternate String Mapping

You can use a metadata directive, ["cpp:type:wstring"], to map strings to C++
std: :wstring. This is useful for applications that use languages with alpha-
bets that cannot be represented in 8-bit characters. The metadata directive can be
applied to any Slice construct. For containers (such as modules, interfaces, or
structures), the metadata directive applies to all strings within the container. A
corresponding metadata directive, ["cpp:type:string"] can be used to selec-
tively override the mapping defined by the enclosing container. For example:

["cpp:type:wstring"]

struct S1 {
string Xx; // Maps to std::wstring
["cpp:type:wstring"]
string y; // Maps to std::wstring
["cpp:type:string"]
string z; // Maps to std::string
};
struct S2 {
string X; // Maps to std::string

["cpp:type:string"]
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string y; // Maps to std::string
["cpp:type:wstring"]
string z; // Maps to std::wstring

};

With these metadata directives, the strings are mapped as indicated by the
comments. By default, narrow strings are encoded as UTF-8, and wide strings use
Unicode in an encoding that is appropriate for the platform on which the applica-
tion executes. You can override the encoding for narrow and wide strings by
registerting a string converter with the Ice run time. (See Section 30.21 for
details.)

Mapping for User-Defined Types

6.7.1

6.7.2

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.

Mapping for Enumerations
Enumerations map to the corresponding enumeration in C++. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C++ definition is identical:

enum Fruit { Apple, Pear, Orange };

Mapping for Structures

Slice structures map to C++ structures with the same name. For each Slice data
member, the C++ structure contains a public data member. For example, here is
our Employee structure from Section 4.9.4 once more:

struct Employee {
Tong number;
string firstName;
string lastName;

};

The Slice-to-C++ compiler generates the following definition for this structure:
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struct Employee {

Ice: :Long number;

std::string firstName;

std: :string lastName;

bool operator==(const Employee&) const;
bool operator!=(const Employee&) const;
bool operator< (const Employeeé&) const;
bool operator<=(const Employee&) const;
bool operators>(const Employee&) const;
bool operator>=(const Employee&) const;

}i
For each data member in the Slice definition, the C++ structure contains a corre-
sponding public data member of the same name.

Note that the structure also contains comparison operators. These operators
have the following behavior:

® operator==
Two structures are equal if (recursively), all its members are equal.
® operator!=

Two structures are not equal if (recursively), one or more of its members are
not equal.

® operator<
operator<=
operator>
operators>=

The comparison operators treat the members of a structure as sort order
criteria: the first member is considered the first criterion, the second member
the second criterion, and so on. Assuming that we have two Employee struc-
tures, s1 and s2, this means that the generated code uses the following algo-
rithm to compare s1 and s2:

bool Employee: :operator< (const Employee& rhs) const
{
if (this == &rhs) // Short-cut self-comparison
return false;

// Compare first members

//

if (number < rhs.number)
return true;

else if (rhs.number < number)
return false;
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// First members are equal, compare second members

//

if (firstName < rhs.firstName)
return true;

else if (rhs.firstName < firstName)
return false;

// Second members are equal, compare third members
//
if (lastName < rhs.lastName)
return true;
else if (rhs.lastName < lastName)
return false;

// All members are equal, so return false
return false;

}

The comparison operators are provided to allow the use of structures as the key
type of Slice dictionaries, which are mapped to std: : map in C++ (see
Section 6.7.5).

Note that copy construction and assignment always have deep-copy semantics.
You can freely assign structures or structure members to each other without
having to worry about memory management. The following code fragment illus-
trates both comparison and deep-copy semantics:

Employee el, e2;

el.firstName = "Bjarne";

el.lastName = "Stroustrup";

e2 = el; // Deep copy
assert (el == e2);

e2.firstName = "Andrew"; // Deep copy
e2.lastName = "Koenig"; // Deep copy

assert(e2 < el);

Because strings are mapped to std: : string, there are no memory manage-
ment issues in this code and structure assignment and copying work as expected.
(The default member-wise copy constructor and assignment operator generated by
the C++ compiler do the right thing.)
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6.7.3

6.7.4

Mapping for Sequences

Here is the definition of our FruitPlatter sequence from Section 4.9.3 once
more:

sequence<Fruit> FruitPlatter;
The Slice compiler generates the following C++ definition for the FruitPlatter
sequence:

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector. As a result, you can
use the sequence like any other STL vector, for example:

// Make a small platter with one Apple and one Orange

//

FruitPlatter p;
p.push back (Apple) ;
p.push back (Orange) ;

As you would expect, you can use all the usual STL iterators and algorithms with
this vector.

Custom Sequence Mapping

In addition to the default mapping of sequences to vectors, Ice supports three addi-
tional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a
metadata directive, for example:

[["cpp:include:Tist"]]
module Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type:std::1ist< ::Food::Fruit>"]
sequence<Fruit> FruitPlatter;

};

With this metadata directive, the sequence now maps to a C++ std: : 1ist:
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#include <lists>
namespace Food
typedef std::list< Food::Fruit> FruitPlatter;

//
}

The cpp : type metadata directive must be applied to a sequence definition;
anything following the cpp:type: prefix is taken to be the name of the type. For
example, we could use ["cpp:type:::std::1ist< ::Food::Fruit>"]. In that
case, the compiler would use a fully-qualified name to define the type:

typedef ::std::1list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the
cpp:type: prefix literally into the generated code. This means that, to avoid C++
compilation failures due to unknown symbols, you should use a qualified name
for the type.

Also note that, to avoid compilation errors in the generated code, you must
instruct the compiler to generate an appropriate include directive with the
cpp:include global metadata directive. This causes the compiler to add the line

#include <list>

to the generated header file.
Instead of std: :1ist, you can specify a type of your own as the sequence
type, for example:

[["cpp:include:FruitBowl.h"]]
module Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type:FruitBowl"]
sequence<Fruit> FruitPlatter;

};

With these metadata directives, the compiler will use a C++ type FruitBowl as
the sequence type, and add an include directive for the header file FruitBowl . h
to the generated code.



6.7 Mapping for User-Defined Types 187

You can use any class of your choice as a sequence type, but the class must
meet certain requirements. (vector, 1ist, and deque happen to meet these
requirements.)

® The class must have a default constructor and a single-argument constructor
that takes the size of the sequence as an argument of unsigned integral type.

® The class must have a copy constructor.

* The class must provide a member function size that returns the number
elements in the sequence as an unsigned integral type.

* The class must provide a member function swap that swaps the contents of
the sequence with another sequence of the same type.

* The class must define iterator and const iterator types and must
provide begin and end member functions with the usual semantics; the iter-
ators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vector, 1ist, or deque
with respect to these points, you can use it as a custom sequence implementation.

In addition to modifying the type of a sequence itself, you can also modify the
mapping for particular return values or parameters (see Section 6.12). For
example:

[["cpp:include:Tist"]]
[["cpp:include:deque"]]

module Food {
enum Fruit { Apple, Pear, Orange };
sequence<Fruit> FruitPlatter;

interface Market {
["cpp:type:list< ::Food::Fruit>"]
FruitPlatter
barter(
["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer
);
};

};

With this definition, the default mapping of FruitPlatter to a C++ vector still
applies but the return value of barter is mapped as a 1ist, and the of fer param-
eter is mapped as a deque.
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Array Mapping for Sequences

The array mapping for sequences applies to input parameters (see Section 6.12)
and to out parameters of AMI and AMD operations (see Chapter 31). For
example:

interface File {
void write(["cpp:array"] Ice::ByteSeq contents);

};

The cpp:array metadata directive instructs the compiler to map the of fer param-
eter to a pair of pointers:

virtual void write(const ::std::pair<const ::Ice::Byte¥*,
const ::Ice::Byte*>&,
const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range
[first, last) (thatis, they use the usual STL semantics for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The
pointers point directly into the server-side transport buffer; this allows the server-
side run time to avoid creating a vector to pass to the operation implementation,
thereby avoiding both allocating memory for the sequence and copying its
contents into that memory.

Note that you can use the array mapping for any sequence type. However, it
provides a performance advantage only for byte sequences (on all platforms) and
for sequences of integral type (x86 platforms only).

Also note that the called operation in the server must not store a pointer into
the passed sequence because the transport buffer into which the pointer points is
deallocated as soon as the operation completes.

Range Mapping for Sequences

The range mapping for sequences is similar to the array mapping and exists for the
same purpose, namely, to enable zero-copy of sequence parameters:

interface File {
void write(["cpp:range"] Ice::ByteSeq contents);

};

The cpp: : range metadata directive instructs the compiler to map the offer
parameter to a pair of const_iterator:
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virtual void write(const ::std::pair<
::Ice::ByteSeq: :const iterator
::Ice::ByteSeq: :const_ iterators>g,
const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range
[first, last) (thatis, they use the usual STL semantics for iterators).

The motivation for the range mapping is the same as for the array mapping:
the passed iterators point directly into the server-side transport buffer and so avoid
the need to create a temporary vector to pass to the operation.

As for the array mapping, the range mapping can be used with any sequence
type, but offers a performance advantage only for byte sequences (on all plat-
forms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the
transport buffer into which the iterator points is deallocated as soon as the opera-
tion completes.

You can optionally add a type name to the cpp: range metadata directive, for
example:

interface File {
void write(
["cpp:range:std::deque<Ice: :Byte>"]
Ice::ByteSeq contents);
};

This instructs the compiler to generate a pair of const iterator for the spec-
ified type:

virtual void write(const ::std::pair<
std::deque<Ice::Byte>::const iterator
std::deque<Ice: :Byte>::const_ iterators>é&,
const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence
type that behaves like an STL container.

Mapping for Dictionaries
Here is the definition of our EmpTloyeeMap from Section 4.9.4 once more:
dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

typedef std::map<Ice::Long, Employee> EmployeeMap;
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Again, there are no surprises here: a Slice dictionary simply maps to an STL map.
As aresult, you can use the dictionary like any other STL map, for example:

EmployeeMap em;
Employee e;

e.number = 42;

e.firstName = "Stan";
e.lastName = "Lippman";
em[e.number] = e;
e.number = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
em[e.number] = e;

Obviously, all the usual STL iterators and algorithms work with this map just as
well as with any other STL container.

6.8 Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. Here
are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Here are the generated definitions for these constants:

const bool AppendByDefault = true;

const Ice::Byte LowerNibble = 15;

const std::string Advice = "Don't Panic!";
const Ice::Short TheAnswer = 42;

const Ice::Double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;
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All constants are initialized directly in the header file, so they are compile-time
constants and can be used in contexts where a compile-time constant expression is
required, such as to dimension an array or as the case label of a switch state-
ment.

Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from
Section 4.10.5 on page 109 once more:

exception GenericError {
string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError: public Ice::UserException ({
public:
std: :string reason;

GenericError () {}
explicit GenericError (const string&) ;

virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice_throw() const;

// Other member functions here...

}i

class BadTimeVal: public GenericError ({
public:

BadTimeval () {}

explicit BadTimeVal (const stringé&) ;

virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice_throw() const;

// Other member functions here...

}i

class BadZoneName: public GenericError {
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public:
BadZoneName () {}
explicit BadZoneName (const stringé&) ;

virtual const std::string& ice name() const;
virtual Ice::Exception* ice clone() const;
virtual void ice_throw() const;

i

Each Slice exception is mapped to a C++ class with the same name. For each
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated
classes for these exceptions also do not have members.)
The inheritance structure of the Slice exceptions is preserved for the generated
classes, so BadTimeVal and BadZoneName inherit from GenericError.
Each exception has three additional member functions:
® ice name
As the name suggests, this member function returns the name of the exception.
For example, if you call the ice _name member function of a BadZone-
Name exception, it (not surprisingly) returns the string "BadZoneName".
The ice name member function is useful if you catch exceptions generi-
cally and want to produce a more meaningful diagnostic, for example:

try {

//
} catch (const Ice::GenericError& e)

cerr << "Caught an exception: " << e.ice name() << endl;
1

If an exception is raised, this code prints the name of the actual exception
(BadTimeVal or BadZoneName) because the exception is being caught by
reference (to avoid slicing).

®* ice clone

This member function allows you to polymorphically clone an exception. For
example:

try {
//

} catch (const Ice::UserException& e) {
Ice: :UserException* copy = e.clone();
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}

ice clone is useful if you need to make a copy of an exception without
knowing its precise run-time type. This allows you to remember the exception
and throw it later by calling ice throw.

® ice throw
ice_ throw allows you to throw an exception without knowing its precise
run-time type. It is implemented as:

void
GenericError::ice throw() const
throw *this;

You can call ice throw to throw an exception that you previously cloned
with ice clone.

Each exception has a default constructor. This constructor performs memberwise
initialization; for simple built-in types, such as integers, the constructor performs
no initialization, whereas complex types, such as strings, sequences, and dictio-
naries are initialized by their respective default constructors.

An exception also has a second construct that accepts one argument for each
exception member. This constructor allows you to instantiate and initialize an
exception in a single statement, instead of having to first instantiate the exception
and then assign to its members. (For derived exceptions, the constructor accepts
one argument for each base exception member, plus one argument for each
derived exception member, in base-to-derived order.)

Note that the generated exception classes contain other member functions that
are not shown on page 191. However, those member functions are internal to the
C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from Ice: :UserException. In
turn, Ice: : UserException inherits from Ice: : Exception (which is an
alias for IceUtil: :Exception):

namespace IceUtil {
class Exception ({

virtual const std::string& ice name() const;

Exception* ice clone() const;

void ice throw() const;

virtual void ice print(std::ostream&) const;
//
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std: :ostream& operator<<(std::ostream&, const Exceptioné) ;

//
}
namespace Ice {

typedef IceUtil::Exception Exception;

class UserException: public Exception {

public:

virtual const std::string& ice name() const = 0;
//

}i
}
Ice: :Exception forms the root of the exception inheritance tree. Apart from
the usual ice name, ice clone, and ice throw member functions, it
contains the ice_print member functions. ice_print prints the name of the
exception. For example, calling ice print onaBadTimeVal exception
prints:

BadTimeVal

To make printing more convenient, operator<< is overloaded for
Ice: :Exception, so you can also write:
try {

//
} catch (const Ice::Exception& e) {

cerr << e << endl;
}
This produces the same output because operator<< calls ice print inter-
nally.

For Ice run time exceptions, ice print also shows the file name and line
number at which the exception was thrown.
6.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error
conditions. All run-time exceptions directly or indirectly derive from

Ice: :LocalException (which, in turn, derives from Ice: : Exception).
Ice: :LocalException has the usual member functions (ice name,
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ice clone, ice_throw, and (inherited from Ice: : Exception),
ice print,ice file,and ice_ line).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4
on page 106. By catching exceptions at the appropriate point in the hierarchy, you
can handle exceptions according to the category of error they indicate. For
example, a ConnectTimeoutException can be handled as any one of the
following exception types:

® Ice::Exception

This is the root of the complete inheritance tree. Catching Ice: : Excep-

tion catches both user and run-time exceptions.

® Tce: :UserException

This is the root exception for all user exceptions. Catching Ice: :UserEx-
ception catches all user exceptions (but not run-time exceptions).

® Ice::LocalException

This is the root exception for all run-time exceptions. Catching
Ice: :LocalException catches all run-time exceptions (but not user
exceptions).

® Tce::TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

® Tce: :ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a
server times out.
You will probably have little need to catch exceptions by category; the fine-
grained error handling offered by the remainder of the hierarchy is of interest
mainly in the implementation of the Ice run time.

Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote
operation, you call a member function on a local class instance that represents the
remote object. This makes the mapping easy and intuitive to use because, for all
intents and purposes (apart from error semantics), making a remote procedure call
is no different from making a local procedure call.
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Proxy Classes and Proxy Handles

On the client side, interfaces map to classes with member functions that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

module M {
interface Simple {
void op();
}
};

The Slice compiler generates the following definitions for use by the client:

namespace IceProxy {
namespace M {
class Simple;
}

}

namespace M {
class Simple;
typedef IcelInternal::ProxyHandle< ::IceProxy::M::Simple>
SimplePrx;
typedef IceInternal::Handle< ::M::Simple> SimplePtr;

}

namespace IceProxy {
namespace M {
class Simple : public virtual IceProxy::Ice::0Object {
public:
typedef ::M::SimplePrx ProxyType;
typedef ::M::SimplePtr PointerType;

void op() ;
void op(const Ice::Contexté&);

!/

As you can see, the compiler generates a proxy class Simple in the
IceProxy: :M namespace, as well as a proxy handle M: : SimplePrx. In
general, for a module M, the generated names are

::IceProxy: :M: :<intf-name>and : :M: : <intf-name>Prx.
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In the client’s address space, an instance of IceProxy: :M: : Simple is the
local ambassador for a remote instance of the Simp1e interface in a server and is
known as a proxy class instance. All the details about the server-side object, such
as its address, what protocol to use, and its object identity are encapsulated in that
instance.

Note that Simp1le inherits from IceProxy: : Ice: :Object. This reflects
the fact that all Ice interfaces implicitly inherit from Ice::0bject. For each oper-
ation in the interface, the proxy class has two overloaded member function of the
same name. For the preceding example, we find that the operation op has been
mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type
Ice: :Context. This parameter is for use by the Ice run time to store informa-
tion about how to deliver a request; normally, you do not need to supply a value
here and can pretend that the trailing parameter does not exist. (We examine the
Ice: :Context parameter in detail in Chapter 30. The parameter is also used by
IceStorm—see Chapter 42.)

Client-side application code never manipulates proxy class instances directly.
In fact, you are not allowed to instantiate a proxy class directly. The following
code will not compile because Ice: :Object is an abstract base class with a
protected constructor and destructor:

IceProxy: :M::Simple s; // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time,
so client code never has any need to instantiate a proxy directly. When the client
receives a proxy from the run time, it is given a proxy handle to the proxy, of type
<interface-name>Prx (SimplePrx for the preceding example). The
client accesses the proxy via its proxy handle; the handle takes care of forwarding
operation invocations to its underlying proxy, as well as reference-counting the
proxy. This means that no memory-management issues can arise: deallocation of a
proxy is automatic and happens once the last handle to the proxy disappears (goes
out of scope).

Because the application code always uses proxy handles and never touches the
proxy class directly, we usually use the term proxy to denote both proxy handle
and proxy class. This reflects the fact that, in actual use, the proxy handle looks
and feels like the underlying proxy class instance. If the distinction is important,
we use the terms proxy class, proxy class instance, and proxy handle.

Also note that the generated proxy class contains type definitions for Proxy -
Type and PointerType. These are provided so you can refer to the proxy type
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and smart pointer type (see Section 6.14.6) in template definitions without having
to resort to preprocessor trickery, for example:
template<typename T>
class ProxyWrapper {
public:

T::ProxyType proxy () const;
//
}i
6.11.2 Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type
IceInternal: : ProxyHandle that takes the proxy class as the template
parameter. This template has the usual constructor, copy constructor, and assign-
ment operator:
* Default constructor
You can default-construct a proxy handle. The default constructor creates a
proxy that points nowhere (that is, points at no object at all.) If you invoke an

operation on such a null proxy, you get an
IceUtil: :NullHandleException:

try {
SimplePrx s; // Default-constructed proxy
s->op () ; // Call via nil proxy
assert (0) ; // Can't get here

} catch (const IceUtil::NullHandleException&) {
cout << "As expected, got a NullHandleException" << endl;

}

* Copy constructor

The copy constructor ensures that you can construct a proxy handle from
another proxy handle. Internally, this increments a reference count on the
proxy; the destructor decrements the reference count again and, once the count
drops to zero, deallocates the underlying proxy class instance. That way,
memory leaks are avoided:

{ // Enter new scope
SimplePrx sl = ...; // Get a proxy from somewhere
SimplePrx s2(sl); // Copy-construct s2
assert (sl == s2); // Assertion passes

} // Leave scope; sl, s2, and the

// underlying proxy instance
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// are deallocated
Note the assertion in this example: proxy handles support comparison (see
Section 6.11.3).
* Assignment operator

You can freely assign proxy handles to each other. The handle implementation
ensures that the appropriate memory-management activities take place. Self-
assignment is safe and you do not have to guard against it:

SimplePrx sl = ...; // Get a proxy from somewhere
SimplePrx s2; // s2 is nil

s2 = sl; // both point at the same object
sl = 0; // sl is nil

s2 = 0; // s2 is nil

Widening assignments work implicitly. For example, if we have two inter-
faces, Base and Derived, we can widen a DerivedPrx to a BasePrx
implicitly:

BasePrx base;

DerivedPrx derived;

base = derived; // Fine, no problem
derived = base; // Compile-time error

Implicit narrowing conversions result in a compile error, so the usual C++
semantics are preserved: you can always assign a derived type to a base type,
but not vice versa.

® Checked cast
Proxy handles provide a checkedCast method:

namespace IceInternal {
template<typename T>
class ProxyHandle : public IceUtil::HandleBase<T> {
public:
template<class Y>
static ProxyHandle checkedCast (const ProxyHandle<Y>& r);

template<class Y>

static ProxyHandle checkedCast (const ProxyHandle<Y>& r,
const ::Ice::Context& c);

/7
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}

A checked cast has the same function for proxies as a C++ dynamic_cast
has for pointers: it allows you to assign a base proxy to a derived proxy. If the
base proxy’s actual run-time type is compatible with the derived proxy’s static
type, the assignment succeeds and, after the assignment, the derived proxy
denotes the same object as the base proxy. Otherwise, if the base proxy’s run-
time type is incompatible with the derived proxy’s static type, the derived
proxy is set to null. Here is an example to illustrate this:
BasePrx base = ...; // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast (base) ;
if (derived) {

// Base has run-time type Derived,

// use derived...

} else {
// Base has some other, unrelated type

}

The expression DerivedPrx: : checkedCast (base) tests whether
base points at an object of type Derived (or an object with a type that is
derived from Derived). If so, the cast succeeds and derived is set to point at
the same object as base. Otherwise, the cast fails and derived is set to the
null proxy.

Note that checkedCast is a static member function so, to do a down-cast,
you always use the syntax <interface-name>Prx: :checkedCast.

Also note that you can use proxies in boolean contexts. For example,
if (proxy) returns true if the proxy is not null (see Section 6.11.3).

A checkedCast typically results in a remote message to the server.” The
message effectively asks the server “is the object denoted by this reference of
type Derived?” The reply from the server is communicated to the application
code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client
to find out what the actual run-time type of a proxy is without confirmation
from the server. (For example, the server may replace the implementation of

2. In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the

optimization applies only in narrowly-defined circumstances, so you cannot rely on a
checkedCast not sending a message.
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the object for an existing proxy with a more derived one.) This means that you
have to be prepared for a checkedCast to fail. For example, if the server is
not running, you will receive a ConnectFailedException,; if the server
is running, but the object denoted by the proxy no longer exists, you will
receive an ObjectNotExistException.

* Unchecked cast

In some cases, it is known that an object supports a more derived interface than
the static type of its proxy. For such cases, you can use an unchecked down-
cast:

namespace IcelInternal ({
template<typename T>
class ProxyHandle : public IceUtil::HandleBase<T> {
public:
template<class Y>
static ProxyHandle uncheckedCast (const ProxyHandle<Y>& r);
//
}i
}

An uncheckedCast provides a down-cast without consulting the server as
to the actual run-time type of the object, for example:

BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;

derived = DerivedPrx::uncheckedCast (base) ;
// Use derived...

You should use an uncheckedCast only if you are certain that the proxy
indeed supports the more derived type: an uncheckedCast, as the name
implies, is not checked in any way; it does not contact the object in the server
and, if it fails, it does not return null. (An unchecked cast is implemented
internally like a C++ static_cast, no checks of any kind are made). If you
use the proxy resulting from an incorrect uncheckedCast to invoke an
operation, the behavior is undefined. Most likely, you will receive an
ObjectNotExistException or OperationNotExistException,
but, depending on the circumstances, the Ice run time may also report an
exception indicating that unmarshaling has failed, or even silently return
garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the
cost of sending a message to the server. And, particularly during initialization
(see Chapter 7), it is common to receive a proxy of static type
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Ice: :0bject, but with a known run-time type. In such cases, an
uncheckedCast saves the overhead of sending a remote message.

For convenience, proxy handles also support insertion of a proxy into a stream, for
example:
Ice::0ObjectPrx p = ...;
cout << p << endl;
This code is equivalent to writing:
Ice::0ObjectPrx p = ...;
cout << p->ice_toString() << endl;
Either code prints the stringified proxy (see Appendix D). You could also achieve
the same thing by writing:
Ice::0ObjectPrx p = ...;
cout << communicator-sproxyToString(p) << endl;
The advantage of using the ice toString member function instead of prox-
yToString is that you do not need to have the communicator available at the
point of call.
6.11.3 Object Identity and Proxy Comparison

Apart from the methods discussed in Section 6.11.2, proxy handles also support
comparison. Specifically, the following operators are supported:

® operator==
operator!=

These operators permit you to compare proxies for equality and inequality. To
test whether a proxy is null, use a comparison with the literal 0, for example:
if (proxy == 0)

// It's a nil proxy
else

// It's a non-nil proxy

® operator<
operator<=
operators>
operators>=

Proxies support comparison. This allows you to place proxies into STL
containers such as maps or sorted lists.
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* Boolean comparison

Proxies have a conversion operator to bool. The operator returns true if a
proxy is not null, and false otherwise. This allows you to write:

BasePrx base = ...;
if (base)

// It's a non-nil proxy
else

// It's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the compar-
ison. This means that not only the object identity must match for a comparison to
succeed, but other details inside the proxy, such as the protocol and endpoint
information, must be the same. In other words, comparison with == and ! = tests
for proxy identity, not object identity. A common mistake is to write code along
the following lines:

Ice::0ObjectPrx pl e // Get a proxy...
Ice::0bjectPrx p2 R // Get another proxy...

if (pl !'= p2) {

// pl and p2 denote different objects // WRONG!
} else {
// pl and p2 denote the same object // Correct

}

Even though pl and p2 differ, they may denote the same Ice object. This can
happen because, for example, both p1 and p2 embed the same object identity, but
each use a different protocol to contact the target object. Similarly, the protocols
may be the same, but denote different endpoints (because a single Ice object can
be contacted via several different transport endpoints). In other words, if two
proxies compare equal with ==, we know that the two proxies denote the same
object (because they are identical in all respects); however, if two proxies compare
unequal with ==, we know absolutely nothing: the proxies may or may not denote
the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice namespace:

namespace Ice {

bool proxyIdentityLess (const ObjectPrx&,
const ObjectPrxé&) ;
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bool proxyIdentityEqual (const ObjectPrxé&,
const ObjectPrxé&) ;

}

The proxyIdentityEqual function returns true if the object identities
embedded in two proxies are the same and ignores other information in the
proxies, such as facet and transport information. The proxyIdentityLess
function establishes a total ordering on proxies. It is provided mainly so you can
use object identity comparison with STL sorted containers. (The function uses
name as the major ordering criterion, and category as the minor ordering crite-
rion.)

proxyIdentityEqual allows you to correctly compare proxies for object
identity:
Ice::0ObjectPrx pl = ...; // Get a proxy...
Ice::0bjectPrx p2 e // Get another proxy...

if (!Ice::proxyIdentityEqual (pl, p2) {

// pl and p2 denote different objects // Correct
} else {

// pl and p2 denote the same object // Correct
!

Mapping for Operations

As we saw in Section 6.11, for each operation on an interface, the proxy class
contains a corresponding member function with the same name. To invoke an
operation, you call it via the proxy handle. For example, here is part of the defini-
tions for our file system from Section 5.4:

module Filesystem {
interface Node {
nonmutating string name();
1
// ...
};

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as
follows:
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namespace IceProxy {
namespace Filesystem {
class Node : virtual public IceProxy::Ice::Object ({

public:
std: :string name () ;
//
}i
typedef IcelInternal::ProxyHandle<Node> NodePrx;
//
}
//

}

The name operation returns a value of type string. Given a proxy to an object
of type Node, the client can invoke the operation as follows:

NodePrx node = ...; // Initialize proxy
string name = node-s>name () ; // Get name via RPC

The proxy handle overloads operator-> to forward method calls to the under-
lying proxy class instance which, in turn, sends the operation invocation to the
server, waits until the operation is complete, and then unmarshals the return value
and returns it to the caller.

Because the return value is of type string, it is safe to ignore the return
value. For example, the following code contains no memory leak:

NodePrx node = ...; // Initialize proxy
node->name () ; // Useless, but no leak

This is true for all mapped Slice types: you can safely ignore the return value of an
operation, no matter what its type—return values are always returned by value. If
you ignore the return value, no memory leak occurs because the destructor of the
returned value takes care of deallocating memory as needed.

Normal, idempotent, and nonmutating Operations

You can add an idempotent or nonmutating qualifier to a Slice operation. As far as
the signature for the corresponding proxy methods is concerned, neither idempo-

tent nor nonmutating have any effect. For example, consider the following inter-
face:
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interface Example {
string opl();
idempotent string op2();
nonmutating string op3();
};
The proxy class for this interface looks like this:
namespace IceProxy {
class Example : virtual public IceProxy::Ice::Object ({
public:
std::string opl () ;
std::string op2(); // idempotent
std::string op3(); // nonmutating
//
}i
1
Because idempotent and nonmutating affect an aspect of call dispatch, not inter-
face, it makes sense for the three methods to look the same.
6.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the C++ mapping are very simple: parameters are
passed either by value (for small values) or by const reference (for values that
are larger than a machine word). Semantically, the two ways of passing parame-
ters are identical: it is guaranteed that the value of a parameter will not be changed
by the invocation (with some caveats—see page 209).

Here is an interface with operations that pass parameters of various types from
client to server:

struct NumberAndString {
int x;
string str;

};

sequence<string> StringSeq;

dictionary<long, StringSeqg> StringTable;

interface ClientToServer {
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void opl(int i, float f, bool b, string s);
void op2(NumberAndString ns, StringSeq ss, StringTable st);
void op3(ClientToServer: proxy);

3
The Slice compiler generates the following code for this definition:

struct NumberAndString {
Ice::Int x;
std::string str;
//

}i

typedef std::vector<std::strings> StringSeq;
typedef std::map<Ice::Long, StringSeqg> StringTable;

namespace IceProxy {
class ClientToServer : virtual public IceProxy::Ice::0Object {
public:
void opl (Ice::Int, Ice::Float, bool, const std::string&) ;
void op2 (const NumberAndStringé&,
const StringSeqg,
const StringTable&) ;
void op3 (const ClientToServerPrx&) ;
//
}i
}

Given a proxy to a C1ientToServer interface, the client code can pass parameters
as in the following example:

ClientToServerPrx p = ...; // Get proxy...
p->opl (42, 3.14, true, "Hello world!"); // Pass simple literals
int i 42;

float £ = 3.14;

bool b = true;

string s = "Hello world!";

p->opl(i, £, b, s); // Pass simple variables

NumberAndString ns = { 42, "The Answer" };
StringSeq ss;

ss.push back ("Hello world!") ;

StringTable st;
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st [0] = ss;
p->op2(ns, ss, st); // Pass complex variables
p->0p3 (p) ; // Pass proxy

You can pass either literals or variables to the various operations. Because every-
thing is passed by value or const reference, there are no memory-management
issues to consider.

out-Parameters

The C++ mapping passes out-parameters by reference. Here is the Slice definition
from page 206 once more, modified to pass all parameters in the out direction:

struct NumberAndString {
int x;
string str;

};
sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;

interface ServerToClient {
void opl(out int i, out float f, out bool b, out string s);
void op2(out NumberAndString ns,
out StringSeq ss,
out StringTable st);
void op3(out ServerToClientx proxy);

¥
The Slice compiler generates the following code for this definition:

namespace IceProxy {
class ServerToClient : virtual public IceProxy::Ice::Object {
public:
void opl(Ice::Int&, Ice::Float&, bool&, std::string&);
void op2 (NumberAndStringé&, StringSeq&, StringTable&) ;
void op3 (ServerToClientPrxé&) ;
//
}i
}

Given a proxy to a ServerToClient interface, the client code can pass parameters
as in the following example:
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ServerToClientPrx p = ...; // Get proxy...

int 1i;
float f;
bool b;
string s;

p->opl(i, £, b, s);
// i, £, b, and s contain updated values now

NumberAndString ns;
StringSeq ss;
StringTable st;

p->o0p2(ns, ss, st);
// ns, ss, and st contain updated values now

p->op3(p);
// p has changed now!
Again, there are no surprises in this code: the caller simply passes variables to an
operation; once the operation completes, the values of those variables will be set
by the server.

It is worth having another look at the final call:

p->o0p3(p) ; // Weird, but well-defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also
passed as an out-parameter to the call, meaning that the server will set its value. In
general, passing the same parameter as both an input and output parameter is safe:
the Ice run time will correctly handle all locking and memory-management activi-
ties.

Another, somewhat pathological example is the following:

sequence<int> Row;
sequence<Row> Matrix;

interface MatrixArithmetic {
void multiply(Matrix ml,
Matrix m2,

out Matrix result);

};

Given a proxy to a MatrixArithmetic interface, the client code could do the
following:
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MatrixArithmeticPrx ma = ...; // Get proxy...
Matrix ml = ...; // Initialize one matrix
Matrix m2 = ...; // Initialize second matrix

ma->squareAndCubeRoot (m1, m2, ml); // !!!

This code is technically legal, in the sense that no memory corruption or locking
issues will arise, but it has surprising behavior: because the same variable m1 is
passed as an input parameter as well as an output parameter, the final value of m1
is indeterminate—in particular, if client and server are collocated in the same
address space, the implementation of the operation will overwrite parts of the
input matrix m1 in the process of computing the result because the result is written
to the same physical memory location as one of the inputs. In general, you should
take care when passing the same variable as both an input and output parameter
and only do so if the called operation guarantees to be well-behaved in this case.

Chained Invocations

Consider the following simple interface containing two operations, one to set a
value and one to get it:

interface Name {
string getName();
void setName(string name);

};

Suppose we have two proxies to interfaces of type Name, p1 and p2, and chain
invocations as follows:

p2->setName (pl->getName () ) ;

This works exactly as intended: the value returned by p1 is transferred to p2.
There are no memory-management or exception safety issues with this code.’

Exception Handling

Any operation invocation may throw a run-time exception (see Section 6.10 on
page 194) and, if the operation has an exception specification, may also throw

3. This is worth pointing out because, in CORBA, the equivalent code leaks memory (as does
ignoring the return value in many cases).
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user exceptions (see Section 6.9 on page 191). Suppose we have the following
simple interface:

exception Tantrum {
string reason;

}s

interface Child {
void askToCleanUp() throws Tantrum;

};

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or
more operation invocations in a try—catch block:

ChildPrx child = ...; // Get proxy...
try {

child->askToCleanUp () ; // Give it a try...
} catch (const Tantrum& t) {

cout << "The child says: " << t.reason << endl;
!

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be dealt with by exception handlers higher in the hierarchy. For example:

void run/()
{
ChildPrx child = ...; // Get proxy...
try {
child-s>askToCleanUp(); // Give it a try...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
child->scold() ; // Recover from error...
1
child->praise() ; // Give positive feedback...
}
int
main (int argc, char* argv[])
{
int status = 1;
try {
//
run() ;
//
status = 0;



212

Client-Side Slice-to-C++ Mapping

6.14

} catch (const Ice::Exception& e) {
cerr << "Unexpected run-time error: " << e << endl;

//

return status;

}

This code handles a specific exception of local interest at the point of call and
deals with other exceptions generically. (This is also the strategy we used for our
first simple application in Chapter 3.)

For efficiency reasons, you should always catch exceptions by const refer-
ence. This permits the compiler to avoid calling the exception’s copy constructor
(and, of course, prevents the exception from being sliced to a base type).

Exceptions and out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an
operation throws an exception: the parameter may have still have its original value
or may have been changed by the operation’s implementation in the target object.
In other words, for out-parameters, Ice provides the weak exception
guarantee [21] but does not provide the strong exception guarantee.4

Exceptions and Return Values

For return values, C++ provides the guarantee that a variable receiving the return
value of an operation will not be overwritten if an exception is thrown. (Of course,
this guarantee holds only if you do not use the same variable as both an out-
parameter and to receive the return value of an invocation (see page 209).)

Mapping for Classes

Slice classes are mapped to C++ classes with the same name. The generated class
contains a public data member for each Slice data member, and a virtual member
function for each operation. Consider the following class definition:

4. This is done for reasons of efficiency: providing the strong exception guarantee would require
more overhead than can be justified.
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class TimeOfDay {

};

short hour; // 0 - 23
short minute; // 0 - 59
short second; // @ -59
string format(); // Return time as hh:mm:ss

The Slice compiler generates the following code for this definition:’

class TimeOfDay;

typedef IcelInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx

7

typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr;

class TimeOfDay : virtual public Ice::0Object ({
public:

}i

Ice::Short hour;
Ice: :Short minute;
Ice: :Short second;

virtual std::string format() = 0;

TimeOfDay () {};
TimeOfDay (Ice: :Short, Ice::Short, Ice::Short);

virtual bool ice isA(const std::string&);
virtual const std::string& ice id();

static const std::string& ice staticId();

typedef TimeOfDayPrx ProxyType;
typedef TimeOfDayPtr PointerType;

!/

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice: : Object. This means

that all classes implicitly inherit from Ice: :Object, which is the ultimate
ancestor of all classes. Note that Ice: : Object is not the same as
IceProxy: :Ice: :0bject. In other words, you cannot pass a class where

5. The ProxyType and PointerType definitions are for template programming (see

page 197).
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a proxy is expected and vice versa. (However, you can pass a proxy for the
class—see Section 6.14.6.)

2. The generated class contains a public member for each Slice data member.

3. The generated class has a constructor that takes one argument for each data
member, as well as a default constructor.

4. The generated class contains a pure virtual member function for each Slice
operation.

5. The generated class contains additional member functions: ice isA,
ice id, ice staticId,and ice factory.

6. The compiler generates a type definition TimeOfDayPtr. This type imple-
ments a smart pointer that wraps dynamically-allocated instances of the class.
In general, the name of this type is <class-name>Ptr. Do not confuse this
with <class-name>Prx—that type exists as well, but is the proxy handle
for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from Ice: :0bject

Like interfaces, classes implicitly inherit from a common base class,

Ice: :0bject. However, as shown in Figure 6.1, classes inherit from

Ice: :0bject instead of Ice: : ObjectPrx (which is at the base of the inher-
itance hierarchy for proxies). As a result, you cannot pass a class where a proxy is
expected (and vice versa) because the base types for classes and proxies are not
compatible.

‘ Ice::0bjectPrx

Proxies... ‘ Classes...
5 5
I I

Figure 6.1. Inheritance from Ice: :ObjectPrx and Ice: :Object.

| Ice::0bject ‘

Ice: :0Object contains a number of member functions:
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namespace Ice {

}

class Object : public IceUtil::GCShared ({

public:

virtual bool ice isA(const std::stringg,

const Current& = Current()) const;
virtual void ice ping(const Current& = Current()) const;
virtual std::vector<std::string> ice ids(

const Current& = Current()) const;
virtual const std::string& ice id(

const Current& = Current()) const;

static const std::string& ice staticId() ;
virtual Ice::Int ice getHash() const;
virtual ObjectPtr ice clone() const;

virtual void ice preMarshal () ;
virtual void ice postUnmarshal () ;

virtual bool operator==(const Object&) const;
virtual bool operator!=(const Object&) const;
virtual bool operator<(const Objecté&) const;
virtual bool operator<=(const Objecté&) const;
virtual bool operators(const Object&) const;
virtual bool operators>=(const Object&) const;

}i

The member functions of Ice: : Object behave as follows:

® ice isA

This function returns true if the object supports the given type ID, and
false otherwise.

ice ping

As for interfaces, ice ping provides a basic reachability test for the class.
ice ids

This function returns a string sequence representing all of the type IDs
supported by this object, including : : Ice: :Object.

ice id

This function returns the actual run-time type ID for a class. If you call

ice 1id through a smart pointer to a base instance, the returned type id is the
actual (possibly more derived) type ID of the instance.

ice staticId
This function returns the static type ID of a class.
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®* ice getHash
This method returns a hash value for the class, allowing you to easily place
classes into hash tables.
® ice clone
This function makes a polymorphic shallow copy of a class (see page 226).
®* ice preMarshal
The Ice run time invokes this function prior to marshaling the object’s state,
providing the opportunity for a subclass to validate its declared data members.
®* ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object’s state. A
subclass typically overrides this function when it needs to perform additional
initialization using the values of its declared data members.
® operator==
operator!=
operators<
operator<=
operators>
operator>=
The comparison operators permit you to use classes as elements of STL sorted
containers. Note that sort order is based on the data members of the class, as
for structures (see Section 6.12).
6.14.2 Data Members of Classes
Data members of classes are mapped exactly as for structures and exceptions: for
each data member in the Slice definition, the generated class contains a corre-
sponding public data member.
6.14.3 Class Constructors

Classes have a default constructor. This constructor default-constructs each data
member. This means that, for members of simple built-in type, such as integers,
the default constructor performs no initialization, whereas members of complex
type, such as strings, sequences, and dictionaries, are initialized by their own
default constructor.
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In addition, classes have a second constructor that has one parameter for each
data member. This allows you to construct and initialize a class instance in a
single statement (instead of first having to construct the instance and then
assigning to its members).

For derived classes, the constructor has one parameter for each of the base
class’s data members, plus one parameter for each of the derived class’s data
members, in base-to-derived order. For example:

class Base {
int i;

};

class Derived extends Base {
string s;

3
This generates:

class Base : virtual public ::Ice::0Object

{
public:
::Ice::Int i;

Base () {};
explicit Base(::Ice::Int);
//
}i
class Derived : virtual public Base
{
public:
::std::string s;
Derived() {};
Derived(::Ice::Int, const ::std::stringé&);
//
}i

Note that single-parameter constructors are defined as explicit, to prevent
implicit argument conversions.
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6.14.4 Operations of Classes
Operations of classes are mapped to pure virtual member functions in the gener-
ated class. This means that, if a class contains operations (such as the format
operation of our TimeOfDay class), you must provide an implementation of the
operation in a class that is derived from the generated class. For example:6
class TimeOfDayI : virtual public TimeOfDay {
public:
virtual std::string format ()
std::ostringstream s;
s << setw(2) << setfill('0') << hour << ":";
s << setw(2) << setfill('0') << minute << ":";
s << setw(2) << setfill('0') << second;
return s.c_str();
}
protected:
virtual ~TimeOfDayI {} // Optiomal
}i
6.14.5 Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we
can instantiate the TimeOfDayI class, but we cannot receive it as the return
value or as an out-parameter from an operation invocation. To see why, consider
the following simple interface:

interface Time {
TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDay T class that implements the
abstract format operation of the TimeOfDay abstract class. In other words, we
must provide the Ice run time with a factory that knows that the TimeOfDay
abstract class has a TimeOfDayT concrete implementation. The Ice: : Communi-
cator interface provides us with the necessary operations:

6. We discuss the motivation for the protected destructor on page 228.
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module Ice {

Tocal interface ObjectFactory {
Object create(string type);
void destroy();

};

Jocal interface Communicator {
void addObjectFactory(ObjectFactory factory, string id);
ObjectFactory findObjectFactory(string 1id);
// ...
};
};

To supply the Ice run time with a factory for our TimeOfDayT class, we must
implement the ObjectFactory interface:

module Ice {

Tocal interface ObjectFactory {
Object create(string type);
void destroy();

1

};

The object factory’s create operation is called by the Ice run time when it needs
to instantiate a TimeOfDay class. The factory’s destroy operation is called by the
Ice run time when its communicator is destroyed. A possible implementation of
our object factory is:

class ObjectFactory : public Ice::0ObjectFactory ({

public:
virtual Ice::ObjectPtr create(const std::string& type) ({
assert (type == "::M::TimeOfDay") ;
return new TimeOfDayTI;
}

virtual void destroy() {}

}i
The create method is passed the type ID (see Section 4.13) of the class to
instantiate. For our TimeOfDay class, the type ID is ": :M: : TimeOfDay". Our
implementation of create checks the type ID: ifitis ": :M: : TimeOfDay", it
instantiates and returns a TimeO£fDayI object. For other type IDs, it asserts
because it does not know how to instantiate other types of objects.

Given a factory implementation, such as our ObjectFactory, we must
inform the Ice run time of the existence of the factory:
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6.14.6

Ice: :CommunicatorPtr ic = ...;
ic->addObjectFactory (new ObjectFactory, "::M::TimeOfDay") ;

Now, whenever the Ice run time needs to instantiate a class with the type ID
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time
when the communicator is destroyed. This gives you a chance to clean up any
resources that may be used by your factory. Do not call destroy on the factory
while it is registered with the communicator—if you do, the Ice run time has no
idea that this has happened and, depending on what your destroy implementation
is doing, may cause undefined behavior when the Ice run time tries to next use the
factory.

The run time guarantees that destroy will be the last call made on the factory,
that is, create will not be called concurrently with destroy, and create will not
be called once destroy has been called. However, calls to create can be made
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call
addObjectFactory with a type ID for which a factory is registered, the Ice run
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations,
you need not create and register an object factory to transmit instances of such a
class. Only if a class has operations do you have to define and register an object
factory.

Smart Pointers for Classes

A recurring theme for C++ programmers is the need to deal with memory alloca-
tions and deallocations in their programs. The difficulty of doing so is well
known: in the face of exceptions, multiple return paths from functions, and callee-
allocated memory that must be deallocated by the caller, it can be extremely diffi-
cult to ensure that a program does not leak resources. This is particularly impor-
tant in multi-threaded programs: if you do not rigorously track ownership of
dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart
pointers use reference counting to keep track of each class instance and, when the
last reference to a class instance disappears, automatically delete the instance.”
Smart pointers are generated by the Slice compiler for each class type. For a Slice



6.14 Mapping for Classes 221

class <class-name>, the compiler generates a C++ smart pointer called
<class-name>Ptr. Rather than showing all the details of the generated class,
here is the basic usage pattern: whenever you allocate a class instance on the heap,
you simply assign the pointer returned from new to a smart pointer for the class.
Thereafter, memory management is automatic and the class instance is deleted
once the last smart pointer for it goes out of scope:
{ // Open scope

TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance

// Initialize...
tod->hour = 18;

tod->minute = 11;
tod->second = 15;
//
} // No memory leak here!

As you can see, you use operator-> to access the members of the class via its
smart pointer. When the tod smart pointer goes out of scope, its destructor runs
and, in turn, the destructor takes care of calling delete on the underlying class
instance, so no memory is leaked.

The smart pointers perform reference counting of their underlying class
instance:

* The constructor of a class sets its reference count to zero.

* Initializing a smart pointer with a dynamically-allocated class instance causes
the smart pointer to increment the reference count for the class by one.

* Copy constructing a smart pointer increments the reference count for the class
by one.

* Assigning one smart pointer to another increments the target’s reference count
and decrements the source’s reference count. (Self-assignment is safe.)

® The destructor of a smart pointer decrements the reference count by one and
calls delete on its class instance if the reference count drops to zero.

Figure 6.2 shows the situation after default-constructing a smart pointer as
follows:

TimeOfDayPtr tod;

7. Smart pointer classes are an example of the RAII (Resource Acquisition Is Initialization)
idiom [20].
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This creates a smart pointer with an internal null pointer.

tod

Figure 6.2. Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero;
the assignment to the class pointer causes the smart pointer to increment the
class’s reference count:

tod = new TimeOfDayI; // Refcount ==
The resulting situation is shown in Figure 6.3.

—

1

Figure 6.3. Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the
smart pointer (not the underlying instance) and increments the reference count of
the instance:

TimeOfDayPtr tod2(tod); // Copy-construct tod2

TimeOfDayPtr tod3;
tod3 = tod; // Assign to tod3

The situation after executing these statements is shown in Figure 6.4:

Figure 6.4. Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to
one of the original smart pointers, tod2:
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tod2 = new TimeOfDayI;

This decrements the reference count of the class originally denoted by tod2
and increments the reference count of the class that is assigned to tod2. The
resulting situation is shown in Figure 6.5.

Figure 6.5. Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

tod = 0; // Clear handle

As you would expect, this decrements the reference count of the instance, as
shown in Figure 6.6.

Figure 6.6. Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to
it, the smart pointer decrements the reference count of its instance; if the reference
count drops to zero, the smart pointer calls delete to deallocate the instance.
The following code snippet deallocates the instance on the right by assigning
tod2 to tod3:

tod3 = tod2;
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This results in the situation shown in Figure 6.7.

Figure 6.7. Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, SO
you can copy and assign class instances:

TimeOfDayPtr tod = new TimeOfDayI (2, 3, 4); // Create instance
TimeOfDayPtr tod2 = new TimeOfDayI (*tod) ; // Copy instance

TimeOfDayPtr tod3 = new TimeOfDayI;
*tod3 = *tod; // Assign instance

Copying and assignment in this manner performs a memberwise shallow copy
or assignment, that is, the source members are copied into the target members; if a
class contains class members (which are mapped as smart pointers), what is
copied or assigned is the smart pointer, not the target of the smart pointer.
To illustrate this, consider the following Slice definitions:
class Node {
int i;
Node next;
s
Assume that we initialize two instances of type Node as follows:
NodePtr pl = new Node (99, new Node (48, 0));
NodePtr p2 = new Node (23, 0);

//

*p2 = *pl; // Assignment
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After executing the first two statements, we have the situation shown in
Figure 6.8.

Figure 6.8. Class instances prior to assignment.

After executing the assignment statement, we end up with the result shown in
Figure 6.9.

Figure 6.9. Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract
classes, such as our TimeOfDayT class, for example:

class TimeOfDayI;
typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr;

class TimeOfDayI : virtual public TimeOfDay {
// As before...

}i
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The default copy constructor and assignment operator will perform a memberwise
copy or assignment of your implementation class:

TimeOfDayIPtr todl = new TimeOfDayI;
TimeOfDayIPtr tod2 = new TimeOfDayI (*todl) ; // Make copy

Of course, if your implementation class contains raw pointers (for which a
memberwise copy would almost certainly be inappropriate), you must implement
your own copy constructor and assignment operator that take the appropriate
action (and probably call the base copy constructor or assignment operator to take
care of the base part).

Note that the preceding code uses TimeOfDayIPtr as a typedef for
IceUtil: :Handle<TimeOfDayI>. This class is a template that contains the
smart pointer implementation. If you want smart pointers for the implementation
of an abstract class, you must define a smart pointer type as illustrated by this type
definition.

Copying and assignment of classes also works correctly for derived classes:
you can assign a derived class to a base class, but not vice-versa; during such an
assignment, the derived part of the source class is sliced, as per the usual C++
assignment semantics.

Polymorphic Copying of Classes

As shown in Section 6.14.1 on page 214, the C++ mapping generates an
ice_clone member function for every class:

class TimeOfDay : virtual public Ice::0Object ({

public:

//

virtual Ice::ObjectPtr ice clone() const;
}i

This member function makes a polymorphic shallow copy of a class: members
that are not class members are deep copied; all members that are class members
are shallow copied. To illustrate, consider the following class definition:

class Node {
Node nl;
Node n2;
};
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Assume that we have an instance of this class, with the n1 and n2 members
initialized to point at separate instances, as shown in Figure 6.10.

e

Figure 6.10. A class instance pointing at two other instances.

If we call ice clone on the instance on the left, we end up with the situation
shown in Figure 6.11.

R C =0

"

Figure 6.11. Resulting graph after calling ice_clone on the left-most instance of Figure 6.10.

As you can see, class members are shallow copied, that is, ice clone makes a
copy of the class instance on which it is invoked, but does not copy any class
instances that are pointed at by the copied instance.

Note that ice_clone returns a value of type Ice: :ObjectPtr, to avoid
problems with compilers that do not support covariant return types. The generated
Ptr classes contain a dynamicCast member that allows you to safely down-
cast the return value of ice clone. For example, the code to achieve the situa-
tion shown in Figure 6.11 looks as follows:

NodePtr pl = new Node (new Node, new Node) ;
NodePtr p2 = NodePtr::dynamicCast (pl->ice_clone()) ;

ice_ clone is generated by the Slice compiler for concrete classes (that is,
classes that do not have operations). However, because classes with operations are
abstract, for abstract classes, the generated ice clone cannot know how to
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instantiate an instance of the derived concrete class (because the name of the
derived class is not known). This means that, for abstract classes, the generated
ice clone throws a CloneNotImplementedException.

If you want to clone the implementation of an abstract class, you must over-
ride the virtual ice clone member in your concrete implementation class. For
example:

class TimeOfDayI : public TimeOfDay {

public:
virtual Ice::0ObjectPtr ice_clone() const
{
return new TimeOfDayI (*this) ;
}
}i

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This
means that if you attempt to dereference a null smart pointer, you get an
IceUtil: :NullHandleException:

TimeOfDayPtr tod; // Construct null handle
try {
tod->minute = 0; // Dereference null handle
assert (false) ; // Cannot get here

} catch (const IceUtil::NullHandleException&) {

; // OK, expected
} catch (...) {

assert (false) ; // Must get NullHandleException
!

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allo-
cating class instances on the stack or in static variables is pragmatically useless
because all the Ice APIs expect parameters that are smart pointers, not class
instances. This means that, to do anything with a stack-allocated class instance,
you must initialize a smart pointer for the instance. However, doing so does not
work because it inevitably leads to a crash:
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{ // Enter scope
TimeOfDayI t; // Stack-allocated class instance
TimeOfDayPtr todp; // Handle for a TimeOfDay instance
todp = &t; // Legal, but dangerous
//

} // Leave scope, looming crash!

This goes badly wrong because, when todp goes out of scope, it decrements the
reference count of the class to zero, which then calls delete on itself. However,
the instance is stack-allocated and cannot be deleted, and we end up with unde-
fined behavior (typically, a core dump).

The following attempt to fix this is also doomed to failure:

{ // Enter scope
TimeOfDayI t; // Stack-allocated class instance
TimeOfDayPtr todp; // Handle for a TimeOfDay instance
todp = &t; // Legal, but dangerous
//
todp = 0; // Crash imminent!

}

This code attempts to circumvent the problem by clearing the smart pointer
explicitly. However, doing so also causes the smart pointer to drop the reference
count on the class to zero, so this code ends up with the same call to delete on
the stack-allocated instance as the previous example.

The upshot of all this is: never allocate a class instance on the stack or in a
static variable. The C++ mapping assumes that all class instances are allocated on
the heap and no amount of coding trickery will change this.

You can prevent allocation of class instances on the stack or in static variables
by adding a protected destructor to your implementation of the class: if a class has
a protected destructor, allocation must be made with new, and static or stack allo-
cation causes a compile time error. In addition, explicit calls to delete on a
heap-allocated instance also are flagged at compile time. You may want to habitu-
ally add a protected destructor to your implementation of abstract Slice classes to
protect yourself from accidental heap allocation, as shown on page 218. (For Slice

8. You could abuse the setNoDelete member (described on page 232) to disable dealloca-
tion, but we strongly discourage you from doing this.



230

Client-Side Slice-to-C++ Mapping

classes that do not have operation, the Slice compiler automatically adds a
protected destructor.)

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to
leave a scope containing a stack-allocated smart pointer, the C++ run time ensures
that the smart pointer’s destructor is called, so no resource leaks can occur:

{ // Enter scope...
TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance
someFuncThatMightThrow () ; // Might throw...

!/

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of tod runs and ensures that it deallo-
cates the underlying class instance.

There is one potential pitfall you must be aware of though: if a constructor of a
base class throws an exception, and another class instance holds a smart pointer to
the instance being constructed, you can end up with a double deallocation.
Consider the following example, which reduces the problem to its bare-bones
minimum:
class Base;
typedef IceUtil::Handle<Base> BasePtr;

class Listener : public virtual IceUtil::Shared ({
public:
Listener (BasePtr p) {
_parent = p;

}
virtual ~Listener() ({
_parent = 0;
}
private:

BasePtr parent;

}i

typedef IceUtil::Handle<Listener> ListenerPtr;
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class Base : public virtual IceUtil::Shared ({

public:
Base () {
_listener = new Listener (this);
}
virtual ~Base() {
_listener = 0;
}
private:
ListenerPtr listener;
}i
class Derived : public virtual Base ({
public:
Derived() ({
if (errorCondition)
throw "Some error";
}
}i

typedef IceUtil::Handle<Derived> DerivedPtr;

int main()

{
try {
DerivedPtr d = new Derived;
} catch (...) {
//
!
return O;
!

This type of code is used, for example, for the listener pattern [2]. Consider what
happens when the statement

DerivedPtr d = new Derived;
1s executed in main and errorCondition is true:
1. The Base constructor is called (because Base is a base class of Derived).

2. The constructor of Base allocates an instance of Listener, which results in
a call to the L.i stener constructor.
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3. The Listener constructor assigns its argument to the parent member,
which leaves the reference count of the Derived object being instantiated at
one.

4. The Listener constructor completes and returns control to the Base
constructor, which assigns the newly-constructed Listener object to its
_listener member, of type ListenerPtr. At this point, the reference
count of the Listener object changes from zero to one.

5. The Base constructor completes, so the C++ run time continues to construct
the Derived object being instantiated by calling the Derived constructor.

6. The Derived constructor throws an exception. As a result, the C++ run time
calls the Base destructor.

7. The Base destructor assigns null to its _1istener member, which drops
the reference count of its Listener object to zero. As a result, the
Listener objectcalls delete this;.

8. The Listener destructor runs and assigns null to its _1istener member.
The listener smart pointer drops the reference count of its Base object
to zero. As a result, the Base object calls delete this;.

9. The C++ run time calls the Base destructor.

At this point, the program shows undefined behavior (usually, dumps core)
because the Base destructor is called a second time on the same object.

We can solve the problem by telling the Derived instance that it should not
deallocate itself while the Derived constructor may still throw an exception.
The IceUtil: :Sharedclass providesa setNoDelete member function
that allows us to do this:
class Derived : public virtual Base ({
public:

Derived() {
___setNoDelete (true) ;
if (errorCondition)
throw "Some error";
___setNoDelete(false) ;

}i

Here, we have changed the Derived constructor to disable deallocation of its
object until we know that no more exceptions can be thrown. Once the constructor
is certain to complete successfully, it enables deallocation again, so the object will
be deallocated once its reference count drops to zero.
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Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal
with cyclic dependencies. For example, consider the following simple self-refer-
ential class:

class Node {
int val;
Node next;

};

Intuitively, this class implements a linked list of nodes. As long as there are no
cycles in the list of nodes, everything is fine, and our smart pointers will correctly
deallocate the class instances. However, if we introduce a cycle, we have a

problem:
{ // Open scope...
NodePtr nl = new Node; // N1 refcount == 1
NodePtr n2 = new Node; // N2 refcount == 1
nl-s>next = n2; // N2 refcount == 2
n2->next = nl; // N1 refcount == 2
} // Destructors run: // N2 refcount == 1,
// N1 refcount == 1, memory leak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustra-
tion, let us assume that n1’s node is called N1, and n2’s node is called N2. When
we allocate the N1 instance and assign it to n1, the smart pointer nl increments
N1’s reference count to 1. Similarly, N2’s reference count is 1 after allocating the
node and assigning it to n2. The next two statements set up a cyclic dependency
between nl and n2 by making their next pointers point at each other. This sets
the reference count of both N1 and N2 to 2. When the enclosing scope closes, the
destructor of n2 is called first and decrements N2’s reference count to 1, followed
by the destructor of n1, which decrements N1’s reference count to 1. The net
effect is that neither reference count ever drops to zero, so both N1 and N2 are
leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference
counts for deallocation: if a cyclic dependency exists anywhere in a graph
(possibly via many intermediate nodes), all nodes in the cycle are leaked.
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To avoid memory leaks due to such cycles, Ice for C++ contains a garbage
collector. The collector identifies class instances that are part of one or more
cycles but are no longer reachable from the program and deletes such instances:

* By default, garbage is collected whenever you destroy a communicator. This
means that no memory is leaked when your program exits. (Of course, this
assumes that you correctly destroy your communicators as described in
Section 8.3.)

* You can also explicitly call the garbage collector by calling
Ice::collectGarbage. For example, the leak caused by the preceding
example can be avoided as follows:

{ // Open scope. ..
NodePtr nl = new Node; // N1 refcount == 1
NodePtr n2 = new Node; // N2 refcount == 1
nl-snext = n2; // N1 refcount == 2
n2-snext = nl; // N2 refcount == 2

} // Destructors run: // N2 refcount == 1,

// N1 refcount == 1

Ice::collectGarbage () ; // Deletes N1 and N2

The call to Ice: : collectGarbage deletes the no longer reachable
instances N1 and N2 (as well as any other non-reachable instances that may
have accumulated earlier).

* Deleting leaked memory with explicit calls to the garbage collector can be
inconvenient because it requires polluting the code with calls to the collector.
You can ask the Ice run time to run a garbage collection thread that periodi-
cally cleans up leaked memory by setting the property Ice.GC.Interval
to a non-zero value.” For example, setting Ice.GC.Interval to 5 causes
the collector thread to run the garbage collector once every five seconds. You
can trace the execution of the collector by setting Ice . Trace.GC to a non-
zero value (Appendix C).

Note that the garbage collector is useful only if your program actually creates
cyclic class graphs. There is no point in running the garbage collector in programs
that do not create such cycles. (For this reason, the collector thread is disabled by

9. See Chapter 28 for how to set properties.
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6.15

default and runs only if you explicitly set Ice.GC.Interval to a non-zero
value.)

Smart Pointer Comparison

As for proxy handles (see Section 6.11.3 on page 202), class handles support the
comparison operators ==, ! =, and <. This allows you to use class handles in STL
sorted containers. Be aware that, for smart pointers, object identity is not used for
the comparison, because class instances do not have identity. Instead, these opera-
tors simply compare the memory address of the classes they point to. This means
that operator== returns true only if two smart pointers point at the same phys-
ical class instance:

// Create a class instance and initialize
//

TimeOfDayIPtr pl = new TimeOfDayI;
pl->hour = 23;

pl->minute = 10;

pl->second = 18;

// Create another class instance with
// the same member values

//

TimeOfDayIPtr p2 = new TimeOfDayTI;
p2->hour = 23;

p2->minute = 10;

p2->second = 18;

assert (pl != p2); // The two do not compare equal

TimeOfDayIPtr p3

pl; // Point at first class again

assert (pl == p3); // Now they compare equal

slice2cpp Command-Line Options

The Slice-to-C++ compiler, slice2epp, offers the following command-line
options in addition to the standard options described in Section 4.19:

* --header-ext EXT

Changes the file extension for the generated header files from the default h to
the extension specified by EXT.
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--source-ext EXT

Changes the file extension for the generated source files from the default cpp
to the extension specified by EXT.

--add-header HDR[, GUARD]

This option adds an include directive for the specified header at the beginning
of the generated source file (preceding any other include directives). If GUARD
is specified, the include directive is protected by the specified guard. For

example, - -add-header precompiled.h, PRECOMPILED H
results in the following directives at the beginning of the generated source file:

#ifndef  PRECOMPILED H
#define  PRECOMPILED H
#include <precompiled.hs>
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to inte-
grate the generated code with a compiler’s precompiled header mechanism.

--include-dir DIR

Modifies #include directives in source files to prepend the pathname of
each header file with the directory DIR. See Section 6.15.1 for more informa-
tion.

--impl

Generate sample implementation files. This option will not overwrite an
existing file.

- -depend

Prints makefile dependency information to standard output. No code is gener-
ated when this option is specified. The output generally needs to be filtered
before it can be included in a makefile; the Ice build system uses the script
config/makedepend. py for this purpose.

--dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to
selectively export or import global symbols in the generated code. As an
example, compiling a Slice definition with

$ slice2cpp --dll-export ENABLE DLL x.ice
results in the following additional code being generated into x . h:

#ifndef ENABLE_DLL
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6.15.1

# ifdef ENABLE DLL EXPORTS

# define ENABLE DLL ICE DECLSPEC EXPORT
# else

# define ENABLE DLL ICE DECLSPEC IMPORT
# endif

#endif

ICE_DECLSPEC_EXPORTandICE_DECLSPEC_IMPORTZHephﬁan—
specific macros. For example, for Windows, they are defined as
__declspec(dllexport) and declspec(dllimport), respec-
tively; for Solaris using CC version 5.5 or later, ICE_ DECLSPEC_EXPORT is
defined as __global, and ICE_DECLSPEC_IMPORT is empty. '’

The symbol name you specify on the command line (ENABLE DLL in this
example) is used by the generated code to export or import any symbols that
must be visible to code outside the generated compilation unit. The net effect
is that, if you want to create a DLL that includes x . cpp, but also want to use
the generated types in compilation units outside the DLL, you can arrange for
the relevant symbols to be exported by compiling x . cpp with
-DENABLE DLL EXPORTS.

® - -checksum
Generate checksums for Slice definitions.
® --stream

Generate streaming helper functions for Slice types (see Section 35.2).

Include Directives

The #include directives generated by the Slice-to-C++ compiler can be a
source of confusion if the semantics governing their generation are not well-
understood. The generation of #include directives is influenced by the
command-line options -I and - -include-dir; these options are discussed in
more detail below. The - -output-dir option directs the translator to place all
generated files in a particular directory, but has no impact on the contents of the
generated code.

Given that the #include directives in header files and source files are gener-
ated using different semantics, we describe them in separate sections.

10.Similar definitions exist for other platforms. For platforms that do not have any concept of
explicit export or import of shared library symbols, both macros are empty.
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Header Files

In most cases, the compiler generates the appropriate #include directives by
default. As an example, suppose file A. ice includes B. ice using the following
statement:

// A.ice
#include <B.ice>

Assuming both files are in the current working directory, we run the compiler as
shown below:

$ slice2cpp -I. A.ice

The generated file A . h contains this #include directive:

// A.h
#include <B.h>

If the proper include paths are specified to the C++ compiler, everything should
compile correctly.

Similarly, consider the common case where A. ice includes B. ice from a
subdirectory:

// A.ice
#include <inc/B.ice>

Assuming both files are in the inc subdirectory, we run the compiler as shown
below:

$ slice2cpp -I. inc/A.ice
The default output of the compiler produces this #include directive in A.h:

// A.h
#include <inc/B.h>

Again, it is the user’s responsibility to ensure that the C++ compiler is configured
to find inc/B . h during compilation.

Now let us consider a more complex example, in which we do not want the
#include directive in the header file to match that of the Slice file. This can be
necessary when the organizational structure of the Slice files does not match the
application’s C++ code. In such a case, the user may need to relocate the gener-
ated files from the directory in which they were created, and the #include
directives must be aligned with the new structure.

For example, let us assume that B . ice is located in the subdirectory
slice/inc:



6.15 slice2cpp Command-Line Options 239

// A.ice
#include <slice/inc/B.ice>

However, we do not want the s1ice subdirectory to appear in the #include
directive generated in the header file, therefore we specify the additional compiler
option -Islice:

$ slice2cpp -I. -Islice slice/inc/A.ice

The generated code demonstrates the impact of this extra option:

// A.h
#include <inc/B.h>

As you can see, the #include directives generated in header files are affected by
the include paths that you specify when running the compiler. Specifically, the
include paths are used to abbreviate the pathname in generated #include direc-
tives.

When translating an #include directive from a Slice file to a header file, the
compiler compares each of the include paths against the path of the included file.
If an include path matches the leading portion of the included file, the compiler
removes that leading portion when generating the #include directive in the
header file. If more than one include path matches, the compiler selects the one
that results in the shortest path for the included file.

For example, suppose we had used the following options when compiling
A.ice:

¢ slice2cpp -I. -Islice -Islice/inc slice/inc/A.ice

In this case, the compiler compares all of the include paths against the included
file slice/inc/B. ice and generates the following directive:

// A.h
#include <B.h>

The option -Islice/inc produces the shortest result, therefore the default path
for the included file (slice/inc/B.h) is replaced with B. h.

In general, the - I option plays two roles: it enables the preprocessor to locate
included Slice files, and it provides you with a certain amount of control over the
generated #include directives. In the last example above, the preprocessor
locates slice/inc/B. ice using the include path specified by the - I . option.
The remaining - I options do not help the preprocessor locate included files; they
are simply hints to the compiler.

Finally, we recommend using caution when specifying include paths. If the
preprocessor is able to locate an included file via multiple include paths, it always
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uses the first include path that successfully locates the file. If you intend to modify
the generated #include directives by specifying extra - I options, you must
ensure that your include path hints match the include path selected by the prepro-
cessor to locate the included file. As a general rule, you should avoid specifying
include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #include directives in source files using
only the base name of the included file. This behavior is usually appropriate when
the source file and header file reside in the same directory.

For example, suppose A . ice includes B. ice from a subdirectory, as shown
in the following snippet of A. ice:

// A.ice
#include <inc/B.ice>

We generate the source file using this command:
$ slice2cpp -I. inc/A.ice

Upon examination, we see that the source file contains the following #include
directive:

// A.cpp
#include <B.h>

However, suppose that we wish to enforce a particular standard for generated
#include directives so that they are compatible with our C++ compiler’s
existing include path settings. In this case, we use the - -include-dir option
to modify the generated code. For example, consider the compiler command
shown below:

$ slice2cpp --include-dir src -I. inc/A.ice
The source file now contains the following #include directive:

// A.cpp
#include <src/B.h>

Any leading path in the included file is discarded as usual, and the value of the - -
include-dir option is prepended.
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6.16 Using Slice Checksums
As described in Section 4.20, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cpp, the - -checksum option causes the
compiler to generate code in each C++ source file that accumulates checksums in
a global map. A copy of this map can be obtained by calling a function defined in
the header file Ice/SliceChecksums.h:
namespace Ice {
Ice::SliceChecksumDict sliceChecksums() ;
}
In order to verify a server’s checksums, a client could simply compare the dictio-
naries using the equality operator. However, this is not feasible if it is possible that
the server might be linked with more Slice definitions than the client. A more
general solution is to iterate over the local checksums as demonstrated below:
Ice::SliceChecksumDict serverChecksums = ...
Ice::SliceChecksumDict localChecksums = Ice::sliceChecksums () ;
for (Ice::SliceChecksumDict::const iterator
p = localChecksums.begin() ;
p != localChecksums.end(); ++p) {
Ice::SliceChecksumbDict::const_iterator g
= gerverChecksums.find (p->first);
if (g == serverChecksums.end())
// No match found for type id!
} else if (p->second != g-s>second) ({
// Checksum mismatch!
}
}
In this example, the client first verifies that the server’s dictionary contains an
entry for each Slice type ID, and then it proceeds to compare the checksums.
6.17 A Comparison with the CORBA C++ Mapping

Comparing the Slice and the CORBA C++ mappings is somewhat difficult
because they are so different. As any CORBA C++ developer will know, the
CORBA C++ mapping is large and complex and, in places, arcane. For example,
the developer is burdened with a large number of error-prone memory manage-
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ment responsibilities, and the rules for what must be deallocated by the developer
and what is deallocated by the ORB are inconsistent.

Overall, the Ice C++ mapping is much easier to use, integrates with STL and,
due to the smaller amount of generated code, is much more efficient.



Chapter 7
Developing a File System Client in
C++

7.1 Chapter Overview
In this chapter, we present the source code for a C++ client that accesses the file
system we developed in Chapter 5 (see Chapter 9 for the corresponding server).
7.2 The C++ Client

We now have seen enough of the client-side C++ mapping to develop a complete
client to access our remote file system. For reference, here is the Slice definition
once more:

module Filesystem {
interface Node {
nonmutating string name();

1

exception GenericError {
string reason;

};
sequence<string> Lines;

interface File extends Node {

243
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nonmutating Lines read();
idempotent void write(Lines text) throws GenericError;

};
sequence<Node=> NodeSeq;

interface Directory extends Node {
nonmutating NodeSeq Tist();

1

interface Filesys {
nonmutating Directory= getRoot();
1
};

To exercise the file system, the client does a recursive listing of the file system,
starting at the root directory. For each node in the file system, the client shows the
name of the node and whether that node is a file or directory. If the node is a file,
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:
#include <Ice/Ice.h>
#include <Filesystem.h>

#include <iostream>
#include <iterator>

using namespace std;
using namespace Filesystem;

static void
listRecursive (const DirectoryPrx& dir, int depth = 0)

{
}

//

int

main (int argc, char* argv(])
int status = 0;
Ice: :CommunicatorPtr ic;

try {
// Create a communicator

//

ic = Ice::initialize(argc, argv);
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// Create a proxy for the root directory
//
Ice: :0bjectPrx base
= ic->stringToProxy ("RootDir:default -p 10000") ;
if (l!base)
throw "Could not create proxy";

// Down-cast the proxy to a Directory proxy
//
DirectoryPrx rootDir = DirectoryPrx::checkedCast (base) ;
if (!rootDir)
throw "Invalid proxy";

// Recursively list the contents of the root directory

//

cout << "Contents of root directory:" << endl;
listRecursive (rootDir) ;

} catch (const Ice::Exception& ex) {

cerr << ex << endl;
status = 1;

} catch (const char* msg) {

cerr << msg << endl;
status = 1;

// Clean up

//
if

(ic)
ic->destroy () ;

return status;

1. The code includes a few header files:
1.Ice/Ice.h

This file is always included in both client and server source files. It provides
definitions that are necessary for accessing the Ice run time.

2.Filesystem.h

This is the header that is generated by the Slice compiler from the Slide defi-
nitions in Filesystem. ice.

3.lostream

The client uses the iostream library to produce its output.
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4.iterator
The implementation of 1istRecursive uses an STL iterator.

2. The code adds using declarations for the std and Filesystem
namespaces.

3. The structure of the code in main follows what we saw in Chapter 3. After
initializing the run time, the client creates a proxy to the root directory of the
file system. For this example, we assume that the server runs on the local host
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

4. The client down-casts the proxy to DirectoryPrx and passes that proxy to
listRecursive, which prints the contents of the file system.

Most of the work happens in 1istRecursive:

// Recursively print the contents of directory "dir" in

// tree fashion. For files, show the contents of each file.
// The "depth" parameter is the current nesting level

// (for indentation).

static void
listRecursive (const DirectoryPrx& dir, int depth = 0)

{

string indent (++depth, '\t');
NodeSeq contents = dir->list();

for (NodeSeq::const iterator i = contents.begin() ;
i != contents.end() ;
++1) |
DirectoryPrx dir = DirectoryPrx::checkedCast (*1i) ;
FilePrx file = FilePrx::uncheckedCast (*1i) ;
cout << indent << (*i)->name()
<< (dir ? " (directory):" : " (file):") << endl;
if (dir)
listRecursive (dir, depth);
} else {
Lines text = file->read();
for (Lines::const _iterator j = text.begin();
j != text.end();
++3) {
cout << indent << "\t" << *j << endl;
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}

The function is passed a proxy to a directory to list, and an indent level. (The
indent level increments with each recursive call and allows the code to print the
name of each node at an indent level that corresponds to the depth of the tree at
that node.) 1istRecursive calls the 1ist operation on the directory and iter-
ates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory
proxy, as well as an uncheckedCast to narrow the Node proxy to a File
proxy. Exactly one of those casts will succeed, so there is no need to call
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we
know that the Node is-a File and, therefore, an uncheckedCast is sufficient
togeta FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is
preferable to use an uncheckedCast instead of a checkedCast because
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which
cast succeeded, prints " (directory) " or " (file) " following the name.

3. The code checks the type of the node:
e If it is a directory, the code recurses, incrementing the indent level.

e Ifitis a file, the code calls the read operation on the file to retrieve the file
contents and then iterates over the returned sequence of lines, printing each
line.
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Assume that we have a small file system consisting of two files and a directory as
follows:

O = Directory RootDir
@ -Fe

Coleridge README

Kubla_Khan

Figure 7.1. A small file system.

The output produced by client for this file system is:

Contents of root directory:
README (file) :
This file system contains a collection of poetry.
Coleridge (directory):
Kubla Khan (file):
In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:
* The protocol and address information are hard-wired into the code.

* The client makes more remote procedure calls than strictly necessary; with
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in XREF and XREF.

7.3 Summary

This chapter presented a very simple client to access a server that implements the
file system we developed in Chapter 5. As you can see, the C++ code hardly
differs from the code you would write for an ordinary C++ program. This is one of
the biggest advantages of using Ice: accessing a remote object is as easy as
accessing an ordinary, local C++ object. This allows you to put your effort where
you should, namely, into developing your application logic instead of having to
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struggle with arcane networking APIs. As we will see in Chapter 9, this is true for
the server side as well, meaning that you can develop distributed applications
easily and efficiently.






Chapter 8
Server-Side Slice-to-C++ Mapping

8.1

Chapter Overview

8.2

In this chapter, we present the server-side Slice-to-C++ mapping (see Chapter 6
for the client-side mapping). Section 8.3 discusses how to initialize and finalize
the server-side run time, sections 8.4 to 8.6 show how to implement interfaces and
operations, and Section 8.7 discusses how to register objects with the server-side
Ice run time.

Introduction

The mapping for Slice data types to C++ is identical on the client side and server
side. This means that everything in Chapter 6 also applies to the server side.
However, for the server side, there are a few additional things you need to know,
specifically:

* how to initialize and finalize the server-side run time

* how to implement servants

* how to pass parameters and throw exceptions

* how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.

251
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8.3

The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface

Ice: :Communicator. As for the client side, you must initialize the Ice run time by
calling Ice: :initialize before you can do anything else in your server.
Ice::initialize returns a smart pointer to an instance of an Ice: : Communi-
cator:

int
main (int argc, char* argv[])
Ice::CommunicatorPtr ic
= Ice::initialize(argc, argv);
//

Ice::initialize accepts a C++ reference to argc and argv. The function
scans the argument vector for any command-line options that are relevant to the
Ice run time; any such options are removed from the argument vector so, when
Ice::initialize returns, the only options and arguments remaining are
those that concern your application. If anything goes wrong during initialization,
initialize throws an exception.

Before leaving your main function, you must call Communicator: :destroy.
The destroy operation is responsible for finalizing the Ice run time. In particular,
destroy waits for any operation invocations that may still be running to
complete. In addition, destroy ensures that any outstanding threads are joined
with and reclaims a number of operating system resources, such as file descriptors
and memory. Never allow your main function to terminate without calling
destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

#include <Ice/Ice.h>

int
main (int argc, char* argv[])
{
int status = 0;
Ice: :CommunicatorPtr ic;
try {
ic = Ice::initialize(argc, argv);

// Server code here...
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8.3.1

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;

} catch (const std::string& msg)
cerr << msg << endl;
status = 1;

} catch (const char* msg) {
cerr << msg << endl;

status = 1;
1
if (ic) |
try {
ic->destroy () ;
} catch (const std::string& msg) {
cerr << msg << endl;
status = 1;
}
1

return status;

}

Note that the code places the call to Ice: :initialize into a try block and
takes care to return the correct exit status to the operating system. Also note that
an attempt to destroy the communicator is made only if the initialization
succeeded.

The catch handlers for const std::string & and const char *
are in place as a convenience feature: if we encounter a fatal error condition
anywhere in the server code, we can simply throw a string or a string literal
containing an error message; this causes the stack to be unwound back to main, at
which point the error message is printed and, after destroying the communicator,
main terminates with non-zero exit status.

The Ice::Application Class

The preceding structure for the main function is so common that Ice offers a
class, Ice: :Application, that encapsulates all the correct initialization and
finalization activities. The definition of the class is as follows (with some detail
omitted for now):

namespace Ice {
class Application /* ... */ {
public:
Application() ;
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virtual ~Application() ;

int main(int argc, char*[] argv);
int main(int, char*[], const char* config);
int main(int argc, char*[] argv,
const Ice::InitializationData& id) ;
virtual int run(int, char*[]) = 0;

static const char* appName () ;
static CommunicatorPtr communicator() ;

//
}i
}
The intent of this class is that you specialize Ice: : Application and imple-
ment the pure virtual run method in your derived class. Whatever code you
would normally place in main goes into the run method instead. Using
Ice: :Application, our program looks as follows:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {

public:
virtual int run(int, char*[]) {
// Server code here...
return O;
!
}i
int

main (int argc, char* argv[])

{
MyApplication app;
return app.main(argc, argv) ;

}

Note that Application::main is overload and can optionally be called with either a
configuration file name or an InitializationData structure (see

Section 30.3 and Section 28.8). If you pass a configuration file name, settings on
the command line override settings in the configuration file. The Applica-
tion: :main function does the following:
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1. It installs an exception handler for Ice: : Exception. If your code fails to
handle an Ice exception, Application: :main prints the exception details
on stderr before returning with a non-zero return value.

2. It installs exception handlers for const std::string & and
const char *. This allows you to terminate your server in response to a
fatal error condition by throwing a std: : string or a string literal.
Application: :main prints the string on stderr before returning a non-
zero return value.

3. It initializes (by calling Ice: :initialize) and finalizes (by calling
Communicator: :destroy) a communicator. You can get access to the
communicator for your server by calling the static communicator ()
member.

4. It scans the argument vector for options that are relevant to the Ice run time
and removes any such options. The argument vector that is passed to your run
method therefore is free of Ice-related options and only contains options and
arguments that are specific to your application.

5. It provides the name of your application via the static appName member
function. The return value from this call is argv [0], so you can get at
argv [0] from anywhere in your code by calling Ice: :Applica-
tion: :appName (which is usually required for error messages).

6. It creates an IceUtil: :CtrlCHandler that properly destroys the
communicator.

Using Ice: :Application ensures that your program properly finalizes the
Ice run time, whether your server terminates normally or in response to an excep-
tion or signal. We recommend that all your programs use this class; doing so
makes your life easier. In addition, Ice: : Application also provides features
for signal handling and configuration that you do not have to implement yourself
when you use this class.

Using Ice: :Application on the Client Side

You can use Ice: :Application for your clients as well: simply implement a
class that derives from Ice: : Application and place the client code into its
run method. The advantage of this approach is the same as for the server side:
Ice: :Application ensures that the communicator is destroyed correctly
even in the presence of exceptions.
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Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly:
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating,
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice: : Application encapsulates
the platform-independent signal handling capabilities provided by the class
IceUtil: :CtrlCHandler (see Section 29.11). This allows you to cleanly
shut down on receipt of a signal and to use the same source code regardless of the
underlying operating system and threading package:
namespace Ice

class Application : /* ... */ {

public:
//
static void destroyOnInterrupt () ;
static void shutdownOnInterrupt () ;
static void ignorelInterrupt () ;
static void holdInterrupt () ;
static void releaseInterrupt () ;
static bool interrupted() ;

}i

}
You can use Ice: : Application under both Windows and UNIX: for UNIX,
the member functions control the behavior of your application for SIGINT,
SIGHUP, and SIGTERM; for Windows, the member functions control the
behavior of your application for CTRL_C_EVENT, CTRL_BREAK EVENT,
CTRL_CLOSE_EVENT,CTRL_LOGOFF_EVENTﬁmd
CTRL SHUTDOWN EVENT.

The member functions behave as follows:

® destroyOnInterrupt

This function creates an IceUtil: : CtrlCHandler that destroys the
communicator when one of the monitored signals is raised. This is the default
behavior.
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®* shutdownOnInterrupt

This function creates an IceUtil: : CtrlCHandler that shuts down the
communicator when one of the monitored signals is raised.

® ignoreInterrupt

This function causes signals to be ignored.
®* holdInterrupt

This function temporarily blocks signal delivery.
® releaseInterrupt

This function restores signal delivery to the previous disposition. Any signal
that arrives after holdInterrupt was called is delivered when you call
releaseInterrupt.

* interrupted

This function returns t rue if a signal caused the communicator to shut down,
false otherwise. This allows us to distinguish intentional shutdown from a
forced shutdown that was caused by a signal. This is useful, for example, for
logging purposes.

By default, Ice: :Application behaves as if destroyOnInterrupt was
invoked, therefore our server main function requires no change to ensure that the
program terminates cleanly on receipt of a signal. However, we add a diagnostic to
report the occurrence of a signal, so our main function now looks like:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {

public:
virtual int run(int, char*[]) {
// Server code here...
if (interrupted())
cerr << appName () << ": terminating" << endl;
return 0;
!
}i
int

main (int argc, char* argv([])
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8.3.2

MyApplication app;
return app.main(argc, argv) ;

}

Note that, if your server is interrupted by a signal, the Ice run time waits for all
currently executing operations to finish. This means that an operation that updates
persistent state cannot be interrupted in the middle of what it was doing and cause
partial update problems.

Ice::Application and Properties

Apart from the functionality shown in this section, Ice: : Application also
takes care of initializing the Ice run time with property values. Properties allow
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. We
discuss Ice properties in more detail in Chapter 28.

Limitations of Ice: :Application

Ice: :Application is a singleton class that creates a single communicator. If
you are using multiple communicators, you cannot use Ice: :Application.
Instead, you must structure your code as we saw in Chapter 3 (taking care to
always destroy the communicators).

The Ice: :Service Class

The Ice: :Application class described in Section 8.3.1 is very convenient
for general use by Ice client and server applications. In some cases, however, an
application may need to run at the system level as a Unix daemon or Win32
service. For these situations, Ice includes Ice: : Service, a singleton class that
is comparable to Ice: : Application but also encapsulates the low-level, plat-
form-specific initialization and shutdown procedures common to system services.
The Ice: :Service class is defined as follows:
namespace Ice

class Service {

public:

Service () ;

virtual bool shutdown() ;
virtual void interrupt () ;
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int main(inté&, char*[],
const Ice::InitializationData& =
Ice::InitializationData()) ;

Ice::CommunicatorPtr communicator () const;

static Service* instance() ;

bool service() const;
std::string name () const;
bool checkSystem() const;

int run(inté&, char*[], const Ice::InitializationData&) ;

void configureService (const std::stringé&) ;

int installService(const std::stringg,
const std::stringé&,
const std::stringé&,

const std::vector<std::string>&) ;

int uninstallService (const std::stringé&) ;
int startService (const std::stringg,

const std::vector<std::string>&) ;

int stopService (const std::stringé&) ;

void configureDaemon (bool, bool) ;

virtual void handleInterrupt (int) ;
protected:

virtual bool start(int, char*[]) = 0;

virtual void waitForShutdown () ;
virtual bool stop() ;

virtual Ice::CommunicatorPtr initializeCommunicator (
int&, char*[], const Ice::InitializationData&) ;

virtual void syserror(const std::stringé&) ;

virtual void error (const std::stringé&) ;
virtual void warning(const std::stringé&) ;
virtual void trace(const std::string&) ;

void enableInterrupt() ;
void disableInterrupt () ;

//
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At a minimum, an Ice application that uses the Ice: : Service class must
define a subclass and override the start member function, which is where the
service must perform its startup activities, such as processing command-line argu-
ments, creating an object adapter, and registering servants. The application’s
main function must instantiate the subclass and typically invokes its main
member function, passing the program’s argument vector as parameters. The
example below illustrates a minimal Ice: : Service subclass:

#include <Ice/Service.hs>

class MyService : public Ice::Service ({
protected:

virtual bool start (int, char*[]);
private:

Ice::0ObjectAdapterPtr _adapter;
}i

bool
MyService: :start (int argc, char* argv[])

{

_adapter = communicator ()->createObjectAdapter ("MyAdapter") ;
_adapter->addWithUUID (new MyServantI) ;

_adapter-sactivate() ;

return true;

int
main (int argc, char* argv[])

{

MyService svc;
return svc.main(argc, argv) ;

}

The Service: :main member function performs the following sequence of
tasks:

1. Scans the argument vector for reserved options that indicate whether the
program should run as a system service and removes these options from the
argument vector (argc is adjusted accordingly). Additional reserved options
are supported for administrative tasks.

2. Configures the program for running as a system service (if necessary) by
invoking configureService or configureDaemon, as appropriate for
the platform.

3. Invokes the run member function and returns its result.
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The Service: : run member function executes the service in the steps shown
below:

1.

6.
7.

Installs an IceUtil: :CtrlCHandler (see Section 29.11) for proper
signal handling.

. Invokes the initializeCommunicator member function to obtain a

communicator. The communicator instance can be accessed using the
communicator member function.

. Invokes the start member function. If start returns false to indicate

failure, run destroys the communicator and returns immediately.

. Invokes the waitForShutdown member function, which should block until

shutdown is invoked.

. Invokes the st op member function. If stop returns true, run considers

the application to have terminated successfully.
Destroys the communicator.
Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Service: : run, a descriptive message is
logged, the communicator is destroyed and the service is terminated.

Ice: :Service Member Functions

The virtual member functions in Ice: : Service represent the points at which a
subclass can intercept the service activities. All of the virtual member functions
(except start) have default implementations.

® void handleInterrupt (int sig)

Invoked by the Ctr1CHandler when a signal occurs. The default imple-
mentation ignores the signal if it represents a logoff event and the
Ice.Nohup property is set to a value larger than zero, otherwise it invokes
the interrupt member function.
Ice: :CommunicatorPtr
initializeCommunicator (int & argc, char * argvl([],

const Ice::InitializationData & data)
Initializes a communicator. The default implementation invokes
Ice::initialize and passes the given arguments.

® void interrupt ()

Invoked by the signal handler to indicate a signal was received. The default
implementation invokes the shut down member function.
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® bool shutdown ()
Causes the service to begin the shutdown process. The default implementation
invokes shutdown on the communicator. The subclass must return true if
shutdown was started successfully, and £alse otherwise.

® bool start(int argc, char * argvl[])
Allows the subclass to perform its startup activities, such as scanning the
provided argument vector for recognized command-line options, creating an
object adapter, and registering servants. The subclass must return true if
startup was successful, and false otherwise.

® bool stop ()
Allows the subclass to clean up prior to termination. The default implementa-
tion does nothing but return true. The subclass must return t rue if the
service has stopped successfully, and f£alse otherwise.

® void syserror (const std::string & msg) const

® void error (const std::string & msg) const

® void warning (const std::string & msg) const

® void trace(const std::string & msg) const

® void print (const std::string & msg) const
Convenience functions for logging messages to the communicator’s logger.
The syserror member function includes a description of the system’s
current error code.

® void waitForShutdown ()
Waits indefinitely for the service to shut down. The default implementation
invokes waitForShutdown on the communicator.

The non-virtual member functions shown in the class definition are described
below:

® bool checkSystem() const
Returns true if the operating system supports Win32 services or Unix
daemons. This function returns false on Windows 95/98/ME.

® Tce::CommunicatorPtr communicator () const
Returns the communicator used by the service, as created by initialize-
Communicator.

® void configureDaemon (bool chdir, bool close)
Configures the program to run as a Unix daemon. The chdir parameter
determines whether the daemon changes its working directory to the root
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directory. The close parameter determines whether the daemon closes
unnecessary file descriptors (i.e., stdin, stdout, etc.).

® void configureService (const std::string & name)
Configures the program to run as a Win32 service with the given name.
® void disableInterrupt ()

Disables the signal handling behavior in Ice: : Service. When disabled,
signals are ignored.

® void enableInterrupt ()

Enables the signal handling behavior in Ice: : Service. When enabled, the
occurrence of a signal causes the handleInterrupt member function to
be invoked.
® int installService(const std::string & name,

const std::string & display,

const std::string & executable,

const std::vector<std::string> & args)
Registers the program as a Win32 service with the given name. If the
display parameter is non-empty, it is used as the display name for the
service, otherwise the service name is used. If the executable parameter is
non-emptys, it is used as the pathname of the executable, otherwise the path-
name of the current executable is used. The values in args are passed to the
service as command-line arguments at startup. This vector should typically
include an option to notify the program that it is being started as a service. The
function returns EXIT SUCCESS for success, EXIT FAILURE for failure.

® static Service * instance()
Returns the singleton Ice: : Service instance.
® int main(int & argc, char * argvl[],
const Ice::InitializationData & data =
Ice::InitializationData())
The primary entry point of the Ice: : Service class. The tasks performed
by this function are described earlier in this section. The function returns
EXIT SUCCESS for success, EXIT FAILURE for failure.

® std::string name () const

Returns the name of the service. If the program is running as a Win32 service,
the return value is the Win32 service name, otherwise it returns the value of
argv[0].
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® int run(int & argc, char * argvl([],

const Ice::InitializationData & data)

Alternative entry point for applications that prefer a different style of service
configuration. The program must invoke configureService (Win32) or
configureDaemon (Unix) in order to run as a service. The tasks performed
by this function are described earlier in this section. The function returns
EXIT SUCCESS for success, EXIT FAILURE for failure.

® bool service() const

Returns true if the program is running as a Win32 service or Unix daemon, or
false otherwise.

® int startService(const std::string & name,

const std::vector<std::string> & args)
Starts the Win32 service using the Service Control Manager. The values in
args are passed to the service as command-line options at startup. The func-
tion returns EXIT SUCCESS for success, EXIT FAILURE for failure.

® int stopService(const std::string & name)

Stops the Win32 service using the Service Control Manager. The function
returns EXIT SUCCESS for success, EXIT FAILURE for failure.
® int uninstallService(const std::string & name)

Removes a Win32 service using the Service Control Manager. The function
returns EXIT SUCCESS for success, EXIT FAILURE for failure.

Unix Daemons

On Unix platforms, Ice: : Service recognizes the following command-line
options:

¢* --daemon

Indicates that the program should run as a daemon. This involves the creation
of a background child process in which Service: :main performs its tasks.
The parent process does not terminate until the child process has successfully
invoked the start member function'. Unless instructed otherwise,

Ice: :Service changes the current working directory of the child process
to the root directory, and closes all unnecessary file descriptors. Note that the

1. This behavior avoids the uncertainty often associated with starting a daemon from a shell script,

because it ensures that the command invocation does not complete until the daemon is ready to
receive requests.
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file descriptors are not closed until after the communicator is initialized,
meaning standard input, standard output, and standard error are available for
use during this time. For example, the IceSSL plug-in may need to prompt for
a passphrase on standard input, or Ice may print the child’s process id on stan-
dard output if the property Ice.PrintProcessIdis set.

¢ --noclose
Prevents Ice: : Service from closing unnecessary file descriptors. This

can be useful during debugging and diagnosis because it provides access to the
output from the daemon’s standard output and standard error.

¢ --nochdir
Prevents Ice: : Service from changing the current working directory.
The - -noclose and - -nochdir options can only be specified in conjunction

with - -daemon. These options are removed from the argument vector that is
passed to the start member function.

Win32 Services

On Win32 platformsz, Ice: :Service starts the application as a Windows
service if the - - service option is specified:

* --service NAME

Run as a Windows service named NAME. This option is removed from the
argument vector that is passed to the start member function.

Before an application can run as a Windows service, however, it must be installed,
therefore the Ice: : Service class supports several additional command-line
options for performing administrative duties:

® --install NAME [--display DISP] [--executable EXEC]
[ARG ...]

Installs the service NAME. If the - -display option is specified, use DISP as
the display name of the service, otherwise use NAME. If the - -executable
option is specified, use EXEC as the service executable pathname, otherwise
use the pathname of the executable used to invoke - -install. Any addi-
tional arguments are passed unchanged to the Service: : start member
function. Note that this command automatically adds the command-line

2. Windows services are not supported on Windows 95/98/ME.
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option - -service NAME to the set of arguments passed to the service at
startup, therefore it is not necessary to specify those options explicitly.

®* —-uninstall NAME

Removes the service NAME. If the service is currently active, it must be
stopped before it can be uninstalled.

® --start NAME [ARG ...]

Starts the service NAME. Any additional arguments are passed unchanged to
the Service: : start member function.

® --stop NAME
Stops the service NAME.

An error occurs if more than one administrative command is specified, or if the -
-service option is specified in conjunction with an administrative command.
The program terminates immediately after executing the administrative command.

The Ice: : Service class supports the Windows service control codes
SERVICE CONTROL INTERROGATE and SERVI CE_CONTROL_STOP. Upon
receipt of SERVICE CONTROL_STOP, Ice: : Service invokes the shut -
down member function.

Logging Considerations

When an application is running as a Unix daemon or Windows service, the default
implementation of Ice: :Logger is usually not appropriate because its output is
sent to standard error and is therefore lost. The application can implement a
custom logger, or it can use one of the alternatives provided by Ice:

® On Unix, the Ice.UseSyslog property selects a logger implementation
that uses the syslog facility.

* On Windows, the Ice.UseEventLog property causes log messages to be
recorded in the Windows event log. The logger implementation automatically
adds the necessary key to the registry to enable the service to use the event
log. Alternatively, the default logger can be used in conjunction with the
Ice.StdErr property to redirect standard error to a file.

Note that when preparing to start a Windows service, Ice: : Service may
encounter errors before the communicator is initialized. If no logger is supplied in
the InitializationData argument to main, Ice: : Service creates a
temporary instance of the Windows event logger to use until the communicator is
successfully initialized and the communicator’s configured logger can be used
instead. Therefore, even if a failing service is configured to use a different logger
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implementation, useful diagnostic information may have been recorded in the
Windows event log.

If an Ice: : Service subclass needs to supply an alternate logger imple-
mentation, the subclass can provide it using the InitializationData argu-
ment to main, or the subclass can override the initializeCommunicator
member function.

Troubleshooting Win32 Service Failures

One failure that commonly occurs when starting a Windows service is caused by
missing DLLs, which usually results in an error window stating a particular DLL
cannot be found. Fixing this problem can often be a trial-and-error process
because the DLL mentioned in the error may depend on other DLLs that are also
missing. It is important to understand that a Windows service is launched by the
operating system and can be configured to execute as a different user, which
means the service’s environment (most importantly its PATH) may not match
yours and therefore extra steps are necessary to ensure that the service can locate
its required DLLs>.

The simplest approach is to copy all of the necessary DLLs to the directory
containing the service executable. If this solution is undesirable, another option is
to modify the system PATH to include the directory or directories containing the
required DLLs. (Note that modifying the system PATH requires restarting the
system.) Finally, you can copy the necessary DLLs to \WINDOWS\system32,
although we do not recommend this approach4.

Assuming that DLL issues are resolved, a Windows service can fail to start for
a number of other reasons, including

¢ invalid command-line arguments or configuration properties

* inability to access necessary resources such as filesystems and databases,
because either the resources do not exist or the service does not have sufficient
access rights to them

3. The command-line utility dumpbin can be used to discover the dependencies of an executable
or DLL.

4. Copying DLLs to \WINDOWS\ system32 often results in subtle problems later when trying to
develop using newer versions of the DLLs. Inevitably you will forget about the DLLs in
\WINDOWS\system32 and struggle to determine why your application is misbehaving or
failing to start.



268

Server-Side Slice-to-C++ Mapping
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* networking issues, such as attempting to open a port that is already in use, or
DNS lookup failures

Failures encountered by the Ice run time prior to initialization of the communi-
cator are reported to the Windows event log if no other logger implementation is
defined, so that should be the first place you look. Typically you will find an entry
in the System event log resembling the following message:

The IcePatch2 service terminated with service-specific error 1.

Error code 1 corresponds to EXIT FAILURE, the value used by

Ice: :Service to indicate a failure during startup. Additional diagnostic
messages may be available in the Application event log. See page 266 for more
information on configuring a logger for a Windows service.

As we mentioned earlier, insufficient access rights can also prevent a Windows
service from starting successfully. By default, a Windows service is configured to
run under a local system account, in which case the service may not be able to
access resources owned by other users. It may be necessary for you to configure a
service to run under a different account, which you can do using the Services
control panel.

Mapping for Interfaces

8.4.1

The server-side mapping for interfaces provides an up-call API for the Ice run
time: by implementing virtual functions in a servant class, you provide the hook
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 6.11). On the
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure
virtual member function for each operation on the corresponding interface. For
example, consider the Slice definition for the Node interface we defined in
Chapter 5 once more:
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module Filesystem {
interface Node {
nonmutating string name();
};
// ...
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem {

class Node : virtual public Ice::0Object ({

public:
virtual std::string name (const Ice::Current& =
Ice::Current()) const = 0;
//
}i
//

}

For the moment, we will ignore a number of other member functions of this class.
The important points to note are:

* As for the client side, Slice modules are mapped to C++ namespaces with the
same name, so the skeleton class definition is nested in the namespace File-
system.

* The name of the skeleton class is the same as the name of the Slice interface
(Node).

* The skeleton class contains a pure virtual member function for each operation
in the Slice interface.

* The skeleton class is an abstract base class because its member functions are
pure virtual.

* The skeleton class inherits from Ice: : Object (which forms the root of the
Ice object hierarchy).

Servant Classes

In order to provide an implementation for an Ice object, you must create a servant
class that inherits from the corresponding skeleton class. For example, to create a
servant for the Node interface, you could write:



270

Server-Side Slice-to-C++ Mapping

#include <Filesystem.h> // Slice-generated header

class NodeI : public virtual Filesystem::Node {
public:

NodelI (const std::stringé&) ;

virtual std::string name(const Ice::Currenté&) const;
private:

std::string name;
}i
By convention, servant classes have the name of their interface with an I-suffix,
so the servant class for the Node interface is called NodeI. (This is a convention
only: as far as the Ice run time is concerned, you can chose any name you prefer
for your servant classes.)

Note that NodeT inherits from Filesystem: : Node, that is, it derives from
its skeleton class. It is a good idea to always use virtual inheritance when defining
servant classes. Strictly speaking, virtual inheritance is necessary only for servants
that implement interfaces that use multiple inheritance; however, the virtual
keyword does no harm and, if you add multiple inheritance to an interface hier-
archy half-way through development, you do not have to go back and add a
virtual keyword to all your servant classes.

As far as Ice is concerned, the NodeT class must implement only a single
member function: the pure virtual name function that it inherits from its skeleton.
This makes the servant class a concrete class that can be instantiated. You can add
other member functions and data members as you see fit to support your imple-
mentation. For example, in the preceding definition, we added a name member
and a constructor. Obviously, the constructor initializes the _name member and
the name function returns its value:

NodeI: :Nodel (const std::string& name) : name (name)

{
}

std::string
NodeI: :name (const Ice::Currenté&) const

{
}

return _name;

Normal, idempotent, and nonmutating Operations

The name member function of the NodeI skeleton on page 270 is a const
member function. The const keyword is added by the Slice compiler because
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name is a nonmutating operation (see Section 3.8.1). In contrast, normal opera-
tions and idempotent operations are non-const member functions. For
example, the following interface contains a normal operation, an idempotent
operation, and a nonmutating operation:
interface Example {
void normalOp();
idempotent void idempotentOp();
nonmutating void nonmutatingOp();

};
The skeleton class for this interface looks like this:

class Example : virtual public Ice::0Object

public:
virtual void normalOp (const Ice::Currenté&
= Ice::Current()) = 0;
virtual void idempotentOp (const Ice::Currenté&
= Ice::Current()) = 0;
virtual void nonmutatingOp (const Ice::Currenté&
= Ice::Current()) const = 0;

//
}i

Note that only the nonmutating operation is mapped as a const member func-
tion; normal and idempotent operations are ordinary member functions.

Parameter Passing

For each parameter of a Slice operation, the C++ mapping generates a corre-
sponding parameter for the virtual member function in the skeleton. In addition,
every operation has an additional, trailing parameter of type Ice: : Current.
For example, the name operation of the Node interface has no parameters, but the
name member function of the Node skeleton class has a single parameter of type
Ice: :Current. We explain the purpose of this parameter in Section 30.6 and
will ignore it for now.

Parameter passing on the server side follows the rules for the client side:

* in-parameters are passed by value or const reference.
® out-parameters are passed by reference.

* return values are passed by value
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To illustrate the rules, consider the following interface that passes string parame-
ters in all possible directions:

module M {
interface Example {
string op(string sin, out string sout);
1
};

The generated skeleton class for this interface looks as follows:

namespace M {
class Example : virtual public ::Ice::Object {
public:
virtual std::string
op (const std::string&, std::stringg,
const Ice::Current& = Ice::Current()) = 0;
//
}i
}
As you can see, there are no surprises here. For example, we could implement op
as follows:
std::string
ExampleI: :op(const std::string& sin,

std::string& sout,
const Ice::Currenté&)

cout << sin << endl; // In parameters are initialized
sout = "Hello World!"; // Assign out parameter
return "Done'; // Return a string

This code is in no way different from what you would normally write if you were
to pass strings to and from a function; the fact that remote procedure calls are
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing
conventions follow normal C++ rules and do not require special-purpose API calls
or memory managemen‘[.5

5. This is in sharp contrast to the CORBA C++ mapping, which has very complex parameter
passing rules that make it all too easy to leak memory or cause undefined behavior.
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Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate
the exception, initialize it, and throw it. For example:
void
Filesystem::Filel::write (const Filesystem::Lines& text,
const Ice::Currenté&)

{
// Try to write the file contents here...
// Assume we are out of space...
if (error) {
Filesystem: :GenericError e;
e.reason = "file too large";
throw e;
!
}i

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for oper-
ations, regardless of whether the corresponding Slice operation definition has an
exception specification or not. This is deliberate: C++ exception specifications do
not add any value and are therefore not used by the Ice C++ mapping. (See [22]
for an excellent treatment of the problems associated with C++ exception specifi-
cations.)

If you throw an arbitrary C++ exception (such as an int or other unexpected
type), the Ice run time catches the exception and then returns an UnknownExcep-
tion to the client. Similarly, if you throw an “impossible” user exception (a user
exception that is not listed in the exception specification of the operation), the
client receives an UnknownUserException.

If you throw a run-time excception, such as MemoryLimitException, the
client receives an UnknownlLocalExcepti on.® For that reason, you should never
throw system exceptions from operation implementations. If you do, all the client
will see is an UnknownLocalException, which does not tell the client anything
useful.

6. There are three system exceptions that are not changed to UnknownLocalException when
returned to the client: ObjectNotExistException, OperationNotExistException, and
FacetNotExistException. We discuss these exceptions in more detail in Section 4.10.4 and
Chapter 32.
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8.7

Object Incarnation

8.7.1

Having created a servant class such as the rudimentary NodeT class in

Section 8.4.2, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is
insufficient to incarnate an object. Specifically, to provide an implementation of
an Ice object, you must follow the following steps:

1. Instantiate a servant class.
2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

Instantiating a Servant
Instantiating a servant means to allocate an instance on the heap:

NodePtr servant = new NodeI ("Fred") ;

This code creates a new NodeI instance on the heap and assigns its address to a
smart pointer of type NodePtr (see also page 228). This works because NodeI
is derived from Node, so a smart pointer of type NodePtr can also look after an
instance of type NodeI. However, if we want to invoke a member function of the
derived NodeT class at this point, we have a problem: we cannot access member
functions of the derived NodeT class through a NodePtr smart pointer, only
member functions of Node base class. (The C++ type rules prevent us from
accessing a member of a derived class through a pointer to a base class.) To get
around this, we can modify the code as follows:

typedef IceUtil::Handle<Nodel> NodeIPtr;
NodeIPtr servant = new Nodel ("Fred") ;

This code makes use of the smart pointer template we presented in Section 6.14.6
by defining NodeIPtr as a smart pointer to NodeI instances. Whether you use
a smart pointer of type NodePtr or NodeIPtr depends solely on whether you
want to invoke a member function of the NodeI derived class; if you only want to
invoke member functions that are defined in the Node skeleton base class, it is
sufficient to use a NodePtr and you need not define the NodeIPtr type.

Whether you use NodePtr or NodeIPtr, the advantages of using a smart
pointer class should be obvious from the discussion in Section 6.14.6: they make
it impossible to accidentally leak memory.
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8.7.2 Creating an Identity

8.7.3

Each Ice object requires an identity. That identity must be unique for all servants
using the same object adapter.7 An Ice object identity is a structure with the
following Slice definition:

module Ice {
struct Identity {
string name;
string category;
};
// ...
};

The full identity of an object is the combination of both the name and category
fields of the Identity structure. For now, we will leave the category field as the
empty string and simply use the name field. (See Section 30.7 for a discussion of
the category field.)

To create an identity, we simply assign a key that identifies the servant to the
name field of the Identity structure:
Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

Activating a Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware
of the existence of a servant only once you explicitly tell the object adapter about
the servant. To activate a servant, you invoke the add operation on the object
adapter. Assuming that we have access to the object adapter in the adapter
variable, we can write:

_adapter->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object
identity. Calling add on the object adapter adds the servant pointer and the
servant’s identity to the adapter’s servant map and links the proxy for an Ice object
to the correct servant instance in the server’s memory as follows:

7. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique
identity. See XREF for further discussion.
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1. The proxy for an Ice object, apart from addressing information, contains the
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant
pointer from the servant map and dispatches the incoming request into the
correct member function on the servant.

Assuming that the object adapter is in the active state (see Section 30.4.5), client
requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instanti-
ates and activates one of our Node I servants. For this example, we use a simple
helper function called activateServant that creates and activates a servant
with a given identity:

void
activateServant (const string& name)
NodePtr servant = new NodeI (name) ; // Refcount == 1

Ice::Identity id;

id.name = name;

_adapter->add(servant, id); // Refcount == 2
} // Refcount == 1

Note that we create the servant on the heap and that, once activateServant
returns, we lose the last remaining handle to the servant (because the servant

variable goes out of scope). The question is, what happens to the heap-allocated

servant instance? The answer lies in the smart pointer semantics:

* When the new servant is instantiated, its reference count is initialized to O.

* Assigning the servant’s address to the servant smart pointer increments the
servant’s reference count to 1.

* Calling add passes the servant smart pointer to the object adapter which
keeps a copy of the handle internally. This increments the reference count of
the servant to 2.

* When activateServant returns, the destructor of the servant variable
decrements the reference count of the servant to 1.
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The net effect is that the servant is retained on the heap with a reference count of 1
for as long as the servant is in the servant map of its object adapter. (If we deacti-
vate the servant, that is, remove it from the servant map, the reference count drops
to zero and the memory occupied by the servant is reclaimed; we discuss these life
cycle issues in XREF.)

UUIDs as Identities

As we discussed in Section 2.5.1, the Ice object model assumes that object identi-
ties are globally unique. One way of ensuring that uniqueness is to use UUIDs
(Universally Unique Identifiers) [14] as identities. The IceUtil namespace
contains a helper function to create such identities:

#include <IceUtil/UUID.h>
#include <iostream>

using namespace std;

int
main ()

{
}

When executed, this program prints a unique string such as
5029a22c-e333-4f87-86bl-cd5e0fcce509. Each call to generate-
UUID creates a string that differs from all previous ones.® You can use a UUID
such as this to create object identities. For convenience, the object adapter has an
operation addwithUUID that generates a UUID and adds a servant to the servant
map in a single step. Using this operation, we can rewrite the code on page 276
like this:

void

activateServant (const string& name)

{

cout << IceUtil::generateUUID() << endl;

NodePtr servant = new Nodel (name) ;
_adapter->addWithUUID (servant) ;

8. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat
themselves, but this will not happen until approximately the year 3400.
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8.7.5 Creating Proxies

Once we have activated a servant for an Ice object, the server can process
incoming client requests for that object. However, clients can only access the
object once they hold a proxy for the object. If a client knows the server’s address
details and the object identity, it can create a proxy from a string, as we saw in our
first example in Chapter 3. However, creation of proxies by the client in this
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies
by invoking operations.

The object adapter contains all the details that make up the information in a
proxy: the addressing and protocol information, and the object identity. The Ice
run time offers a number of ways to create proxies. Once created, you can pass a
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWw1i thUUID servant activation operations on the object adapter
return a proxy for the corresponding Ice object. This means we can write:
typedef IceUtil::Handle<NodeI> NodeIPtr;

NodeIPtr servant = new Nodel (name) ;

NodePrx proxy = NodePrx::uncheckedCast (
_adapter->addWwithUUID (servant)) ;

// Pass proxy to client...

Here, addwi thUUID both activates the servant and returns a proxy for the Ice
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID
returns a proxy of type Ice: :ObjectPrx.

Direct Proxy Creation
The object adapter offers an operation to create a proxy for a given identity:

module Ice {
Tocal interface ObjectAdapter {
Object* createProxy(Identity id);
// ...
1
};



8.8 Summary 279

8.8

Note that createProxy creates a proxy for a given identity whether a servant is
activated with that identity or not. In other words, proxies have a life cycle that is
quite independent from the life cycle of servants:

Ice::Identity id;

id.name = IceUtil::generateUUID() ;

ObjectPrx o = _adapter->createProxy(id) ;

This creates a proxy for an Ice object with the identity returned by generate-
UUID. Obviously, no servant yet exists for that object so, if we return the proxy to
a client and the client invokes an operation on the proxy, the client will receive an
ObjectNotExistException. (We examine these life cycle issues in more detail in
XREF.)

Summary

This chapter presented the server-side C++ mapping. Because the mapping for
Slice data types is identical for clients and servers, the server-side mapping only
adds a few additional mechanism to the client side: a small API to initialize and
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately
reflect the basics of writing an Ice server. Of course, for more sophisticated
servers (which we discuss in Chapter 30), you will be using additional APIs, for
example, to improve performance or scalability. However, these APIs are all
described in Slice, so, to use these APIs, you need not learn any C++ mapping
rules beyond those we described here.






Chapter 9
Developing a File System Server in
C++

9.1

Chapter Overview

9.2

In this chapter, we present the source code for a C++ server that implements the
file system we developed in Chapter 5 (see Chapter 7 for the corresponding
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Chapter 29.)

Implementing a File System Server

We have now seen enough of the server-side C++ mapping to implement a server
for the file system we developed in Chapter 5. (You may find it useful to review
the Slice definition for our file system in Section 5 before studying the source
code.)

Our server is composed of two source files:

¢ Server.cpp
This file contains the server main program.
® FilesystemI.cpp
This file contains the implementation for the file system servants.

281
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9.2.1

The Server main Program

Our server main program, in the file Server. cpp, uses the

Ice: :Application class we discussed in Section 8.3.1. The run method
installs a signal handler, creates an object adapter, instantiates a few servants for
the directories and files in the file system, and then activates the adapter. This
leads to a main program as follows:

#include <FilesystemI.hs>
#include <Ice/Application.h>

using namespace std;
using namespace Filesystem;

class FilesystemApp : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {
// Create an object adapter (stored in the NodeI:: adapter
// static member)
//
NodeI:: adapter =
communicator () ->createObjectAdapterWithEndpoints (
"SimpleFilesystem", "default -p 10000");

// Create the root directory (with name "/" and no parent)

//

DirectoryIPtr root = new DirectoryI("/", 0);

// Create a file called "README" in the root directory
//
FilePtr file = new FileI ("README", root) ;
Lines text;
text.push_back ("This file system contains"
"a collection of poetry.");
file->write (text) ;

// Create a directory called "Coleridge" in
// the root directory
//
DirectoryIPtr coleridge
= new DirectoryI("Coleridge", root) ;

// Create a file called "Kubla Khan" in the
// Coleridge directory
//

file = new FileI("Kubla Khan", coleridge);
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text.erase (text.begin(), text.end()) ;
text.push back ("In Xanadu did Kubla Khan") ;
text.push back ("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back("Down to a sunless sea.");

file->write (text) ;

// All objects are created, allow client requests now
//

NodeI:: adapter-sactivate();

// Wait until we are done

//
communicator () ->waitForShutdown () ;
if (interrupted()) {
cerr << appName ()
<< ": received signal, shutting down" << endl;

}

NodeI:: adapter = 0;

return O0;
}i
int
main (int argc, char* argv([])
{

FilesystemApp app;
return app.main(argc, argv) ;

}
There is quite a bit of code here, so let us examine each section in detail:

#include <FilesystemI.h>
#include <Ice/Application.h>

using namespace std;
using namespace Filesystem;

The code includes the header file FilesystemI.h (see page 292). That file
includes Ice/Ice.h as well as the header file that is generated by the Slice
compiler, Filesystem. h. Because we are using Ice: :Application, we
need to include Ice/Application.h as well.

Two using declarations, for the namespaces std and Filesystem, permit
us to be a little less verbose in the source code.
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The next part of the source code is the definition of FilesystemApp, which
derives from Ice: :Application and contains the main application logic in
its run method:

class FilesystemApp : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {
// Create an object adapter (stored in the Nodel:: adapter
// static member)
//
NodeI:: adapter =
communicator () ->createObjectAdapterWithEndpoints (
"SimpleFilesystem", "default -p 10000");

// Create the root directory (with name "/" and no parent)
Y b

//

DirectoryIPtr root = new DirectoryI("/", 0);

// Create a file called "README" in the root directory
//
FilePtr file = new FileI ("README", root) ;
Lines text;
text.push back("This file system contains"
"a collection of poetry.");
file->write (text) ;

// Create a directory called "Coleridge" in
// the root directory
//
DirectoryIPtr coleridge
= new DirectoryI("Coleridge", root) ;

// Create a file called "Kubla Khan" in the
// Coleridge directory

//
file = new FileI("Kubla Khan", coleridge);
text.erase (text.begin(), text.end()) ;

text.push back ("In Xanadu did Kubla Khan") ;
text.push back ("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back("Down to a sunless sea.");

file->write (text) ;

// Bll objects are created, allow client requests now

//
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NodeI:: adapter-sactivate();

// Wait until we are done

//
communicator () ->waitForShutdown () ;
if (interrupted())
cerr << appName ()
<< ": received signal, shutting down" << endl;

éodeI::_adapter = 0;
return 0;
}i

}i
Much of this code is boiler plate that we saw previously: we create an object
adapter, and, towards the end, activate the object adapter and call waitFor-
Shutdown. (Setting adapter to zero before returning prevents a warning
from the Ice run time about Ice objects that persist beyond the life time of the

communicator.)
The interesting part of the code follows the adapter creation: here, the server
instantiates a few nodes for our file system to create the structure shown in

Figure 9.1.

Q = Directory RootDir
@ -ri

Coleridge README

Kubla_Khan

Figure 9.1. A small file system.

As we will see shortly, the servants for our directories and files are of type
DirectoryI and Filel, respectively. The constructor for either type of
servant accepts two parameters, the name of the directory or file to be created and
a handle to the servant for the parent directory. (For the root directory, which has
no parent, we pass a null parent handle.) Thus, the statement

DirectoryIPtr root = new DirectoryI("/", 0);

creates the root directory, with the name " /" and no parent directory. Note that
we use the smart pointer class we discussed in Section 6.14.6 to hold the return
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value from new; that way, we avoid any memory management issues. The type
DirectoryIPtr is defined as follows in a header file FilesystemI.h (see
page 292):

typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

Here is the code that establishes the structure in Figure 9.1:

// Create the root directory (with name "/" and no parent)

//

DirectoryIPtr root = new DirectoryI("/", 0);

// Create a file called "README" in the root directory
//
FilePtr file = new FileI ("README", root) ;
Lines text;
text.push_back ("This file system contains"
"a collection of poetry.");
file->write(text) ;

// Create a directory called "Coleridge" in
// the root directory
//

DirectoryIPtr coleridge
= new DirectoryI("Coleridge", root) ;

// Create a file called "Kubla Khan" in the
// Coleridge directory

//
file = new FileI("Kubla Khan", coleridge);
text.erase (text.begin(), text.end());

text.push back ("In Xanadu did Kubla Khan") ;

text.push back("A stately pleasure-dome decree:");
text.push back ("Where Alph, the sacred river, ran");
text.push back ("Through caverns measureless to man") ;
text.push back ("Down to a sunless sea.");

file->write (text) ;

We first create the root directory and a file README within the root directory.
(Note that we pass the handle to the root directory as the parent pointer when we
create the new node of type FileTI.)

The next step is to fill the file with text:
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FilePtr file = new FileI ("README", root) ;

Lines text;

text.push_back ("This file system contains"
"a collection of poetry.");

file->write (text) ;

Recall from Section 6.7.3 that Slice sequences map to STL vectors. The Slice type
Lines is a sequence of strings, so the C++ type Lines is a vector of strings; we
add a line of text to our README file by calling push_back on that vector.

Finally, we call the Slice write operation on our FileTI servant by simply
writing:

file->write (text) ;

This statement is interesting: the server code invokes an operation on one of its
own servants. Because the call happens via a smart class pointer (of type
FilePtr) and not via a proxy (of type FilePrx), the Ice run time does not
know that this call is even taking place—such a direct call into a servant is not
mediated by the Ice run time in any way and is dispatched as an ordinary C++
function call.

In similar fashion, the remainder of the code creates a subdirectory called
Coleridge and, within that directory, a file called Kubla Khan to complete
the structure in Figure 9.1.

The Servant Class Definitions

We must provide servants for the concrete interfaces in our Slice specification,
that is, we must provide servants for the File and Directory interfaces in the
C++ classes FileI and DirectoryI. This means that our servant classes
might look as follows:

namespace Filesystem
class FileI : virtual public File ({
//
i

class Directoryl : virtual public Directory ({

//
}i
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This leads to the C++ class structure as shown in Figure 9.2.

| Object |
I
| Node |
/ \
| File | | Directory |
i !
| Filel | | DirectoryI |

Figure 9.2. File system servants using interface inheritance.

The shaded classes in Figure 9.2 are skeleton classes and the unshaded classes are
our servant implementations. If we implement our servants like this, FileI must
implement the pure virtual operations it inherits from the Fi1le skeleton (read
and write), as well as the operation it inherits from the Node skeleton (name).
Similarly, DirectoryI must implement the pure virtual function it inherits
from the Directory skeleton (1ist), as well as the operation it inherits from
the Node skeleton (name). Implementing the servants in this way uses interface
inheritance from Node because no implementation code is inherited from that
class.

Alternatively, we can implement our servants using the following definitions:

namespace Filesystem {
class NodeI : virtual public Node ({
//
}i

class FileI : virtual public File,
virtual public NodeI {
//
}i

class DirectoryI : virtual public Directory,
virtual public NodeI
/7



9.2 Implementing a File System Server 289

This leads to the C++ class structure shown in Figure 9.3.

| Object |
| Node |
| NodelI |
File | | Directory |
| Filel | | DirectoryI

Figure 9.3. File system servants using implementation inheritance.

In this implementation, Node1 is a concrete base class that implements the name
operation it inherits from the Node skeleton. FileI and DirectoryI use
multiple inheritance from NodeI and their respective skeletons, that is, FileI
and DirectoryI use implementation inheritance from their NodeI base class.

Either implementation approach is equally valid. Which one to choose simply
depends on whether we want to re-use common code provided by NodeI. For the
implementation that follows, we have chosen the second approach, using imple-
mentation inheritance.

Given the structure in Figure 9.3 and the operations we have defined in the
Slice definition for our file system, we can add these operations to the class defini-
tion for our servants:

namespace Filesystem {
class NodeI : virtual public Node ({
public:
virtual std::string name (const Ice::Currenté&) const;

i

class FileI : virtual public File,
virtual public NodeI {
public:
virtual Lines read(const Ice::Currenté&) const;
virtual void write (const Linesé&,
const Ice::Currenté&) ;
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}i

class DirectoryI : virtual public Directory,
virtual public NodeI {
public:
virtual NodeSeqg list (const Ice::Currenté&) const;

i
}
This simply adds signatures for the operation implementations to each class.
(Note that the signatures must exactly match the operation signatures in the gener-
ated skeleton classes—if they do not match exactly, you end up overloading the
pure virtual function in the base class instead of overriding it, meaning that the
servant class cannot be instantiated because it will still be abstract. To avoid signa-
ture mismatches, you can copy the signatures from the generated header file
(Filesystem.h).)

Now that we have the basic structure in place, we need to think about other
methods and data members we need to support our servant implementation. Typi-
cally, each servant class hides the copy constructor and assignment operator, and
has a constructor to provide initial state for its data members. Given that all nodes
in our file system have both a name and a parent directory, this suggests that the
NodeT class should implement the functionality relating to tracking the name of
each node, as well as the parent—child relationships:

namespace Filesystem {
class DirectoryI;
typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

class NodeI : virtual public Node ({

public:
virtual std::string name (const Ice::Currenté&) const;
NodelI (const std::string&, const DirectoryIPtr& parent) ;
static Ice::0ObjectAdapterPtr _adapter;

private:
const std::string _name;
DirectoryIPtr parent;
NodelI (const Nodelé&) ; // Copy forbidden
void operator=(const Nodel&) ; // Assignment forbidden

}i

}

The NodeT class has a private data member to store its name (of type
std: :string) and its parent directory (of type DirectoryIPtr). The
constructor accepts parameters that set the value of these data members. For the
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root directory, by convention, we pass a null handle to the constructor to indicate

that the root directory has no parent. We have also added a public static variable to
hold a smart pointer to the (single) object adapter we use in our server; that vari-

able is initialized by the Filesystem: : run method on page 284.

The FileT servant class must store the contents of its file, so it requires a
data member for this. We can conveniently use the generated Lines type (which
isastd: :vector<std: :string>) to hold the file contents, one string for
each line. Because FileT inherits from Node T, it also requires a constructor that
accepts the file name and the parent directory, leading to the following class defi-
nition:
namespace Filesystem {

class FileI : virtual public File,
virtual public NodeI {
public:
virtual Lines read(const Ice::Currenté&) const;
virtual void write(const Lineség,
const Ice::Currenté&) ;
FileI (const std::string&, const DirectoryIPtré&) ;

private:
Lines lines;
}i

}

For directories, each directory must store its list of child notes. We can conve-
niently use the generated NodeSeq type (which is a vector<NodePrx>) to do
this. Because DirectoxryT inherits from NodeI, we need to add a constructor
to initialize the directory name and its parent directory. As we will see shortly, we
also need a private helper function, addChild, to make it easier to connect a
newly created directory to its parent. This leads to the following class definition:

namespace Filesystem {
class DirectoryI : virtual public Directory,
virtual public NodeI {

public:
virtual NodeSeq list (const Ice::Currenté&) const;
DirectorylI (const std::string&, const DirectoryIPtré&) ;
void addChild (NodePrx child) ;

private:
NodeSeqg _contents;

i
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Putting all this together, we end up with a servant header file, FilesystemI.h,
as follows:

#include <Ice/Ice.h>
#include <Filesystem.h>

namespace Filesystem {
class DirectoryI;
typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

class NodelI : virtual public Node ({
public:
virtual std::string name (const Ice::Currenté&) const;
NodeI (const std::string&, const DirectoryIPtré& parent) ;
static Ice::0ObjectAdapterPtr _adapter;
private:
const std::string name;
DirectoryIPtr parent;
NodelI (const Nodelég) ; // Copy forbidden
void operator=(const NodeI&) ; // Assignment forbidden

}i

class FileI : virtual public File,
virtual public NodeI {

public:

virtual Lines read(const Ice::Current&) const;

virtual void write (const Linesg,

const Ice::Currenté&) ;

FileI (const std::string&, const DirectoryIPtré&) ;
private:

Lines _lines;

}i

class DirectoryI : virtual public Directory,
virtual public NodeI {
public:
virtual NodeSeq list (const Ice::Currenté&) const;
DirectoryI(const std::string&, const DirectoryIPtré&) ;
void addChild (NodePrx child) ;
private:
NodeSeg contents;

i



9.2 Implementing a File System Server 293

9.2.3 The Servant Implementation

The implementation of our servants is mostly trivial, following from the class
definitions in our FilesystemI .h header file.

Implementing FileI

The implementation of the read and write operations for files is trivial: we
simply store the passed file contents in the _1ines data member. The constructor
is equally trivial, simply passing its arguments through to the NodeT base class
constructor:

Filesystem: :Lines

Filesystem::FileI::read(const Ice::Current&) const

{
}

return lines;

void
Filesystem::Filel::write (const Filesystem::Lines& text,
const Ice::Currenté&)

}

_lines = text;

Filesystem::FileI::FileI (const string& name,
const DirectoryIPtr& parent
) : NodeI (name, parent)

Implementing DirectoryI

The implementation of DirectoryT is equally trivial: the 1ist operation
simply returns the contents data member and the constructor passes its argu-
ments through to the NodeI base class constructor:

Filesystem: :NodeSeq
Filesystem: :DirectoryI::list (const Ice::Currenté&) const

{
}

return _contents;

Filesystem: :DirectoryI: :DirectoryI (const string& name,
const DirectoryIPtr& parent
) : Nodel (name, parent)
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void
Filesystem: :DirectoryI::addChild (const NodePrx child)

{
}

The only noteworthy thing is the implementation of addChild: when a new
directory or file is created, the constructor of the NodeI base class calls
addChild on its own parent, passing it the proxy to the newly-created child. The
implementation of addChi 1d appends the passed reference to the contents list of
the directory it is invoked on (which is the parent directory).

_contents.push back(child) ;

Implementing NodeI

The name operation of our NodeTI class is again trivial: it simply returns the
_name data member:
std::string

Filesystem: :Nodel: :name (const Ice::Current&) const

{
}

Most of the meat of our implementation is in the NodeI constructor. It is here that
we create the proxy for each node and connect parent and child nodes:

return _name;

Filesystem: :Nodel: :Nodel (const string& name,
const DirectoryIPtr& parent
) : _name(name), parent (parent)

// Create an identity. The parent has the
// fixed identity "RootDir"

//
Ice::Identity myID = adapter.getCommunicator()->
stringToIdentity (parent ? IceUtil::generateUUID ()
: "RootDir") ;

// Create a proxy for the new node and add it as
// a child to the parent
//
NodePrx thisNode
= NodePrx: :uncheckedCast (_adapter->createProxy (myID)) ;
if (parent)
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parent->addChild (thisNode) ;

// Activate the servant

//
_adapter->add(this, myID);

}

The first step is to create a unique identity for each node. For the root directory,
we use the fixed identity "RootDix". This allows the client to create a proxy for
the root directory (see Section 7.2). For directories other than the root directory,
we use a UUID as the identity (see page 277).

The next step is to create a proxy for the child and to add the child to the
parent directory’s content list by calling addChild. This connects the child to
the parent.

Finally, we need to activate the servant so the Ice run time knows about the
servant’s existence, so we call add on the object adapter.

This completes our servant implementation. The complete source code is
shown here once more:

#include <FilesystemI.hs>
#include <IceUtil/UUID.h>

using namespace std;

Ice::0ObjectAdapterPtr Filesystem::NodeI:: adapter;
// Slice Node: :name () operation

std::string

Filesystem: :Nodel: :name (const Ice::Current&) const

{
}

return _name;

// NodeI constructor

Filesystem: :NodeI: :Nodel (const string& name,
const DirectoryIPtr& parent
) : _name(name), _parent (parent)

// Create an identity. The parent has the

// fixed identity "RootDir"

//

Ice::Identity myID = adapter.getCommunicator->
stringToIdentity (parent ? IceUtil::generateUUID ()
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"RootDir") ;

// Create a proxy for the new node and add it
// as a child to the parent

//
NodePrx thisNode

= NodePrx: :uncheckedCast (_adapter->createProxy (myID)) ;
if (parent)

parent->addChild (thisNode) ;

// Activate the servant
//
_adapter->add(this, myID);
// Slice File::read() operation
Filesystem: :Lines
Filesystem: :Filel: :read(const Ice::Current&) const

{
}

return lines;

// Slice File::write() operation
void

Filesystem::Filel::write(const Filesystem::Lines& text,
const Ice::Currenté&)

}

_lines = text;

// Filel constructor

Filesystem::FileI::Filel (const string& name,
const DirectoryIPtr& parent
) : Nodel (name, parent)

// Slice Directory::list () operation

Filesystem: :NodeSeq
Filesystem::DirectoryI::list (const Ice::Currenté&) const

{

return _COl’lt ents;
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}

// Directoryl constructor

Filesystem: :DirectoryIl: :DirectoryI (const string& name,
const DirectoryIPtr& parent
) : Nodel (name, parent)

{
}

// addChild is called by the child in order to add
// itself to the _contents member of the parent

void
Filesystem: :DirectoryI::addChild (const NodePrx child)

{
}

__contents.push back(child) ;

Summary

This chapter showed how to implement a complete server for the file system we
defined in Chapter 5. Note that the server is remarkably free of code that relates to
distribution: most of the server code is simply application logic that would be
present just the same for a non-distributed version. Again, this is one of the major
advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if
two clients access the same file in parallel, each via a different thread, one thread
may read the 1ines data member while another thread updates it. Obviously, if
that happens, we may write or return garbage or, worse, crash the server. However,
it is trivial to make the read and write operations thread-safe: a single data
member and two lines of source code are sufficient to achieve this. We discuss
how to write thread-safe servant implementations in Chapter 29.
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Chapter 10
Client-Side Slice-to-Java Mapping

10.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Java mapping (see Chapter 12
for the server-side mapping). One part of the client-side Java mapping concerns
itself with rules for representing each Slice data type as a corresponding Java type;
we cover these rules in Section 10.3 to Section 10.10. Another part of the mapping
deals with how clients can invoke operations, pass and receive parameters, and
handle exceptions. These topics are covered in Section 10.11 to Section 10.13.
Slice classes have the characteristics of both data types and interfaces and are
covered in Section 10.14. In Section 10.15, we show how you can customize the
Slice-to-Java mapping using metadata. Section 10.16 lists the command-line
options for the Slice-to-Java compiler Finally, Section 10.17 covers the use of
Slice checksums in the Java mapping.

10.2 Introduction

The client-side Slice-to-Java mapping defines how Slice data types are translated
to Java types, and how clients invoke operations, pass parameters, and handle
errors. Much of the Java mapping is intuitive. For example, Slice sequences map
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to Java arrays, so there is essentially nothing new you have learn in order to use
Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still
synchronize access to data from different threads. For example, if you have two
threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only
need to concern yourself with concurrent access to your own data—the Ice run
time itself is fully thread safe, and none of the Ice API calls require you to acquire
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that
you skim the material on the initial reading and refer back to specific sections as
needed. However, we recommend that you read at least Section 10.9 to
Section 10.13 in detail because these sections cover how to call operations from a
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Java mapping, you
should need no more than the Slice definition of your application and knowledge
of the Java mapping rules. In particular, looking through the generated code in
order to discern how to use the Java mapping is likely to be inefficient, due to the
amount of detail. Of course, occasionally, you may want to refer to the generated
code to confirm a detail of the mapping, but we recommend that you otherwise
use the material presented here to see how to write your client-side code.

Mapping for Identifiers

Slice identifiers map to an identical Java identifier. For example, the Slice identi-
fier Clock becomes the Java identifier CLock. There is one exception to this rule:
if a Slice identifier is the same as a Java keyword, the corresponding Java identi-
fier is prefixed with an underscore. For example, the Slice identifier whiTe is
mapped as _whil e.l

A single Slice identifier often results in several Java identifiers. For example,
for a Slice interface named Foo, the generated Java code uses the identifiers Foo
and FooPrx (among others). If the interface has the name wh1ile, the generated

1. As suggested in Section 4.5.3 on page 82, you should try to avoid such identifiers as much as
possible.
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identifiers are _while and whilePrx (not _whilePrx), thatis, the under-
score prefix is applied only to those generated identifiers that actually require it.

Mapping for Modules

Slice modules map to Java packages with the same name as the Slice module. The
mapping preserves the nesting of the Slice definitions. For example:

// Definitions at global scope here...

module M1 {
// Definitions for M1 here...
module M2 {
// Definitions for M2 here...
1
};
// ...
module M1 { // Reopen M1
// More definitions for M1 here...
};

This definition maps to the corresponding Java definitions:

package M1;
// Definitions for M1 here...

package M1.M2;
// Definitions for M2 here...

package M1;
// Definitions for M1 here...

Note that these definitions appear in the appropriate source files; source files for
definitions in module M1 are generated in directory M1 underneath the top-level
directory, and source files for definitions for module M2 are generated in
directory M1 /M2 underneath the top-level directory. You can set the top-level
output directory using the - -output-dir option with slice2java (see
Section 4.19).



10.5 The Ice Package

All of the APIs for the Ice run time are nested in the Ice package, to avoid
clashes with definitions for other libraries or applications. Some of the contents of
the Tce package are generated from Slice definitions; other parts of the Ice
package provide special-purpose definitions that do not have a corresponding
Slice definition. We will incrementally cover the contents of the Ice package
throughout the remainder of the book.

10.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to Java types as shown in Table 10.1.

Table 10.1. Mapping of Slice built-in types to Java.

Slice Java

bool boolean

byte byte

short short

int int

Tong long

float float

double || double

string || String

10.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and dictio-
naries.



10.7.1 Mapping for Enumerations

Java2 does not have an enumerated type, so the Slice enumerations are emulated
using a Java class: the name of the Slice enumeration becomes the name of the
Java class; for each enumerator, the class contains two public final members, one
with the same name as the enumerator, and one with the same name as the
enumerator with a prepended underscore. For example:

enum Fruit { Apple, Pear, Orange };

The generated Java class looks as follows:

public final class Fruit {
public static final int Apple = 0;
public static final int _Pear = 1;
public static final int _Orange = 2;

public static final Fruit Apple = new Fruit (_Apple);
public static final Fruit Pear = new Fruit( Pear);
public static final Fruit Orange = new Fruit( Orange) ;

public int
value ()

!/
}

public static Fruit
convert (int val) {

!/
}

public static Fruit
convert (String val) {

!/
}

//
}

Note that the generated class contains a number of other members, which we have

not shown. These members are internal to the Ice run time and you must not use

them in your application code (because they may change from release to release).
Given the above definitions, we can use enumerated values as follows:
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Fruit favoriteFruit = Fruit.Apple;

Fruit otherFavoriteFruit = Fruit.Orange;
if (favoriteFruit == Fruit.Apple) // Compare with constant
//
if (f1 == £2) // Compare two enums
//
switch (f2.value()) { // Switch on enum
case Fruit. Apple:
//
break;
case Fruit. Pear
//
break;
case Fruit._Orange
//
break;
}

As you can see, the generated class enables natural use of enumerated values. The
int members with a prepended underscore are constants that encode each
enumerator; the Fruit members are preinitialized enumerators that you can use
for initialization and comparison.

The value and convert methods act as an accessor and a modifier, so you
can read and write the value of an enumerated variable as an int. If you are using
the convert method, you must make sure that the passed value is within the
range of the enumeration; failure to do so will result in an assertion failure:

Fruit favoriteFruit = Fruit.convert (4); // Assertion failure!

See Section 10.15.2 for information on the Java5 mapping for Slice enumerations.

Mapping for Structures

Slice structures map to Java structures with the same name. For each Slice data
member, the Java class contains a corresponding public data member. For
example, here is our Employee structure from Section 4.9.4 once more:

struct Employee {
Tong number;
string firstName;
string lastName;

};



The Slice-to-Java compiler generates the following definition for this structure:

public final class Employee implements java.lang.Cloneable {
public long number;
public String firstName;
public String lastName;

public Employee {}

public Employee (long number,
String firstName,
String lastName) {
this.number = number;

this.firstName = firstName;
this.lastName = lastName;
}
public boolean eqguals(java.lang.Object rhs) {
//
}
public int hashCode() {
//
}

public java.lang.Object clone ()
java.lang.Object o;
try

{
}

catch(java.lang.CloneNotSupportedException ex)

{
}

return o;

o = super.clone() ;

assert false; // impossible

}

For each data member in the Slice definition, the Java class contains a corre-
sponding public data member of the same name. Refer to Section 10.15.4 for
additional information on data members.

The equals member function compares two structures for equality. Note that
the generated class also provides the usual hashCode and clone methods.
(clone has the default behavior of making a shallow copy.)



10.7.3

10.7.4

The Java class also has a default constructor as well as a second constructor
that accepts one argument for each data member of the structure. This constructor
allows you to construct and initialize a structure in a single statement (instead of
having to first instantiate the structure and then initialize its members).

Mapping for Sequences

Slice sequences map to Java arrays. This means that the Slice-to-Java compiler
does not generate a separate named type for a Slice sequence. For example:

sequence<Fruit> FruitPlatter;
This definition simply corresponds to the Java type Fruit []. Naturally, because
Slice sequences are mapped to Java arrays, you can take advantage of all the array

functionality provided by Java, such as initialization, assignment, cloning, and the
length member. For example:

Fruit[] platter = { Fruit.Apple, Fruit.Pear };
assert (platter.length == 2);

See Section 10.15 for information on alternate mappings for sequence types.

Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:
dictionary<long, Employee> EmployeeMap;

As for sequences, the Java mapping does not create a separate named type for this
definition. Instead, all dictionaries are simply of type java.util.Map, so we
can use a map of employee structures like any other Java map. (Of course, because

java.util.Map is an abstract class, we must use a concrete class, such as
java.util .HashMap for the actual map.) For example:

java.util.Map em = new java.util.HashMap () ;

Employee e = new Employee() ;
e.number = 31;

e.firstName = "James";
e.lastName = "Gosling";

em.put (new Long (e.number), e);

See Section 10.15 for information on alternate mappings for dictionary types.



10.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 93 once more:

const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public interface AppendByDefault
boolean value = true;
}

public interface LowerNibble {
byte value = 15;
}

public interface Advice {
String value = "Don't Panic!";

public interface TheAnswer (
short value = 42;
}

public interface PI ({
double value = 3.1416;
}

public interface FavoriteFruit {
Fruit value = Fruit.Pear;

As you can see, each Slice constant is mapped to a Java interface with the same
name as the constant. The interface contains a member named value that holds
the value of the constant.



10.9 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from
Section 4.10.5 on page 109 once more:

exception GenericError {
string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public class GenericError extends Ice.UserException ({
public String reason;

public GenericError () {}

public GenericError (String reason)

this.reason = reason;
public String ice name() {
return "GenericError";
public class BadTimeVal extends GenericError
public String ice name() {
return "BadTimeVal";
public class BadZoneName extends GenericError
public String ice name() {
return "BadZoneName";

Each Slice exception is mapped to a Java class with the same name. For each data
member, the corresponding class contains a public data member. (Obviously,
because BadTimeVal and BadZoneName do not have members, the generated
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classes for these exceptions also do not have members.) Refer to Section 10.15.4
for additional information on data members.

The inheritance structure of the Slice exceptions is preserved for the generated
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Exceptions have a default constructor as well as a second constructor that
accepts one argument for each exception member. This constructor allows you to
instantiate and initialize an exception in a single statement, instead of having to
first instantiate the exception and then assign to its members. (For derived excep-
tions, the constructor accepts one argument for each base exception member, plus
one argument for each derived exception member, in base-to-derived order.)

Each exception also defines the ice name member function, which returns
the name of the exception.

All user exceptions are derived from the base class Ice.UserException.
This allows you to catch all user exceptions generically by installing a handler for
Ice.UserException. Ice.UserException, in turn, derives from
java.lang.Exception.

Ice.UserExceptions implements a clone method that is inherited by
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

Note that the generated exception classes contain other member functions that
are not shown. However, those member functions are internal to the Java mapping
and are not meant to be called by application code.

Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error
conditions. All run-time exceptions directly or indirectly derive from
Ice.LocalException (which, in turn, derives from java.lang.Runt-
imeException).

Ice.LocalExceptions implements a clone method that is inherited by
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

An inheritance diagram for user and run-time exceptions appears in Figure 4.4
on page 106. By catching exceptions at the appropriate point in the hierarchy, you
can handle exceptions according to the category of error they indicate:

® Tce.LocalException

This is the root of the inheritance tree for run-time exceptions.
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® Tce.UserException
This is the root of the inheritance tree for user exceptions.
® Tce.TimeoutException
This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.
® Tce.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a
server times out.
You will probably have little need to catch the remaining exceptions by category;
the fine-grained error handling offered by the remainder of the hierarchy is of
interest mainly in the implementation of the Ice run time. However, there is one
exception you will probably be interested in specifically:
Ice.ObjectNotExistException. This exception is raised if a client
invokes an operation on an Ice object that no longer exists. In other words, the
client holds a dangling reference to an object that probably existed some time in
the past but has since been permanently destroyed.

Mapping for Interfaces

Slice interfaces map to proxies on the client side. A proxy is simply a Java inter-
face with operations that correspond to the operations defined in the Slice inter-
face.

The compiler generates quite few source files for each Slice interface. In
general, for an interface <interface-name>, the following source files are created
by the compiler:

® <interface-names>.java
This source file declares the <interface-name> Java interface.
®* <interface-name>Holder.java

This source file defines a holder type for the interface (see page 323).

®* <interface-name>Prx.java

This source file defines the <interface-name>Prx interface (see

page 313).



®* <interface-name>PrxHelper.java
This source file defines the helper type for the interface’s proxy (see
page 316).

® <interface-name>PrxHolder.java
This source file defines the a holder type for the interface’s proxy (see
page 323).

* <interface-name>Operations.java
_<interface-name>OperationsNC. java

These source files each define an interface that contains the operations corre-
sponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The
compiler also generates a file that is specific to the server side, plus three addi-
tional files:

®* <interface-name>Disp.java
This file contains the definition of the server-side skeleton class.
®* <interface-name>Del.java
®* <interface-name>DelD.java
®* <interface-name>DelM.java

These files contain code that is internal to the Java mapping; they do not
contain any functions of relevance to application programmers.

10.11.1 Proxy Interfaces

On the client side, Slice interfaces map to Java interfaces with member functions
that correspond to the operations on those interfaces. Consider the following
simple interface:

interface Simple {
void op();
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx extends Ice.ObjectPrx
public void op() ;
public void op(java.util.Map _ context);
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As you can see, the compiler generates a proxy interface SimplePrx. In general,
the generated name is <interface-name>Prx. If an interface is nested in a
module M, the generated class is part of package M, so the fully-qualified name is
M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simp1e interface in a server and is known as a
proxy instance. All the details about the server-side object, such as its address,
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the
fact that all Ice interfaces implicitly inherit from Ice: :0Object.

For each operation in the interface, the pro